Skip to main content

Transformation of CO2 to Methanol Over Heterogeneous Catalysts

  • Chapter
  • First Online:
Transformation of Carbon Dioxide to Formic Acid and Methanol

Part of the book series: SpringerBriefs in Molecular Science ((GREENCHEMIST))

  • 1728 Accesses

Abstract

Hydrogenation of CO2 to methanol over heterogeneous catalysts usually requires hash conditions. Various heterogeneous catalysts based on Cu, Pd, Ni, Ag, Au, In, and other metals have been recently developed and investigated. Cu doped by other metals or metal oxides are the preferred selection. Besides metal itself, catalyst morphology, which is generally influenced by the method of preparation and calcination, is crucial for reaction conversion and selectivity. The relationship between catalyst characteristics and catalyst performance is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu X-M, Lu GQ, Yan Z-F, Beltramini J (2003) Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2. Ind Eng Chem Res 42(25):6518–6530. doi:10.1021/ie020979s

    Article  CAS  Google Scholar 

  2. Wang W, Wang S, Ma X, Gong J (2011) Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 40(7):3703–3727. doi:10.1039/c1cs15008a

    Article  CAS  Google Scholar 

  3. Jadhav SG, Vaidya PD, Bhanage BM, Joshi JB (2014) Catalytic carbon dioxide hydrogenation to methanol: a review of recent studies. Chem Eng Res Des 92(11):2557–2567. doi:10.1016/j.cherd.2014.03.005

    Article  CAS  Google Scholar 

  4. Ali KA, Abdullah AZ, Mohamed AR (2015) Recent development in catalytic technologies for methanol synthesis from renewable sources: a critical review. Renew Sustain Energy Rev 44:508–518. doi:10.1016/j.rser.2015.01.010

    Article  CAS  Google Scholar 

  5. Yang C, Ma Z, Zhao N, Wei W, Hu T, Sun Y (2006) Methanol synthesis from CO2-rich syngas over a ZrO2 doped CuZnO catalyst. Catal Today 115(1–4):222–227. doi:10.1016/j.cattod.2006.02.077

    Article  CAS  Google Scholar 

  6. Zhang Y, Fei J, Yu Y, Zheng X (2006) Methanol synthesis from CO2 hydrogenation over Cu based catalyst supported on zirconia modified γ-Al2O3. Energy Convers Manage 47(18–19):3360–3367. doi:10.1016/j.enconman.2006.01.010

    Article  CAS  Google Scholar 

  7. Raudaskoski R, Niemelä MV, Keiski RL (2007) The effect of ageing time on co-precipitated Cu/ZnO/ZrO2 catalysts used in methanol synthesis from CO2 and H2. Top Catal 45(1–4):57–60. doi:10.1007/s11244-007-0240-9

    Article  CAS  Google Scholar 

  8. An X, Li J, Zuo Y, Zhang Q, Wang D, Wang J (2007) A Cu/Zn/Al/Zr fibrous catalyst that is an improved CO2 hydrogenation to methanol catalyst. Catal Lett 118(3–4):264–269. doi:10.1007/s10562-007-9182-x

    Article  CAS  Google Scholar 

  9. Arena F, Barbera K, Italiano G, Bonura G, Spadaro L, Frusteri F (2007) Synthesis, characterization and activity pattern of Cu–ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol. J Catal 249(2):185–194. doi:10.1016/j.jcat.2007.04.003

    Article  CAS  Google Scholar 

  10. Zhang Y, Fei J, Yu Y, Zheng X (2007) Study of CO2 hydrogenation to methanol over Cu-V/γ-Al2O3 catalyst. J Nat Gas Chem 16(1):12–15. doi:10.1016/s1003-9953(07)60019-x

    Article  CAS  Google Scholar 

  11. Liu Y, Zhang Y, Wang T, Tsubaki N (2007) Efficient conversion of carbon dioxide to methanol using copper catalyst by a new low-temperature hydrogenation process. Chem Lett 36(9):1182–1183. doi:10.1246/cl.2007.1182

    Article  CAS  Google Scholar 

  12. Arena F, Italiano G, Barbera K, Bordiga S, Bonura G, Spadaro L, Frusteri F (2008) Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH. Appl Catal A Gen 350(1):16–23. doi:10.1016/j.apcata.2008.07.028

    Article  CAS  Google Scholar 

  13. Guo X, Mao D, Wang S, Wu G, Lu G (2009) Combustion synthesis of CuO–ZnO–ZrO2 catalysts for the hydrogenation of carbon dioxide to methanol. Catal Commun 10(13):1661–1664. doi:10.1016/j.catcom.2009.05.004

    Article  CAS  Google Scholar 

  14. Guo X, Mao D, Lu G, Wang S, Wu G (2010) Glycine–nitrate combustion synthesis of CuO–ZnO–ZrO2 catalysts for methanol synthesis from CO2 hydrogenation. J Catal 271(2):178–185. doi:10.1016/j.jcat.2010.01.009

    Article  CAS  Google Scholar 

  15. H-d Zhuang, S-f Bai, X-m Liu, Z-f Yan (2010) Structure and performance of Cu/ZrO2 catalyst for the synthesis of methanol from CO2 hydrogenation. J Fuel Chem Tech 38(4):462–467. doi:10.1016/s1872-5813(10)60041-2

    Article  Google Scholar 

  16. Wang X, Zhang H, Li W (2010) In situ IR studies on the mechanism of methanol synthesis from CO/H2 and CO2/H2 over Cu-ZnO-Al2O3 catalyst. Korean J Chem Eng 27(4):1093–1098. doi:10.1007/s11814-010-0176-9

    Article  CAS  Google Scholar 

  17. Maniecki TP, Mierczyński P, Jóźwiak WK (2010) Copper-supported catalysts in methanol synthesis and water gas shift reaction. Kinet Catal 51(6):843–848. doi:10.1134/s0023158410060108

    Article  CAS  Google Scholar 

  18. Guo X, Mao D, Lu G, Wang S, Wu G (2011) CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared via a route of solid-state reaction. Catal Commun 12(12):1095–1098. doi:10.1016/j.catcom.2011.03.033

    Article  CAS  Google Scholar 

  19. Wang D, Zhao J, Song H, Chou L (2011) Characterization and performance of Cu/ZnO/Al2O3 catalysts prepared via decomposition of M(Cu, Zn)-ammonia complexes under sub-atmospheric pressure for methanol synthesis from H2 and CO2. J Nat Gas Chem 20(6):629–634. doi:10.1016/s1003-9953(10)60246-0

    Article  CAS  Google Scholar 

  20. Guo X, Mao D, Lu G, Wang S, Wu G (2011) The influence of La doping on the catalytic behavior of Cu/ZrO2 for methanol synthesis from CO2 hydrogenation. J Mol Catal A Chem 345(1–2):60–68. doi:10.1016/j.molcata.2011.05.019

    Article  CAS  Google Scholar 

  21. Mierczynski P, Maniecki TP, Maniukiewicz W, Jozwiak WK (2011) Cu/Cr2O3·3Al2O3 and Au–Cu/Cr2O3·3Al2O3 catalysts for methanol synthesis and water gas shift reactions. React Kinet Mech Catal 104(1):139–148. doi:10.1007/s11144-011-0336-x

    Article  CAS  Google Scholar 

  22. Bonura G, Arena F, Mezzatesta G, Cannilla C, Spadaro L, Frusteri F (2011) Role of the ceria promoter and carrier on the functionality of Cu-based catalysts in the CO2-to-methanol hydrogenation reaction. Catal Today 171(1):251–256. doi:10.1016/j.cattod.2011.04.038

    Article  CAS  Google Scholar 

  23. Zhang L, Zhang Y, Chen S (2012) Effect of promoter SiO2, TiO2 or SiO2-TiO2 on the performance of CuO-ZnO-Al2O3 catalyst for methanol synthesis from CO2 hydrogenation. Appl Catal A Gen 415–416:118–123. doi:10.1016/j.apcata.2011.12.013

    Article  Google Scholar 

  24. Karelovic A, Bargibant A, Fernández C, Ruiz P (2012) Effect of the structural and morphological properties of Cu/ZnO catalysts prepared by citrate method on their activity toward methanol synthesis from CO2 and H2 under mild reaction conditions. Catal Today 197(1):109–118. doi:10.1016/j.cattod.2012.07.029

    Article  CAS  Google Scholar 

  25. Gao P, Li F, Zhao N, Xiao F, Wei W, Zhong L, Sun Y (2013) Influence of modifier (Mn, La, Ce, Zr and Y) on the performance of Cu/Zn/Al catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol. Appl Catal A Gen 468:442–452. doi:10.1016/j.apcata.2013.09.026

    Article  CAS  Google Scholar 

  26. Arena F, Mezzatesta G, Zafarana G, Trunfio G, Frusteri F, Spadaro L (2013) Effects of oxide carriers on surface functionality and process performance of the Cu–ZnO system in the synthesis of methanol via CO2 hydrogenation. J Catal 300:141–151. doi:10.1016/j.jcat.2012.12.019

    Article  CAS  Google Scholar 

  27. Ladera R, Pérez-Alonso FJ, González-Carballo JM, Ojeda M, Rojas S, Fierro JLG (2013) Catalytic valorization of CO2 via methanol synthesis with Ga-promoted Cu–ZnO–ZrO2 catalysts. Appl Catal B Environ 142–143:241–248. doi:10.1016/j.apcatb.2013.05.019

    Article  Google Scholar 

  28. Bansode A, Urakawa A (2014) Towards full one-pass conversion of carbon dioxide to methanol and methanol-derived products. J Catal 309:66–70. doi:10.1016/j.jcat.2013.09.005

    Article  CAS  Google Scholar 

  29. Din IU, Shaharun MS, Subbarao D, Naeem A (2014) Synthesis, characterization and activity pattern of carbon nanofibres based Cu-ZrO2 catalyst in the hydrogenation of carbon dioxide to methanol. Adv Mater Res 925:349–353. doi:10.4028/www.scientific.net/AMR.925.349

    Article  Google Scholar 

  30. Gao P, Zhong L, Zhang L, Wang H, Zhao N, Wei W, Sun Y (2015) Yttrium oxide modified Cu/ZnO/Al2O3 catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol. Catal Sci Technol 5(9):4365–4377. doi:10.1039/c5cy00372e

    Article  CAS  Google Scholar 

  31. Chen Y, Choi S, Thompson LT (2015) Low-temperature CO2 hydrogenation to liquid products via a heterogeneous cascade catalytic system. ACS Catal 5(3):1717–1725. doi:10.1021/cs501656x

    Article  CAS  Google Scholar 

  32. Ren H, Xu C-H, Zhao H-Y, Wang Y-X, Liu J, Liu J-Y (2015) Methanol synthesis from CO2 hydrogenation over Cu/γ-Al2O3 catalysts modified by ZnO, ZrO2 and MgO. J Ind Eng Chem 28:261–267. doi:10.1016/j.jiec.2015.03.001

    Article  CAS  Google Scholar 

  33. Lei H, Nie R, Wu G, Hou Z (2015) Hydrogenation of CO2 to CH3OH over Cu/ZnO catalysts with different ZnO morphology. Fuel 154:161–166. doi:10.1016/j.fuel.2015.03.052

    Article  CAS  Google Scholar 

  34. Xiao J, Mao D, Guo X, Yu J (2015) Effect of TiO2, ZrO2, and TiO2–ZrO2 on the performance of CuO–ZnO catalyst for CO2 hydrogenation to methanol. Appl Surf Sci 338:146–153. doi:10.1016/j.apsusc.2015.02.122

    Article  CAS  Google Scholar 

  35. Witoon T, Bumrungsalee S, Chareonpanich M, Limtrakul J (2015) Effect of hierarchical meso–macroporous alumina-supported copper catalyst for methanol synthesis from CO2 hydrogenation. Energy Convers Manage 103:886–894. doi:10.1016/j.enconman.2015.07.033

    Article  CAS  Google Scholar 

  36. Li L, Mao D, Yu J, Guo X (2015) Highly selective hydrogenation of CO2 to methanol over CuO–ZnO–ZrO2 catalysts prepared by a surfactant-assisted co-precipitation method. J Power Sources 279:394–404. doi:10.1016/j.jpowsour.2014.12.142

    Article  CAS  Google Scholar 

  37. Cai W, de la Piscina PR, Toyir J, Homs N (2015) CO2 hydrogenation to methanol over CuZnGa catalysts prepared using microwave-assisted methods. Catal Today 242:193–199. doi:10.1016/j.cattod.2014.06.012

    Article  CAS  Google Scholar 

  38. Gao P, Xie R, Wang H, Zhong L, Xia L, Zhang Z, Wei W, Sun Y (2015) Cu/Zn/Al/Zr catalysts via phase-pure hydrotalcite-like compounds for methanol synthesis from carbon dioxide. J CO2 Util 11:41–48. doi:10.1016/j.jcou.2014.12.008

  39. Kunkes EL, Studt F, Abild-Pedersen F, Schlögl R, Behrens M (2015) Hydrogenation of CO2 to methanol and CO on Cu/ZnO/Al2O3: Is there a common intermediate or not? J Catal 328:43–48. doi:10.1016/j.jcat.2014.12.016

    Article  CAS  Google Scholar 

  40. Tisseraud C, Comminges C, Belin T, Ahouari H, Soualah A, Pouilloux Y, Le Valant A (2015) The Cu–ZnO synergy in methanol synthesis from CO2, part 2: origin of the methanol and CO selectivities explained by experimental studies and a sphere contact quantification model in randomly packed binary mixtures on Cu–ZnO coprecipitate catalysts. J Catal 330:533–544. doi:10.1016/j.jcat.2015.04.035

    Article  CAS  Google Scholar 

  41. Yang H, Gao P, Zhang C, Zhong L, Li X, Wang S, Wang H, Wei W, Sun Y (2016) Core–shell structured Cu@m-SiO2 and Cu/ZnO@m-SiO2 catalysts for methanol synthesis from CO2 hydrogenation. Catal Commun 84:56–60. doi:10.1016/j.catcom.2016.06.010

    Article  CAS  Google Scholar 

  42. Posada-Pérez S, Ramírez PJ, Gutiérrez RA, Stacchiola DJ, Viñes F, Liu P, Illas F, Rodriguez JA (2016) The conversion of CO2 to methanol on orthorhombic β-Mo2C and Cu/β-Mo2C catalysts: mechanism for admetal induced change in the selectivity and activity. Catal Sci Technol 6(18):6766–6777. doi:10.1039/c5cy02143j

    Article  Google Scholar 

  43. Chen Y, Choi S, Thompson LT (2016) Low temperature CO2 hydrogenation to alcohols and hydrocarbons over Mo2C supported metal catalysts. J Catal 343:147–156. doi:10.1016/j.jcat.2016.01.016

    Article  CAS  Google Scholar 

  44. Ro I, Liu Y, Ball MR, Jackson DHK, Chada JP, Sener C, Kuech TF, Madon RJ, Huber GW, Dumesic JA (2016) Role of the Cu-ZrO2 interfacial sites for conversion of ethanol to ethyl acetate and synthesis of methanol from CO2 and H2. ACS Catal 6(10):7040–7050. doi:10.1021/acscatal.6b01805

    Article  CAS  Google Scholar 

  45. da Silva RJ, Pimentel AF, Monteiro RS, Mota CJA (2016) Synthesis of methanol and dimethyl ether from the CO2 hydrogenation over Cu·ZnO supported on Al2O3 and Nb2O5. J CO2 Util 15:83–88. doi:10.1016/j.jcou.2016.01.006

  46. Kiss AA, Pragt JJ, Vos HJ, Bargeman G, de Groot MT (2016) Novel efficient process for methanol synthesis by CO2 hydrogenation. Chem Eng J 284:260–269. doi:10.1016/j.cej.2015.08.101

    Article  CAS  Google Scholar 

  47. Dong X, Li F, Zhao N, Xiao F, Wang J, Tan Y (2016) CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared by precipitation-reduction method. Appl Catal B Environ 191:8–17. doi:10.1016/j.apcatb.2016.03.014

    Article  CAS  Google Scholar 

  48. Deerattrakul V, Dittanet P, Sawangphruk M, Kongkachuichay P (2016) CO2 hydrogenation to methanol using Cu-Zn catalyst supported on reduced graphene oxide nanosheets. J CO2 Util 16:104–113. doi:10.1016/j.jcou.2016.07.002

  49. Witoon T, Kachaban N, Donphai W, Kidkhunthod P, Faungnawakij K, Chareonpanich M, Limtrakul J (2016) Tuning of catalytic CO2 hydrogenation by changing composition of CuO–ZnO–ZrO2 catalysts. Energy Convers Manage 118:21–31. doi:10.1016/j.enconman.2016.03.075

    Article  CAS  Google Scholar 

  50. Gaikwad R, Bansode A, Urakawa A (2016) High-pressure advantages in stoichiometric hydrogenation of carbon dioxide to methanol. J Catal 343:127–132. doi:10.1016/j.jcat.2016.02.005

    Article  CAS  Google Scholar 

  51. Tisseraud C, Comminges C, Pronier S, Pouilloux Y, Le Valant A (2016) The Cu–ZnO synergy in methanol synthesis part 3: impact of the composition of a selective Cu@ZnOx core–shell catalyst on methanol rate explained by experimental studies and a concentric spheres model. J Catal 343:106–114. doi:10.1016/j.jcat.2015.12.005

    Article  CAS  Google Scholar 

  52. Liang X-L, Dong X, Lin G-D, Zhang H-B (2009) Carbon nanotube-supported Pd–ZnO catalyst for hydrogenation of CO2 to methanol. Appl Catal B Environ 88(3–4):315–322. doi:10.1016/j.apcatb.2008.11.018

    Article  CAS  Google Scholar 

  53. Kong H, Li H-Y, Lin G-D, Zhang H-B (2011) Pd-decorated CNT-promoted Pd-Ga2O3 catalyst for hydrogenation of CO2 to methanol. Catal Lett 141(6):886–894. doi:10.1007/s10562-011-0584-4

    Article  CAS  Google Scholar 

  54. Liang X-L, Xie J-R, Liu Z-M (2015) A novel Pd-decorated carbon nanotubes-promoted Pd-ZnO catalyst for CO2 hydrogenation to methanol. Catal Lett 145(5):1138–1147. doi:10.1007/s10562-015-1505-8

    Article  CAS  Google Scholar 

  55. Oyola-Rivera O, Baltanás MA, Cardona-Martínez N (2015) CO2 hydrogenation to methanol and dimethyl ether by Pd–Pd2Ga catalysts supported over Ga2O3 polymorphs. J CO2 Util 9:8–15. doi:10.1016/j.jcou.2014.11.003

  56. Jiang X, Koizumi N, Guo X, Song C (2015) Bimetallic Pd–Cu catalysts for selective CO2 hydrogenation to methanol. Appl Catal B Environ 170–171:173–185. doi:10.1016/j.apcatb.2015.01.010

    Article  Google Scholar 

  57. Liao F, Wu X-P, Zheng J, Li M-J, Zeng Z, Hong X, Kroner A, Yuan Y, Gong X-Q, Tsang SCE (2016) Pd@Zn core–shell nanoparticles of controllable shell thickness for catalytic methanol production. Catal Sci Technol 6(21):7698–7702. doi:10.1039/c6cy01832g

    Article  CAS  Google Scholar 

  58. Díez-Ramírez J, Valverde JL, Sánchez P, Dorado F (2015) CO2 hydrogenation to methanol at atmospheric pressure: influence of the preparation method of Pd/ZnO catalysts. Catal Lett 146(2):373–382. doi:10.1007/s10562-015-1627-z

    Article  Google Scholar 

  59. Vesselli E, Schweicher J, Bundhoo A, Frennet A, Kruse N (2011) Catalytic CO2 hydrogenation on nickel: novel insight by chemical transient kinetics. J Phys Chem C 115(4):1255–1260. doi:10.1021/jp106551r

    Article  CAS  Google Scholar 

  60. Sharafutdinov I, Elkjær CF, Pereira de Carvalho HW, Gardini D, Chiarello GL, Damsgaard CD, Wagner JB, Grunwaldt J-D, Dahl S, Chorkendorff I (2014) Intermetallic compounds of Ni and Ga as catalysts for the synthesis of methanol. J Catal 320:77–88. doi:10.1016/j.jcat.2014.09.025

    Article  CAS  Google Scholar 

  61. Grabowski R, Słoczyński J, Śliwa M, Mucha D, Socha RP, Lachowska M, Skrzypek J (2011) Influence of polymorphic ZrO2 phases and the silver electronic state on the activity of Ag/ZrO2 catalysts in the hydrogenation of CO2 to methanol. ACS Catal 1(4):266–278. doi:10.1021/cs100033v

    Article  CAS  Google Scholar 

  62. Pasupulety N, Driss H, Alhamed YA, Alzahrani AA, Daous MA, Petrov L (2015) Studies on Au/Cu–Zn–Al catalyst for methanol synthesis from CO2. Appl Catal A Gen 504:308–318. doi:10.1016/j.apcata.2015.01.036

    Article  CAS  Google Scholar 

  63. Martin O, Martin AJ, Mondelli C, Mitchell S, Segawa TF, Hauert R, Drouilly C, Curulla-Ferre D, Perez-Ramirez J (2016) Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation. Angew Chem Int Ed 55(21):6261–6265. doi:10.1002/anie.201600943

    Article  CAS  Google Scholar 

  64. Jia L, Gao J, Fang W, Li Q (2009) Carbon dioxide hydrogenation to methanol over the pre-reduced LaCr0.5Cu0.5O3 catalyst. Catal Commun 10(15):2000–2003. doi:10.1016/j.catcom.2009.07.017

  65. Jia L, Gao J, Fang W, Li Q (2010) Influence of copper content on structural features and performance of pre-reduced LaMn1−xCuxO3 (0 ≤ x<1) catalysts for methanol synthesis from CO2/H2. J Rare Earth 28(5):747–751. doi:10.1016/s1002-0721(09)60193-9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Hui Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Cite this chapter

Wang, WH., Feng, X., Bao, M. (2018). Transformation of CO2 to Methanol Over Heterogeneous Catalysts. In: Transformation of Carbon Dioxide to Formic Acid and Methanol. SpringerBriefs in Molecular Science(). Springer, Singapore. https://doi.org/10.1007/978-981-10-3250-9_5

Download citation

Publish with us

Policies and ethics