Skip to main content

Item Refinement for Improved Recommendations

  • Conference paper
  • First Online:
Digital Connectivity – Social Impact (CSI 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 679))

Included in the following conference series:

  • 573 Accesses

Abstract

Recommender systems serve as business tools which make use of knowledge discovery techniques to reshape the world of E-Commerce. Collaborative filtering (CF), the most effective type of recommender systems, predicts user preferences by learning from past user-item relationships. Prediction algorithms are based on similarity between item vectors or user profiles. However similarity computations become less efficient if item vectors or user profiles do not contain enough ratings. A technique which is based on Pseudo Relevance Feedback is proposed to expand item vectors in order to make them contain more ratings. The proposed approach first expands item profiles and refines the expansion in order to remove expansion deviations. The experiments on MovieLens data set show that the proposed technique is efficient in expanding the rating matrix and outperforms state of the art collaborative filtering techniques for providing more efficient predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bell, R.M., Koren, Y.: Improved neighborhood-based collaborative filtering. In: KDD Cup and Workshop at the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2007)

    Google Scholar 

  2. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  3. Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, pp. 43–52. Morgan Kaufmann Publishers Inc. (1998)

    Google Scholar 

  4. Cao, G., Nie, J.Y., Gao, J., Robertson, S.: Selecting good expansion terms for pseudo-relevance feedback. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 243–250. ACM (2008)

    Google Scholar 

  5. Deshpande, M., Karypis, G.: Item-based top-n recommendation algorithms. ACM Trans. Inf. Syst. (TOIS) 22(1), 143–177 (2004)

    Article  Google Scholar 

  6. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. (TOIS) 22(1), 5–53 (2004)

    Article  Google Scholar 

  7. Hofmann, T.: Latent semantic models for collaborative filtering. ACM Trans. Inf. Syst. (TOIS) 22(1), 89–115 (2004)

    Article  Google Scholar 

  8. Kantor, P.B., Rokach, L., Ricci, F., Shapira, B.: Recommender Systems Handbook. Springer, Heidelberg (2011)

    MATH  Google Scholar 

  9. Kim, H.N., El-Saddik, A., Jo, G.S.: Collaborative error-reflected models for cold-start recommender systems. Decis. Support Syst. 51(3), 519–531 (2011)

    Article  Google Scholar 

  10. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  11. Lemire, D., Maclachlan, A.: Slope one predictors for online rating-based collaborative filtering. In: SDM, vol. 5, pp. 1–5. SIAM (2005)

    Google Scholar 

  12. Lika, B., Kolomvatsos, K., Hadjiefthymiades, S.: Facing the cold start problem in recommender systems. Expert Syst. Appl. 41(4), 2065–2073 (2014)

    Article  Google Scholar 

  13. Lops, P., de Gemmis, M., Semeraro, G.: Content-based recommender systems: state of the art and trends. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 73–105. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Miao, J., Huang, J.X., Ye, Z.: Proximity-based Rocchio’s model for pseudo relevance. In: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 535–544. ACM (2012)

    Google Scholar 

  15. Pazzani, M.J., Billsus, D.: Content-based recommendation systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. LNCS, vol. 4321, pp. 325–341. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72079-9_10

    Chapter  Google Scholar 

  16. Rashid, A.M., Karypis, G., Riedl, J.: Learning preferences of new users in recommender systems: an information theoretic approach. ACM SIGKDD Explor. Newsl. 10(2), 90–100 (2008)

    Article  Google Scholar 

  17. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: GroupLens: an open architecture for collaborative filtering of netnews. In: Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work, pp. 175–186. ACM (1994)

    Google Scholar 

  18. Resnick, P., Varian, H.R.: Recommender systems. Commun. ACM 40(3), 56–58 (1997)

    Article  Google Scholar 

  19. Rocchio, J.J.: Relevance feedback in information retrieval (1971)

    Google Scholar 

  20. Ronen, R., Koenigstein, N., Ziklik, E., Nice, N.: Selecting content-based features for collaborative filtering recommenders. In: Proceedings of the 7th ACM Conference on Recommender Systems, pp. 407–410. ACM (2013)

    Google Scholar 

  21. Salton, G.: The Smart Retrieval System—Experiments in Automatic Document Processing. Prentice-Hall, Upper Saddle River (1971)

    Google Scholar 

  22. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Application of dimensionality reduction in recommender system-a case study. Technical report, DTIC Document (2000)

    Google Scholar 

  23. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International Conference on World Wide Web, pp. 285–295. ACM (2001)

    Google Scholar 

  24. Schafer, J.B., Konstan, J., Riedl, J.: Recommender systems in e-commerce. In: Proceedings of the 1st ACM Conference on Electronic Commerce, pp. 158–166. ACM (1999)

    Google Scholar 

  25. Shani, G., Brafman, R.I., Heckerman, D.: An MDP-based recommender system. In: Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence, pp. 453–460. Morgan Kaufmann Publishers Inc. (2002)

    Google Scholar 

  26. Son, L.H.: Dealing with the new user cold-start problem in recommender systems: a comparative review. Inf. Syst. 58, 87–104 (2016)

    Article  Google Scholar 

  27. Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Adv. Artif. Intell. 2009, 4 (2009)

    Article  Google Scholar 

  28. Tang, H., Shim, V.A., Tan, K.C., Chia, J.Y.: Restricted Boltzmann machine based algorithm for multi-objective optimization. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2010)

    Google Scholar 

  29. Yildirim, H., Krishnamoorthy, M.S.: A random walk method for alleviating the sparsity problem in collaborative filtering. In: Proceedings of the 2008 ACM Conference on Recommender Systems, pp. 131–138. ACM (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Latha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Latha, R., Nadarajan, R. (2016). Item Refinement for Improved Recommendations. In: Subramanian, S., Nadarajan, R., Rao, S., Sheen, S. (eds) Digital Connectivity – Social Impact. CSI 2016. Communications in Computer and Information Science, vol 679. Springer, Singapore. https://doi.org/10.1007/978-981-10-3274-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3274-5_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3273-8

  • Online ISBN: 978-981-10-3274-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics