Skip to main content

Transformation of CO2 to Formic Acid or Formate with Homogeneous Catalysts

  • Chapter
  • First Online:
Book cover Transformation of Carbon Dioxide to Formic Acid and Methanol

Part of the book series: SpringerBriefs in Molecular Science ((GREENCHEMIST))

Abstract

Homogeneous hydrogenation of carbon dioxide to formic acid or formate has attracted much attention due to its high performance. Various metals including noble metals and nonprecious metals combined with different ligands have been investigated. The catalytic mechanism and catalyst design principle are described in detail. Recently developed CO2 hydroboration and hydrosilylation to formate are also covered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Inoue Y, Izumida H, Sasaki Y, Hashimoto H (1976) Catalytic fixation of carbon dioxideto formic acid by transition-metal complexes under mild conditions. Chem Lett 5(8):863–864

    Google Scholar 

  2. Ezhova NN, Kolesnichenko NV, Bulygin AV, Slivinskii EV, Han S (2002) Hydrogenation of CO2 to formic acid in the presence of the Wilkinson complex. Russ Chem Bull 51(12):2165–2169. doi:10.1023/A:1022162713837

    Article  CAS  Google Scholar 

  3. Jessop PG, Ikariya T, Noyori R (1994) Homogeneous catalytic hydrogenation of supercritical carbon dioxide. Nature 368(6468):231–233. doi:10.1038/368231a0

  4. Munshi P, Main AD, Linehan JC, Tai CC, Jessop PG (2002) Hydrogenation of carbon dioxide catalyzed by ruthenium trimethylphosphine complexes: The accelerating effect of certain alcohols and amines. J Am Chem Soc 124(27):7963–7971. doi:10.1021/ja0167856

  5. Wang W-H, Himeda Y (2012) Recent Advances in transition metal-catalysed homogeneous hydrogenation of carbon dioxide in aqueous media. In:  Hydrogenation. InTech, pp 249–268. doi:10.5772/48658

  6. Wang W, Wang S, Ma X, Gong J (2011) Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 40(7):3703–3727. doi:10.1039/c1cs15008a

    Article  CAS  Google Scholar 

  7. Leitner W (1995) Carbon dioxide as a raw material: synthesis of formic acid and its derivatives from CO2. Angew Chem Int Ed 34(20):2207–2221. doi:10.1002/anie.199522071

  8. Jessop PG, Ikariya T, Noyori R (1995) Homogeneous hydrogenation of carbon-dioxide. Chem Rev 95(2):259–272. doi:10.1021/cr00034a001

  9. Leitner W, Dinjus E, Gassner F (1998) CO2 Chemistry. In: Cornils B, Herrmann WA (eds) Aqueous-phase organometallic catalysis, concepts and applications. Wiley-VCH, Weinheim, pp 486–498

    Google Scholar 

  10. Jessop PG, Joó F, Tai CC (2004) Recent advances in the homogeneous hydrogenation of carbon dioxide. Coord Chem Rev 248(21–24):2425–2442. doi:10.1016/j.ccr.2004.05.019

  11. Jessop PG (2007) Homogeneous hydrogenation of carbon dioxide. In: De Vries JG, Elsevier CJ (eds) Handbook of homogeneous hydrogenation, vol 1. Wiley-VCH, Weinheim, pp 489–511

    Google Scholar 

  12. Tanaka R, Yamashita M, Nozaki K (2009) Catalytic hydrogenation of carbon dioxide using Ir(III)-Pincer complexes. J Am Chem Soc 131(40):14168–14169. doi:10.1021/ja903574e

    Article  CAS  Google Scholar 

  13. Tanaka R, Yamashita M, Chung LW, Morokuma K, Nozaki K (2011) Mechanistic studies on the reversible hydrogenation of carbon dioxide catalyzed by an Ir-PNP complex. Organometallics 30(24):6742–6750. doi:10.1021/om2010172

    Article  CAS  Google Scholar 

  14. Schmeier TJ, Dobereiner GE, Crabtree RH, Hazari N (2011) Secondary coordination sphere interactions facilitate the insertion step in an Iridium(III) CO2 reduction catalyst. J Am Chem Soc 133(24):9274–9277. doi:10.1021/ja2035514

    Article  CAS  Google Scholar 

  15. Himeda Y (2007) Conversion of CO2 into formate by homogeneously catalyzed hydrogenation in water: tuning catalytic activity and water solubility through the acid-base equilibrium of the ligand. Eur J Inorg Chem 25:3927–3941. doi:10.1002/ejic.200700494

    Article  Google Scholar 

  16. Wang W-H, Hull JF, Muckerman JT, Fujita E, Himeda Y (2012) Second-coordination-sphere and electronic effects enhance iridium(III)-catalyzed homogeneous hydrogenation of carbon dioxide in water near ambient temperature and pressure. Energy Environ Sci 5(7):7923–7926. doi:10.1039/c2ee21888g

    Article  CAS  Google Scholar 

  17. Himeda Y, Onozawa-Komatsuzaki N, Sugihara H, Kasuga K (2007) Simultaneous tuning of activity and water solubility of complex catalysts by acid-base equilibrium of ligands for conversion of carbon dioxide. Organometallics 26(3):702–712. doi:10.1021/om060899e

    Article  CAS  Google Scholar 

  18. Hull JF, Himeda Y, Wang W-H, Hashiguchi B, Periana R, Szalda DJ, Muckerman JT, Fujita E (2012) Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures. Nat Chem 4(5):383–388. doi:10.1038/nchem.1295

    Article  CAS  Google Scholar 

  19. Wang W-H, Muckerman JT, Fujita E, Himeda Y (2013) Mechanistic insight through factors controlling effective hydrogenation of CO2 catalyzed by bioinspired proton-responsive Iridium(III) complexes. ACS Catal 3(5):856–860. doi:10.1021/cs400172j

    Article  CAS  Google Scholar 

  20. Onishi N, Xu S, Manaka Y, Suna Y, Wang W-H, Muckerman JT, Fujita E, Himeda Y (2015) CO2 hydrogenation catalyzed by iridium complexes with a proton-responsive ligand. Inorg Chem 54(11):5114–5123. doi:10.1021/ic502904q

    Article  CAS  Google Scholar 

  21. Azua A, Sanz S, Peris E (2011) Water-soluble Ir(III) N-Heterocyclic Carbene based catalysts for the reduction of CO2 to formate by transfer hydrogenation and the deuteration of Aryl Amines in water. Chem-Eur J 17(14):3963–3967. doi:10.1002/chem.201002907

    Article  CAS  Google Scholar 

  22. Maenaka Y, Suenobu T, Fukuzumi S (2012) Catalytic interconversion between hydrogen and formic acid at ambient temperature and pressure. Energy Environ Sci 5(6):7360–7367. doi:10.1039/c2ee03315a

    Article  CAS  Google Scholar 

  23. Muller K, Sun Y, Thiel WR (2013) Ruthenium(II) phosphite complexes as catalysts for the hydrogenation of carbon dioxide. ChemCatChem 5(6):1340–1343. doi:10.1002/cctc.201200818

    Article  CAS  Google Scholar 

  24. Moret S, Dyson PJ, Laurenczy G (2014) Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media. Nature Commun 5:4017–4023. doi:10.1038/ncomms5017

    Article  CAS  Google Scholar 

  25. Lau CP, Chen YZ (1995) Hydrogenation of carbon dioxide to formic acid using a 6,6’-cichloro-2,2’-bipyridine complex of ruthenium, cis-[Ru(6,6’-Cl2bpy)2(H2O)2](CF3SO3)2. J Mol Catal A 101(1):33–36. doi:10.1016/1381-1169(95)00068-2

  26. Khan MMT, Halligudi SB, Shukla S (1989) Reduction of CO2 by molecular-hydrogen to formic acid and formaldehyde and their decomposition to CO and H2O. J Mol Catal 57(1):47–60. doi:10.1016/0304-5102(89)80126-9

  27. Laurenczy G, Joó F, Nadasdi L (2000) Formation and characterization of water-soluble hydrido-ruthenium(II) complexes of 1,3,5-triaza-7-phosphaadamantane and their catalytic activity in hydrogenation of CO2 and HCO -3 in aqueous solution. Inorg Chem 39(22):5083–5088. doi:10.1021/ic000200b

  28. Elek J, Nadasdi L, Papp G, Laurenczy G, Joó F (2003) Homogeneous hydrogenation of carbon dioxide and bicarbonate in aqueous solution catalyzed by water-soluble ruthenium(II) phosphine complexes. Appl Catal A-Gen 255(1):59–67. doi:10.1016/S0926-860X(03)00644-6

  29. Federsel C, Jackstell R, Boddien A, Laurenczy G, Beller M (2010) Ruthenium-catalyzed hydrogenation of bicarbonate in water. Chemsuschem 3(9):1048–1050. doi:10.1002/cssc.201000151

    Article  CAS  Google Scholar 

  30. Hsu S-F, Rommel S, Eversfield P, Muller K, Klemm E, Thiel WR, Plietker B (2014) A rechargeable hydrogen battery based on Ru catalysis. Angew Chem Int Ed 53(27):7074–7078. doi:10.1002/anie.201310972

  31. Filonenko GA, van Putten R, Schulpen EN, Hensen EJM, Pidko EA (2014) Highly efficient reversible hydrogenation of carbon dioxide to formates using a Ruthenium PNP-Pincer catalyst. ChemCatChem 6(6):1526–1530. doi:10.1002/cctc.201402119

    Article  CAS  Google Scholar 

  32. Huff CA, Sanford MS (2013) Catalytic CO2 hydrogenation to formate by a Ruthenium Pincer complex. ACS Catal 3(10):2412–2416. doi:10.1021/cs400609u

    Article  CAS  Google Scholar 

  33. Filonenko GA, Conley MP, Coperet C, Lutz M, Hensen EJM, Pidko EA (2013) The impact of metal-ligand cooperation in hydrogenation of carbon dioxide catalyzed by Ruthenium PNP Pincer. ACS Catal 3(11):2522–2526. doi:10.1021/cs4006869

    Article  CAS  Google Scholar 

  34. Graf E, Leitner W (1992) Direct formation of formic-acid from carbon-dioxide and dihydrogen using the [(Rh(Cod)Cl)2]Ph2P(CH2)4PPh2 catalyst system. Chem Commun (8):623–624. doi:10.1039/C39920000623

  35. Gassner F, Leitner W (1993) Hydrogenation of carbon dioxide to formic acid using water-soluble rhodium catalyststs. Chem Commun (19):1465–1466. doi:10.1039/C39930001465

  36. Zhao G, Joó F (2011) Free formic acid by hydrogenation of carbon dioxide in sodium formate solutions. Catal Commun 14(1):74–76. doi:10.1016/j.catcom.2011.07.017

    Article  CAS  Google Scholar 

  37. Bays JT, Priyadarshani N, Jeletic MS, Hulley EB, Miller DL, Linehan JC, Shaw WJ (2014) The influence of the second and outer coordination spheres on Rh(diphosphine)2 CO2 hydrogenation catalysts. ACS Catal 4(10):3663–3670. doi:10.1021/cs5009199

    Article  CAS  Google Scholar 

  38. Wesselbaum S, Hintermair U, Leitner W (2012) Continuous-flow hydrogenation of carbon dioxide to pure formic acid using an integrated scCO2 process with immobilized catalyst and base. Angew Chem Int Ed 51(34):8585–8588. doi:10.1002/anie.201203185

    Article  CAS  Google Scholar 

  39. Jantke D, Pardatscher L, Drees M, Cokoja M, Herrmann WA, Kuhn FE (2016) Hydrogen production and storage on a formic acid/bicarbonate platform using water-soluble N-Heterocyclic Carbene complexes of late transition metals. Chemsuschem 9(19):2849–2854. doi:10.1002/cssc.201600861

    Article  CAS  Google Scholar 

  40. Federsel C, Boddien A, Jackstell R, Jennerjahn R, Dyson PJ, Scopelliti R, Laurenczy G, Beller M (2010) A well-defined iron catalyst for the reduction of bicarbonates and carbon dioxide to formates, alkyl formates, and formamides. Angew Chem Int Ed 49(50):9777–9780. doi:10.1002/anie.201004263

    Article  CAS  Google Scholar 

  41. Federsel C, Ziebart C, Jackstell R, Baumann W, Beller M (2012) Catalytic hydrogenation of carbon dioxide and bicarbonates with a well-defined cobalt dihydrogen complex. Chem-Eur J 18(1):72–75. doi:10.1002/chem.201101343

    Article  CAS  Google Scholar 

  42. Langer R, Diskin-Posner Y, Leitus G, Shimon LJW, Ben-David Y, Milstein D (2011) Low-pressure hydrogenation of carbon dioxide catalyzed by an iron pincer complex exhibiting noble metal activity. Angew Chem Int Ed 50(42):9948–9952. doi:10.1002/anie.201104542

    Article  CAS  Google Scholar 

  43. Jeletic MS, Mock MT, Appel AM, Linehan JC (2013) A cobalt-based catalyst for the hydrogenation of CO2 under ambient conditions. J Am Chem Soc 135(31):11533–11536. doi:10.1021/ja406601v

    Article  CAS  Google Scholar 

  44. Spentzos AZ, Barnes CL, Bernskoetter WH (2016) Effective Pincer Cobalt precatalysts for Lewis acid assisted CO2 hydrogenation. Inorg Chem 55(16):8225–8233. doi:10.1021/acs.inorgchem.6b01454

    Article  CAS  Google Scholar 

  45. Bertini F, Gorgas N, Stöger B, Peruzzini M, Veiros LF, Kirchner K, Gonsalvi L (2016) Efficient and mild carbon dioxide hydrogenation to formate catalyzed by Fe(II) Hydrido Carbonyl complexes bearing 2,6-(Diaminopyridyl)diphosphine Pincer ligands. ACS Catal 6(5):2889–2893. doi:10.1021/acscatal.6b00416

    Article  CAS  Google Scholar 

  46. Zhang Y, Williard PG, Bernskoetter WH (2016) Synthesis and characterization of Pincer-Molybdenum precatalysts for CO2 hydrogenation. Organometallics 35(6):860–865. doi:10.1021/acs.organomet.5b00955

    Article  CAS  Google Scholar 

  47. Jessop PG, Hsiao Y, Ikariya T, Noyori R (1996) Homogeneous catalysis in supercritical fluids: hydrogenation of supercritical carbon dioxide to formic acid, alkyl formates, and formamides. J Am Chem Soc 118(2):344–355. doi:10.1021/ja953097b

  48. Joó F, Laurenczy G, Nadasdi L, Elek J (1999) Homogeneous hydrogenation of aqueous hydrogen carbonate to formate under exceedingly mild conditions—a novel possibility of carbon dioxide activation. Chem Commun (11):971–972. doi:10.1039/A902368B

  49. Katho A, Opre Z, Laurenczy G, Joó F (2003) Water-soluble analogs of [RuCl3(NO)(PPh3)2] and their catalytic activity in the hydrogenation of carbon dioxide and bicarbonate in aqueous solution. J Mol Catal A-Chem 204:143–148. doi:10.1016/S1381-1169(03)00293-0

  50. Kovacs G, Schubert G, Joó F, Papai I (2006) Theoretical investigation of catalytic HCO -3 hydrogenation in aqueous solutions. Catal Today 115(1):53–60. doi:10.1016/j.cattod.2006.02.018

  51. Horvath H, Laurenczy G, Katho A (2004) Water-soluble (η6-arene)ruthenium(II)-phosphine complexes and their catalytic activity in the hydrogenation of bicarbonate in aqueous solution. J Organometal Chem 689(6):1036–1045. doi:10.1016/j.jorganchem.2003.11.036

  52. Erlandsson M, Landaeta VR, Gonsalvi L, Peruzzini M, Phillips AD, Dyson PJ, Laurenczy G (2008) (Pentamethylcyclopentadienyl)iridium-PTA (PTA = 1,3,5-triaza-7-phosphaadamantane) complexes and their application in catalytic water phase carbon dioxide hydrogenation. Eur J Inorg Chem 4:620–627. doi:10.1002/ejic.200700792

  53. Laurenczy G, Jedner S, Alessio E, Dyson PJ (2007) In situ NMR characterisation of an intermediate in the catalytic hydrogenation of CO2 and HCO -3 in aqueous solution. Inorg Chem Commun 10(5):558–562. doi:10.1016/j.inoche.2007.01.020

    Article  CAS  Google Scholar 

  54. Muller K, Sun Y, Heimermann A, Menges F, Niedner-Schatteburg G, van Wullen C, Thiel WR (2013) Structure-reactivity relationships in the hydrogenation of carbon dioxide with ruthenium complexes bearing pyridinylazolato ligands. Chem-Eur J 19(24):7825–7834. doi:10.1002/chem.201204199

    Article  CAS  Google Scholar 

  55. Drake JL, Manna CM, Byers JA (2013) Enhanced carbon dioxide hydrogenation facilitated by catalytic quantities of bicarbonate and other inorganic salts. Organometallics 32(23):6891–6894. doi:10.1021/om401057p

    Article  CAS  Google Scholar 

  56. Zhang P, Ni SF, Dang L (2016) Steric and electronic effects of bidentate phosphine ligands on ruthenium(II)-catalyzed hydrogenation of carbon dioxide. Chem Asian J 11(18):2528–2536. doi:10.1002/asia.201600611

  57. Gunanathan C, Milstein D (2011) Metal-ligand cooperation by aromatization-dearomatization: a new paradigm in bond activation and “Green” catalysis. Acc Chem Res 44(8):588–602. doi:10.1021/ar2000265

    Article  CAS  Google Scholar 

  58. Zhang J, Leitus G, Ben-David Y, Milstein D (2006) Efficient homogeneous catalytic hydrogenation of esters to alcohols. Angew Chem Int Ed 45(7):1113–1115. doi:10.1002/anie.200503771

    Article  CAS  Google Scholar 

  59. Praneeth VKK, Ringenberg MR, Ward TR (2012) Redox-active ligands in catalysis. Angew Chem Int Ed 51(41):10228–10234. doi:10.1002/anie.201204100

    Article  CAS  Google Scholar 

  60. Vogt M, Gargir M, Iron MA, Diskin-Posner Y, Ben-David Y, Milstein D (2012) A new mode of activation of CO2 by metal-ligand cooperation with reversible C–C and M–O bond formation at ambient temperature. Chem-Eur J 18(30):9194–9197. doi:10.1002/chem.201201730

    Article  CAS  Google Scholar 

  61. Huff CA, Kampf JW, Sanford MS (2012) Role of a noninnocent pincer ligand in the activation of CO2 at (PNN)Ru(H)(CO). Organometallics 31(13):4643–4645. doi:10.1021/om300403b

    Article  CAS  Google Scholar 

  62. Filonenko GA, Hensen EJM, Pidko EA (2014) Mechanism of CO2 hydrogenation to formates by homogeneous Ru-PNP pincer catalyst: from a theoretical description to performance optimization. Catal Sci Technol 4(10):3474–3485. doi:10.1039/c4cy00568f

    Article  CAS  Google Scholar 

  63. Kothandaraman J, Goeppert A, Czaun M, Olah GA, Surya Prakash GK (2016) CO2 capture by amines in aqueous media and its subsequent conversion to formate with reusable ruthenium and iron catalysts. Green Chem 18(21):5831–5838. doi:10.1039/c6gc01165a

    Article  CAS  Google Scholar 

  64. Tsai JC, Nicholas KM (1992) Rhodium-catalyzed hydrogenation of carbon-dioxide to formic acid. J Am Chem Soc 114(13):5117–5124. doi:10.1021/ja00039a024

  65. Lilio AM, Reineke MH, Moore CE, Rheingold AL, Takase MK, Kubiak CP (2015) Incorporation of pendant bases into Rh(diphosphine)2 complexes: synthesis, thermodynamic studies, and catalytic CO2 hydrogenation activity of [Rh(P2N2)2]+ complexes. J Am Chem Soc 137(25):8251–8260. doi:10.1021/jacs.5b04291

    Article  CAS  Google Scholar 

  66. Yang XZ (2011) Hydrogenation of carbon dioxide catalyzed by pnp pincer iridium, iron, and cobalt complexes: a computational design of base metal catalysts. ACS Catal 1(8):849–854. doi:10.1021/cs2000329

    Article  CAS  Google Scholar 

  67. Li J, Yoshizawa K (2011) Catalytic hydrogenation of carbon dioxide with a highly active hydride on Ir(III)-Pincer complex: mechanism for CO2 insertion and nature of metal-hydride bond. Bull Chem Soc Jpn 84(10):1039–1048. doi:10.1246/bcsj.20110128

    Article  CAS  Google Scholar 

  68. Feller M, Gellrich U, Anaby A, Diskin-Posner Y, Milstein D (2016) Reductive cleavage of CO2 by metal-ligand-cooperation mediated by an iridium pincer complex. J Am Chem Soc 138(20):6445–6454. doi:10.1021/jacs.6b00202

    Article  CAS  Google Scholar 

  69. Kang P, Cheng C, Chen Z, Schauer CK, Meyer TJ, Brookhart M (2012) Selective electrocatalytic reduction of CO2 to formate by water-stable iridium dihydride pincer complexes. J Am Chem Soc 134(12):5500–5503. doi:10.1021/ja300543s

    Article  CAS  Google Scholar 

  70. Bolinger CM, Sullivan BP, Conrad D, Gilbert JA, Story N, Meyer TJ (1985) Electrocatalytic reduction of CO2 based on polypyridyl complexes of rhodium and ruthenium. Chem Commun (12):796–797. doi:10.1039/C39850000796

  71. Caix C, ChardonNoblat S, Deronzier A (1997) Electrocatalytic reduction of CO2 into formate with [(η5-Me5C5)M(L)Cl]+ complexes (L = 2,2’-bipyridine ligands; M = Rh(III) and Ir(III)). J Electroanal Chem 434(1):163–170. doi:10.1016/S0022-0728(97)00058-2

  72. Hayashi H, Ogo S, Abura T, Fukuzumi S (2003) Accelerating effect of a proton on the reduction of CO2 dissolved in water under acidic conditions. Isolation, crystal structure, and reducing ability of a water-soluble ruthenium hydride complex. J Am Chem Soc 125(47):14266–14267. doi:10.1021/ja036117f

  73. Wang WH, Himeda Y, Muckerman JT, Manbeck GF, Fujita E (2015) CO2 Hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chem Rev 115(23):12936–12973. doi:10.1021/acs.chemrev.5b00197

    Article  CAS  Google Scholar 

  74. Ohnishi YY, Matsunaga T, Nakao Y, Sato H, Sakaki S (2005) Ruthenium(II)-catalyzed hydrogenation of carbon dioxide to formic acid. theoretical study of real catalyst, ligand effects, and solvation effects. J Am Chem Soc 127(11):4021–4032. doi:10.1021/ja043697n

  75. Himeda Y, Onozawa-Komatsuzaki N, Sugihara H, Arakawa H, Kasuga K (2004) Half-sandwich complexes with 4,7-dihydroxy-1,10-phenanthroline: water-soluble, highly efficient catalysts for hydrogenation of bicarbonate attributable to the generation of an oxyanion on the catalyst ligand. Organometallics 23(7):1480–1483. doi:10.1021/om030382s

    Article  CAS  Google Scholar 

  76. Himeda Y, Onozawa-Komatsuzaki N, Sugihara H, Kasuga K (2006) Highly efficient conversion of carbon dioxide catalyzed by half-sandwich complexes with pyridinol ligand: the electronic effect of oxyanion. J Photochem Photobio A 182(3):306–309. doi:10.1016/j.jphotochem.2006.04.025

    Article  CAS  Google Scholar 

  77. Himeda Y, Miyazawa S, Hirose T (2011) Interconversion between formic acid and H2/CO2 using rhodium and ruthenium catalysts for CO2 fixation and H2 storage. Chemsuschem 4(4):487–493. doi:10.1002/cssc.201000327

  78. Crabtree RH (2011) Multifunctional ligands in transition metal catalysis. New J Chem 35(1):18–23. doi:10.1039/c0nj00776e

    Article  CAS  Google Scholar 

  79. Xu S, Onishi N, Tsurusaki A, Manaka Y, Wang W-H, Muckerman JT, Fujita E (2015) Himeda Y (2015) efficient Cp*Ir catalysts with imidazoline ligands for CO2 hydrogenation. Eur J Inorg Chem 34:5591–5594. doi:10.1002/ejic.201501030

  80. Shima S, Lyon EJ, Sordel-Klippert MS, Kauss M, Kahnt J, Thauer RK, Steinbach K, Xie XL, Verdier L, Griesinger C (2004) The cofactor of the iron-sulfur cluster free hydrogenase Hmd: structure of the light-inactivation product. Angew Chem Int Ed 43(19):2547–2551. doi:10.1002/anie.200353763

    Article  CAS  Google Scholar 

  81. Shima S, Pilak O, Vogt S, Schick M, Stagni MS, Meyer-Klaucke W, Warkentin E, Thauer RK, Ermler U (2008) The crystal structure of Fe-hydrogenase reveals the geometry of the active site. Science 321(5888):572–575. doi:10.1126/science.1158978

  82. Shima S, Ermler U (2011) Structure and function of Fe-Hydrogenase and its Iron-Guanylylpyridinol (FeGP) cofactor. Eur J Inorg Chem 7:963–972. doi:10.1002/ejic.201000955

    Article  Google Scholar 

  83. Yang X, Hall MB (2009) Monoiron hydrogenase catalysis: hydrogen activation with the formation of a dihydrogen, Fe–H–H–O, bond and methenyl-H4MPT+ triggered hydride transfer. J Am Chem Soc 131(31):10901–10908. doi:10.1021/ja902689n

  84. Manaka Y, Wang W-H, Suna Y, Kambayashi H, Muckerman JT, Fujita E, Himeda Y (2014) Efficient H2 generation from formic acid using azole complexes in water. Catal Sci Technol 4(1):34–37. doi:10.1039/c3cy00830d

    Article  CAS  Google Scholar 

  85. Wang W-H, Xu S, Manaka Y, Suna Y, Kambayashi H, Muckerman JT, Fujita E, Himeda Y (2014) Formic acid dehydrogenation with bioinspired Iridium complexes: a kinetic isotope effect study and mechanistic insight. Chemsuschem 7(7):1976–1983. doi:10.1002/cssc.201301414

    Article  CAS  Google Scholar 

  86. Suna Y, Ertem MZ, Wang W-H, Kambayashi H, Manaka Y, Muckerman JT, Fujita E, Himeda Y (2014) Positional effects of hydroxy groups on catalytic activity of proton-responsive half-sandwich Cp*Iridium(III) complexes. Organometallics 33(22):6519–6530. doi:10.1021/om500832d

    Article  CAS  Google Scholar 

  87. Wang L, Onishi N, Murata K, Hirose T, Muckerman JT, Fujita E, Himeda Y (2017) Efficient hydrogen storage and production using a catalyst with an Imidazoline-based, proton-responsive ligand. ChemSusChem 10(6):1071–1075. doi:10.1002/cssc.201601437

    Article  CAS  Google Scholar 

  88. Sanz S, Benitez M, Peris E (2010) A new approach to the reduction of carbon dioxide: CO2 reduction to formate by transfer hydrogenation in iPrOH. Organometallics 29(1):275–277. doi:10.1021/om900820x

    Article  CAS  Google Scholar 

  89. Badiei YM, Wang W-H, Hull JF, Szalda DJ, Muckerman JT, Himeda Y, Fujita E (2013) Cp*Co(III) catalysts with proton-responsive ligands for carbon dioxide hydrogenation in aqueous media. Inorg Chem 52(21):12576–12586. doi:10.1021/ic401707u

    Article  CAS  Google Scholar 

  90. Ziebart C, Federsel C, Anbarasan P, Jackstell R, Baumann W, Spannenberg A, Beller M (2012) Well-defined iron catalyst for improved hydrogenation of carbon dioxide and bicarbonate. J Am Chem Soc 134(51):20701–20704. doi:10.1021/ja307924a

    Article  CAS  Google Scholar 

  91. Jeletic MS, Helm ML, Hulley EB, Mock MT, Appel AM, Linehan JC (2014) A cobalt hydride catalyst for the hydrogenation of CO2: pathways for catalysis and deactivation. ACS Catal 4(10):3755–3762. doi:10.1021/cs5009927

    Article  CAS  Google Scholar 

  92. Watari R, Kayaki Y, Hirano S-I, Matsumoto N, Ikariya T (2015) Hydrogenation of carbon dioxide to formate catalyzed by a Copper/1,8-Diazabicyclo[5.4.0]undec-7-ene System. Adv Syn Catal 357(7):1369–1373. doi:10.1002/adsc.201500043

  93. Zall CM, Linehan JC, Appel AM (2015) A molecular copper catalyst for hydrogenation of CO2 to formate. ACS Catal 5(9):5301–5305. doi:10.1021/acscatal.5b01646

    Article  CAS  Google Scholar 

  94. Zall CM, Linehan JC, Appel AM (2016) Triphosphine-Ligated copper hydrides for CO2 hydrogenation: structure, reactivity, and thermodynamic studies. J Am Chem Soc 138(31):9968–9977. doi:10.1021/jacs.6b05349

    Article  CAS  Google Scholar 

  95. Rivada-Wheelaghan O, Dauth A, Leitus G, Diskin-Posner Y, Milstein D (2015) Synthesis and reactivity of iron complexes with a new pyrazine-based pincer ligand, and application in catalytic low-pressure hydrogenation of carbon dioxide. Inorg Chem 54(9):4526–4538. doi:10.1021/acs.inorgchem.5b00366

    Article  CAS  Google Scholar 

  96. Zhang Y, MacIntosh AD, Wong JL, Bielinski EA, Williard PG, Mercado BQ, Hazari N, Bernskoetter WH (2015) Iron catalyzed CO2 hydrogenation to formate enhanced by Lewis acid co-catalysts. Chem Sci 6(7):4291–4299. doi:10.1039/c5sc01467k

    Article  CAS  Google Scholar 

  97. LeBlanc FA, Piers WE, Parvez M (2014) Selective hydrosilation of CO2 to a bis(silylacetal) using an anilido bipyridyl-ligated organoscandium catalyst. Angew Chem Int Ed 53(3):789–792. doi:10.1002/anie.201309094

  98. Deglmann P, Ember E, Hofmann P, Pitter S, Walter O (2007) Experimental and theoretical investigations on the catalytic hydrosilylation of carbon dioxide with ruthenium nitrile complexes. Chem-Eur J 13(10):2864–2879. doi:10.1002/chem.200600396

  99. Lalrempuia R, Iglesias M, Polo V, Sanz Miguel PJ, Fernández-Alvarez FJ, Pérez-Torrente JJ, Oro LA (2012) Effective fixation of CO2 by Iridium-catalyzed hydrosilylation. Angew Chem Int Ed 51(51):12824–12827. doi:10.1002/anie.201206165

  100. Jiang Y, Blacque O, Fox T, Berke H (2013) Catalytic CO2 activation assisted by rhenium hydride/B(C6F5)3 frustrated Lewis pairs–metal hydrides functioning as FLP bases. J Am Chem Soc 135(20):7751–7760. doi:10.1021/ja402381d

    Article  CAS  Google Scholar 

  101. Scheuermann ML, Semproni SP, Pappas I, Chirik PJ (2014) Carbon dioxide hydrosilylation promoted by cobalt pincer complexes. Inorg Chem 53(18):9463–9465. doi:10.1021/ic501901n

  102. Itagaki S, Yamaguchi K, Mizuno N (2013) Catalytic synthesis of silyl formates with 1 atm of CO2 and their utilization for synthesis of formyl compounds and formic acid. J Mol Catal A-Chem 366:347–352. doi:10.1016/j.molcata.2012.10.014

    Article  CAS  Google Scholar 

  103. Rios P, Curado N, Lopez-Serrano J, Rodriguez A (2016) Selective reduction of carbon dioxide to bis(silyl)acetal catalyzed by a PBP-supported nickel complex. Chem Commun 52(10):2114–2117. doi:10.1039/C5CC09650B

    Article  CAS  Google Scholar 

  104. Koinuma H, Kawakami F, Kato H, Hirai H (1981) Hydrosilylation of carbon dioxide catalyzed by ruthenium complexes. Chem Commun (5):213–214. doi:10.1039/C39810000213

  105. Jansen A, Gorls H, Pitter S (2000) trans-[(RuIICl)(MeCN)5][(RuIIICl4)(MeCN)2]: a reactive intermediate in the homogeneous catalyzed hydrosilylation of carbon dioxide. Organometallics 19(2):135–138. doi:10.1021/om990654k

  106. Jansen A, Pitter S (2004) Homogeneously catalysed reduction of carbon dioxide with silanes: a study on solvent and ligand effects and catalyst recycling. J Mol Catal A-Chem 217(1–2):41–45. doi:10.1016/j.molcata.2004.03.041

    Article  CAS  Google Scholar 

  107. Motokura K, Kashiwame D, Miyaji A, Baba T (2012) Copper-catalyzed formic acid synthesis from CO2 with Hydrosilanes and H2O. Org Lett 14(10):2642–2645. doi:10.1021/ol301034j

    Article  CAS  Google Scholar 

  108. Motokura K, Kashiwame D, Takahashi N, Miyaji A, Baba T (2013) Highly active and selective catalysis of Copper Diphosphine complexes for the transformation of carbon dioxide into Silyl formate. Chem-Eur J 19(30):10030–10037. doi:10.1002/chem.201300935

    Article  CAS  Google Scholar 

  109. Zhang L, Cheng J, Hou Z (2013) Highly efficient catalytic hydrosilylation of carbon dioxide by an N-heterocyclic carbene copper catalyst. Chem Commun 49(42):4782–4784. doi:10.1039/c3cc41838c

    Article  CAS  Google Scholar 

  110. González-Sebastián L, Flores-Alamo M, Garcı́a JJ (2013) Nickel-catalyzed hydrosilylation of CO2 in the presence of Et3B for the synthesis of formic acid and related formates. Organometallics 32(23):7186–7194. doi:10.1021/om400876j

  111. Mukherjee D, Sauer DF, Zanardi A, Okuda J (2016) Selective metal-free hydrosilylation of CO2 catalyzed by Triphenylborane in highly polar, Aprotic solvents. Chem-Eur J 22(23):7730–7733. doi:10.1002/chem.201601006

    Article  CAS  Google Scholar 

  112. Rios P, Diez J, Lopez-Serrano J, Rodriguez A, Conejero S (2016) Cationic Platinum(II) sigma-SiH complexes in carbon dioxide hydrosilation. Chem-Eur J 22(47):16791–16795. doi:10.1002/chem.201603524

    Article  CAS  Google Scholar 

  113. Zeng G, Maeda S, Taketsugu T, Sakaki S (2016) Catalytic hydrogenation of carbon dioxide with Ammonia-Borane by Pincer-type phosphorus compound: a theoretical prediction. J Am Chem Soc 138(41):13481–13484. doi:10.1021/jacs.6b07274

    Article  CAS  Google Scholar 

  114. Bontemps S, Vendier L, Sabo-Etienne S (2014) Ruthenium-catalyzed reduction of carbon dioxide to formaldehyde. J Am Chem Soc 136(11):4419–4425. doi:10.1021/ja500708w

    Article  CAS  Google Scholar 

  115. Bontemps S, Vendier L, Sabo-Etienne S (2012) Borane-mediated carbon dioxide reduction at Ruthenium: formation of C1 and C2 compounds. Angew Chem Int Ed 51(7):1671–1674. doi:10.1002/anie.201107352

    Article  CAS  Google Scholar 

  116. Shintani R, Nozaki K (2013) Copper-catalyzed hydroboration of carbon dioxide. Organometallics 32(8):2459–2462. doi:10.1021/om400175h

    Article  CAS  Google Scholar 

  117. Suh H-W, Guard LM, Hazari N (2014) A mechanistic study of allene carboxylation with CO2 resulting in the development of a Pd(ii) pincer complex for the catalytic hydroboration of CO2. Chem Sci 5(10):3859–3872. doi:10.1039/c4sc01110d

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Hui Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Cite this chapter

Wang, WH., Feng, X., Bao, M. (2018). Transformation of CO2 to Formic Acid or Formate with Homogeneous Catalysts. In: Transformation of Carbon Dioxide to Formic Acid and Methanol. SpringerBriefs in Molecular Science(). Springer, Singapore. https://doi.org/10.1007/978-981-10-3250-9_2

Download citation

Publish with us

Policies and ethics