Skip to main content

Methodology

  • Chapter
  • First Online:
Urban Development in Asia and Africa

Part of the book series: The Urban Book Series ((UBS))

Abstract

Remote sensing , GIS, and land change models (LCMs) are critical for mapping urban land use/cover and simulating “what if” urban growth scenarios, particularly in developing countries experiencing rapid urbanization . The purpose of this chapter is to describe briefly the methodology used to produce land use/cover maps, and simulate land use/cover changes for selected metropolitan areas in Asia and Africa. Land use/cover maps were classified from Landsat imagery for 1990, 2000, 2010, and 2014 using the random forest (RF) classifier. Quantitative accuracy assessment was not conducted for the 1990 land use/cover maps due to lack of reference data. However, qualitative and quantitative accuracy assessment was performed for the 2000, 2010, and 2014 land use/cover maps based on Google Earth imagery. Overall land use/cover classification accuracy for all land use/cover maps ranged from 70 to 90%. Land use/cover changes were simulated based on the boosted regression trees-cellular automata (BRT-CA) and RF-CA LCMs. We evaluated the goodness-of-fit of transition potential maps, and validated the simulated land use/cover changes based on robust statistical measures. Generally, the BRT-CA and RF-CA LCMs for all metropolitan areas in Asia and Africa performed relatively well. In particular, the BRT-CA and RF-CA LCMs for metropolitan areas in Africa had the best performance. The modeling and simulation results presented in this chapter provide an initial exploration of BRT-CA and RF-CA LCMs in Asia and Africa. This chapter demonstrates the significance of robust calibration, validation , and simulation of spatial LCMs for all metropolitan areas in Asia and Africa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ADB (Asian Development Bank) (2014) Republic of the Philippines national urban assessment. Asian Development Bank, Metro Manila, Philippines

    Google Scholar 

  • Angel SJ, Parent DL, Civco Blei AM (2010) Atlas of urban expansion. Lincoln Institute of Land Policy, Cambridge, MA

    Google Scholar 

  • Batty M (1998) Urban evolution on the desktop: simulation with the use of extended cellular automata. Environ Plan B 30:1943–1967

    Article  Google Scholar 

  • Batty M, Xie Y (2005) Urban growth using cellular automata models. In: Maguire DJ, Batty M, Goodchild MF (eds) GIS, spatial analysis, and modelling. ESRI Press, CA, USA, pp 151–172

    Google Scholar 

  • Bhaduri B, Bright E, Coleman P, Urban M (2007) LandScan USA: a high resolution geospatial and temporal modeling approach for population distribution and dynamics. Geo J 69:103–117

    Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Cheng J, Masser I (2004) Understanding spatial and temporal processes of urban growth: cellular automata modelling. Environ Plan B 31:167–194

    Article  Google Scholar 

  • Clarke KC, Hoppen S, Gaydos L (1997) A Self-modifying cellular automaton model of historical urbanization in the San Francisco Bay Area. Environ Plan B 24:247–261

    Article  Google Scholar 

  • Couclelis H (1985) Cellular worlds: a framework for modeling micro-macro dynamics

    Google Scholar 

  • Couclelis H (1989) Macrostructure and microbehavior in a metropolitan area. Environ Plann 16:141–154

    Google Scholar 

  • Dale VH (1997) The relationship between land-use change and climate change. Ecol Appl 17:753–769

    Article  Google Scholar 

  • Eastman JR, Solorzano LA, Van Fossen ME (2005) Transition potential modeling for land-cover change. In: Maguire DJ, Batty M, Goodchild MF (eds) GIS, spatial analysis, and modelling. ESRI Press, CA, USA, pp 357–385

    Google Scholar 

  • Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813

    Article  Google Scholar 

  • Engelen G (1988) The theory of self-organization and modeling complex urban systems. Eur J Oper Res 37:42–57

    Google Scholar 

  • Estoque RC, Murayama Y (2013) Landscape pattern and ecosystem service value changes: implications for environmental sustainability planning for the rapidly urbanizing summer capital of the Philippines. Landscape Urban Plan 116:60–72

    Article  Google Scholar 

  • Estoque RC, Murayama Y (2014) A geospatial approach for detecting and characterizing non-stationarity of land change patterns and its potential effect on modeling accuracy. GISci Remote Sens 51:239–252

    Article  Google Scholar 

  • Estoque RC, Murayama Y (2016) Quantifying landscape pattern and ecosystem service value changes in four rapidly urbanizing hill stations of Southeast Asia. Landscape Ecol 31:1481–1507

    Article  Google Scholar 

  • Estoque RC, Murayama Y, Kamusoko C, Yamashita A (2014) Geospatial analysis of urban landscape patterns in three major cities of Southeast Asia. Tsukuba Geoenviron Sci 10:3–10

    Google Scholar 

  • Friedman JH (2002) Stochastic gradient boosting. Comput Stat Data Anal 38:367–378

    Article  Google Scholar 

  • Geoghegan J, Villar SC, Klepeis P, Mendoza PM, Ogneva-Himmelberger Y, Chowdhury RR, Turner BL II, Vance C (2001) Modeling tropical deforestation in the Southern Yucatan peninsular region: comparing survey and satellite data. Agri Ecosyst Environ 85:25–46

    Article  Google Scholar 

  • Google Earth (2015) Google Earth. Accessed on 2 Nov 2013 from http://www.earth.google.com

  • Hagen A (2002) Multi-method assessment of map similarity. In: 5th conference on geographic information science, 25–27 Apr 2002, Palma de Mallorca, Spain

    Google Scholar 

  • Kamusoko C, Gamba J (2015) Simulating urban growth using a random-forest cellular automata (RF-CA) model. ISPRS Int J Geo-Inf 4(2):447–470

    Google Scholar 

  • Lambin EF (1997) Modelling and monitoring land-cover change processes in tropical regions. Prog Phys Geogr 21:375–393

    Article  Google Scholar 

  • Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2:18–22

    Google Scholar 

  • Liu Y (2009) Modelling urban development with geographical information systems and cellular automata. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Mas JF, Puig H, Palacio J, Sosa-Lopez C (2004) Modelling deforestation using GIS and artificial neural networks. Environ Model Softw 19:461–471

    Article  Google Scholar 

  • Mas J, Soares-Filho B, Pontius R, Farfan Gutierrez M, Rodrigues H (2013) A suite of tools for ROC analysis of spatial models. ISPRS Int J Geo-Inf 2:869–887

    Article  Google Scholar 

  • Matheussen B, Kirschbaum RL, Goodman IA, O’Dennel GM, Lettenmaier DP (2000) Effects of land cover change on streamflow in the interior Columbia river basin (USA and Canada). Hydrol Process 14(5):867–885

    Google Scholar 

  • McGarigal K, Cushman SA, Ene E (2012) FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps. Computer software program produced by the authors at the University of Massachusetts Amherst. Accessed 1 July 2015 from http://www.umass.edu/landeco/research/fragstats/fragstats.html

  • Messina J, Walsh S (2001) 2.5D morphogenesis: modeling landuse and landcover dynamics in the Ecuadorian Amazon. Plant Ecol 156:75–88

    Google Scholar 

  • NASA (2013) Landsat 8 overview. Accessed on 25 May 2013 from http://www.nasa.gov/mission_pages/landsat/overview/index.html

  • Pontius RG Jr (2002) Statistical methods to partition effects of quantity and location during comparison of categorical maps at multiple resolutions. Photogram Eng Remote Sens 68:1041–1049

    Google Scholar 

  • Pontius RG Jr, Malanson J (2005) Comparison of the structure and accuracy of two land change models. Int J Geogr Inf Sci 19:243–265

    Article  Google Scholar 

  • Pontius RG Jr, Parmentier B (2014) Recommendations for using the relative operating characteristic (ROC). Landscape Ecol 29:367–382

    Article  Google Scholar 

  • Pontius RG Jr, Si K (2014) The total operating characteristic to measure diagnostic ability for multiple thresholds. Int J Geogr Inf Sci 28:570–583

    Article  Google Scholar 

  • Pontius RG Jr, Walker R, Yao-Kumah R, Arima E, Aldrich S, Caldas M, Vergara D (2007) Accuracy assessment for a simulation model of Amazonian deforestation. Ann Assoc Am Geogr 97:677–695

    Article  Google Scholar 

  • Pontius RG Jr, Boersma W, Castella JC, Clarke K, de Nijs T, Dietzel C, Duan Z, Fotsing E, Goldstein N, Kok K, Koomen E, Lippit CD, McConnel W, Sood AM, Pijanowski B, Pithadia S, Sweeney S, Trung TN, Veldkamp AT, Verbug PH (2008) Comparing the input, output, and validation maps for several models of land change. Ann Reg Sci 42:11–37

    Article  Google Scholar 

  • R Development Core Team (2005) R: a language and environment for statistical computing. R Found Stat Comput. Accessed on 3 Apr 2014 from http://r-prject.kr/sites/default/files/2%EA%B0%95%EA%B0%95%EC%A2%8C%EC%86%8C%EA%B0%9C_%EC%8B%A0%EC%A2%85%ED%99%94.pdf

  • Ridgeway G (2006) Generalized boosted regression models. Documentation on the R package “gmb”, version 1.5.7. Accessed on 3 Apr 2014 from http://www.i-pensieri.com/gregr/gmb.shtml

  • Rodriguez-Galiano VF, Chica-Olmo M, Abarca-Hernandez F, Atkinson PM, Jeganathan C (2012) Random forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture. Remote Sens Environ 121:93–107

    Article  Google Scholar 

  • Soares-Filho BS, Cerqueira GC, Pennachin CL (2002) Modeling the spatial transition probabilities of landscape dynamics in an Amazonian colonization frontier. BioScience 51:1059–1067

    Google Scholar 

  • Soares-Filho BS, Rodrigues HO, Costa WLS (2009) Modeling environmental dynamics with Dinamica EGO. Accessed on 3 Aug 2009 from http://www.csr.ufmg.br/dinamica/

  • The State of Land Change Modeling (2014) Advancing land change modeling: opportunities and research requirements. The National Academies Press, Washington, DC

    Google Scholar 

  • Tobler W (1979) Cellular geography. In: Gale S, Olsson G (eds) Philosophy in geography. Reidel, Dordrecht, pp 379–386

    Chapter  Google Scholar 

  • Torrens PM (2008) Simulating sprawl. Ann Assoc Am Geogr 96:248–275

    Article  Google Scholar 

  • Townsend PA, Lookingbill TR, Kingdon CC, Gardner RH (2009) Spatial pattern analysis for monitoring protected areas. Remote Sens Environ 113:1410–1420

    Article  Google Scholar 

  • USGS (2013) Landsat 8 data product information. Accessed on 25 May 2013 from http://landsat.usgs.gov/LDCM_DataProduct.php

  • Verburg PH, Veldkamp A, Koning GHJ, Kok K, Bouma J (1999) A spatial explicit allocation procedure for modelling the pattern of land use change based upon actual land use. Ecol Model 116:45–61

    Google Scholar 

  • Verburg PH, Schot PP, Dijst MJ, Veldkamp A (2004) Land use change modelling: current practice and research priorities. Geo J 61:309–324

    Google Scholar 

  • Visser H, de Nijs T (2006) The map comparison kit. Environ Model Softw 21:346–358

    Article  Google Scholar 

  • Vliet J, Bregt AK, Hagen-Zanker A (2011) Revisiting Kappa to account for change in the accuracy assessment of land-use change models. Ecol Model 222:1367–1375

    Article  Google Scholar 

  • Wolfram S (1984) Cellular automata as models of complexity. Nature 311:419–424

    Google Scholar 

  • Wu F, Webster CJ (1998) Simulation of land development through the integration of cellular automata and multicriteria evaluation. Environ Plan B 25:103–126

    Article  Google Scholar 

  • Yeh AGO, Li X (2009) Cellular automata and GIS for urban planning. In: Madden M (ed) Manual of geographic information systems. American Society for Photogrammetry and Remote Sensing, Bethesda, MD, USA, pp 591–619

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Courage Kamusoko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kamusoko, C. (2017). Methodology. In: Murayama, Y., Kamusoko, C., Yamashita, A., Estoque, R. (eds) Urban Development in Asia and Africa. The Urban Book Series. Springer, Singapore. https://doi.org/10.1007/978-981-10-3241-7_2

Download citation

Publish with us

Policies and ethics