Skip to main content

Covalent Modifications of RUNX Proteins: Structure Affects Function

  • Chapter
  • First Online:
RUNX Proteins in Development and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 962))

Abstract

The RUNX family of transcription factors plays important roles in tissue-specific gene expression. Many of their functions depend on specific post-translational modifications (PTMs), and in this review, we describe how PTMs govern RUNX DNA binding, transcriptional activity, protein stability, cellular localization, and protein-protein interactions. We also report how these processes can be disrupted in disease settings. Finally, we describe how alterations of RUNX1, or the enzymes that catalyze its post-translational modifications, contribute to hematopoietic malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aho, T. L., Sandholm, J., Peltola, K. J., Ito, Y., & Koskinen, P. J. (2006). Pim-1 kinase phosphorylates RUNX family transcription factors and enhances their activity. BMC Cell Biology, 7, 21.

    Article  PubMed  PubMed Central  Google Scholar 

  • Aikawa, Y., et al. (2006). Roles of HIPK1 and HIPK2 in AML1- and p300-dependent transcription, hematopoiesis and blood vessel formation. The EMBO Journal, 25, 3955–3965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biggs, J. R., Peterson, L. F., Zhang, Y., Kraft, A. S., & Zhang, D.-E. (2006). AML1/RUNX1 phosphorylation by cyclin-dependent kinases regulates the degradation of AML1/RUNX1 by the anaphase-promoting complex. Molecular and Cellular Biology, 26, 7420–7429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calzado, M. A., Renner, F., Roscic, A., & Schmitz, M. L. (2007). HIPK2: A versatile switchboard regulating the transcription machinery and cell death. Cell Cycle, 6, 139–143.

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty, S., Sinha, K. K., Senyuk, V., & Nucifora, G. (2003). SUV39H1 interacts with AML1 and abrogates AML1 transactivity. AML1 is methylated in vivo. Oncogene, 22, 5229–5237.

    Article  CAS  PubMed  Google Scholar 

  • Coco Lo, F., Pisegna, S., & Diverio, D. (1997). The AML1 gene: A transcription factor involved in the pathogenesis of myeloid and lymphoid leukemias. Haematologica, 82, 364–370.

    Google Scholar 

  • De Vita, S., et al. (2010). Trisomic dose of several chromosome 21 genes perturbs haematopoietic stem and progenitor cell differentiation in Down’s syndrome. Oncogene, 29, 6102–6114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferro, M. T., et al. (2004). Chromosome 21 tandem repetition and AML1 (RUNX1) gene amplification. Cancer Genetics and Cytogenetics, 149, 11–16.

    Article  CAS  PubMed  Google Scholar 

  • Franceschi, R. T., et al. (2003). Multiple signaling pathways converge on the Cbfa1/Runx2 transcription factor to regulate osteoblast differentiation. Connective Tissue Research, 44(Suppl 1), 109–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goyama, S., et al. (2013). Transcription factor RUNX1 promotes survival of acute myeloid leukemia cells. The Journal of Clinical Investigation, 123, 3876–3888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grossmann, V., et al. (2011). Prognostic relevance of RUNX1 mutations in T-cell acute lymphoblastic leukemia. Haematologica, 96, 1874–1877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guidez, F., et al. (2000). Recruitment of the nuclear receptor corepressor N-CoR by the TEL moiety of the childhood leukemia-associated TEL-AML1 oncoprotein. Blood, 96, 2557–2561.

    CAS  PubMed  Google Scholar 

  • Guo, H., & Friedman, A. D. (2011). Phosphorylation of RUNX1 by cyclin-dependent kinase reduces direct interaction with HDAC1 and HDAC3. The Journal of Biological Chemistry, 286, 208–215.

    Article  CAS  PubMed  Google Scholar 

  • Herglotz, J., et al. (2013). Histone arginine methylation keeps RUNX1 target genes in an intermediate state. Oncogene, 32, 2565–2575.

    Article  CAS  PubMed  Google Scholar 

  • Huang, G., et al. (2001). Dimerization with PEBP2beta protects RUNX1/AML1 from ubiquitin-proteasome-mediated degradation. The EMBO Journal, 20, 723–733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, G., et al. (2011). The ability of MLL to bind RUNX1 and methylate H3K4 at PU.1 regulatory regions is impaired by MDS/AML-associated RUNX1/AML1 mutations. Blood, 118, 6544–6552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, H., et al. (2012). A Src family kinase-Shp2 axis controls RUNX1 activity in megakaryocyte and T-lymphocyte differentiation. Genes & Development, 26, 1587–1601.

    Article  CAS  Google Scholar 

  • Imai, Y., et al. (2004). The corepressor mSin3A regulates phosphorylation-induced activation, intranuclear location, and stability of AML1. Molecular and Cellular Biology, 24, 1033–1043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue, K.-I., et al. (2002). Runx3 controls the axonal projection of proprioceptive dorsal root ganglion neurons. Nature Neuroscience, 5, 946–954.

    Article  CAS  PubMed  Google Scholar 

  • Ito, Y., Bae, S.-C., & Chuang, L. S. H. (2015). The RUNX family: Developmental regulators in cancer. Nature Reviews. Cancer, 15, 81–95.

    Article  CAS  PubMed  Google Scholar 

  • Iyer, N. G., Özdag, H., & Caldas, C. (2004). p300/CBP and cancer. Oncogene, 23, 4225–4231.

    Article  CAS  PubMed  Google Scholar 

  • Jeon, E.-J., et al. (2006). Bone morphogenetic protein-2 stimulates Runx2 acetylation. The Journal of Biological Chemistry, 281, 16502–16511.

    Article  CAS  PubMed  Google Scholar 

  • Jin, Y.-H., et al. (2004). Transforming growth factor-beta stimulates p300-dependent RUNX3 acetylation, which inhibits ubiquitination-mediated degradation. The Journal of Biological Chemistry, 279, 29409–29417.

    Article  CAS  PubMed  Google Scholar 

  • Kamikubo, Y., et al. (2010). Accelerated leukemogenesis by truncated CBFβ-SMMHC defective in high-affinity binding with RUNX1. Cancer Cell, 17, 455–468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, W.-J., et al. (2005). RUNX3 inactivation by point mutations and aberrant DNA methylation in bladder tumors. Cancer Research, 65, 9347–9354.

    Article  CAS  PubMed  Google Scholar 

  • Kim, B. G., et al. (2006). Runx2 phosphorylation induced by fibroblast growth factor-2/protein kinase C pathways. Proteomics, 6, 1166–1174.

    Article  CAS  PubMed  Google Scholar 

  • Kim, W.-J., et al. (2011). Nicotinamide inhibits growth of carcinogen induced mouse bladder tumor and human bladder tumor xenograft through up-regulation of RUNX3 and p300. The Journal of Urology, 185, 2366–2375.

    Article  CAS  PubMed  Google Scholar 

  • Kitabayashi, I., Aikawa, Y., Nguyen, L. A., Yokoyama, A., & Ohki, M. (2001). Activation of AML1-mediated transcription by MOZ and inhibition by the MOZ-CBP fusion protein. The EMBO Journal, 20, 7184–7196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ko, J.-Y., et al. (2015). MicroRNA-29a mitigates glucocorticoid induction of bone loss and fatty marrow by rescuing Runx2 acetylation. Bone, 81, 80–88.

    Article  CAS  PubMed  Google Scholar 

  • Koh, C. P., et al. (2013). RUNX1 meets MLL: Epigenetic regulation of hematopoiesis by two leukemia genes. Leukemia, 27, 1793–1802.

    Article  CAS  PubMed  Google Scholar 

  • Kugimiya, F., et al. (2007). GSK-3β controls osteogenesis through regulating Runx2 activity. PloS One, 2, e837.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, Y.-S., et al. (2013). Runx3 inactivation is a crucial early event in the development of lung adenocarcinoma. Cancer Cell, 24, 603–616.

    Article  PubMed  Google Scholar 

  • Lee, Y. F., Nimura, K., Lo, W. N., Saga, K., & Kaneda, Y. (2014). Histone H3 lysine 36 methyltransferase Whsc1 promotes the association of Runx2 and p300 in the activation of bone-related genes. PloS One, 9, e106661.

    Article  PubMed  PubMed Central  Google Scholar 

  • Levanon, D., et al. (2002). The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. The EMBO Journal, 21, 3454–3463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Q.-L., et al. (2002). Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell, 109, 113–124.

    Article  CAS  PubMed  Google Scholar 

  • Licht, J. D. (2001). AML1 and the AML1-ETO fusion protein in the pathogenesis of t(8;21) AML. Oncogene, 20, 1–20.

    Article  Google Scholar 

  • Lutterbach, B., et al. (2000). A mechanism of repression by acute myeloid leukemia-1, the target of multiple chromosomal translocations in acute leukemia. The Journal of Biological Chemistry, 275, 651–656.

    Article  CAS  PubMed  Google Scholar 

  • Mizutani, S., et al. (2015). Loss of RUNX1/AML1 arginine-methylation impairs peripheral T cell homeostasis. British Journal of Haematology, 170, 859–873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murata, S., Chiba, T., & Tanaka, K. (2003). CHIP: A quality-control E3 ligase collaborating with molecular chaperones. The International Journal of Biochemistry & Cell Biology, 35, 572–578.

    Article  CAS  Google Scholar 

  • Nakagawa, M., et al. (2011). AML1/RUNX1 functions as a cytoplasmic attenuator of NF-κB signaling in the repression of myeloid tumors. Blood, 118, 6626–6637.

    Article  CAS  PubMed  Google Scholar 

  • Neel, B. G., & Speck, N. A. (2012). Tyrosyl phosphorylation toggles a Runx1 switch. Genes & Development, 26, 1520–1526.

    Article  CAS  Google Scholar 

  • Owen, C. J., et al. (2008). Five new pedigrees with inherited RUNX1 mutations causing familial platelet disorder with propensity to myeloid malignancy. Blood, 112, 4639–4645.

    Article  CAS  PubMed  Google Scholar 

  • Pelletier, N., Champagne, N., Stifani, S., & Yang, X.-J. (2002). MOZ and MORF histone acetyltransferases interact with the Runt-domain transcription factor Runx2. Oncogene, 21, 2729–2740.

    Article  CAS  PubMed  Google Scholar 

  • Qiao, M., Shapiro, P., Kumar, R., & Passaniti, A. (2004). Insulin-like growth factor-1 regulates endogenous RUNX2 activity in endothelial cells through a phosphatidylinositol 3-kinase/ERK-dependent and Akt-independent signaling pathway. The Journal of Biological Chemistry, 279, 42709–42718.

    Article  CAS  PubMed  Google Scholar 

  • Rebel, V. I., et al. (2002). Distinct roles for CREB-binding protein and p300 in hematopoietic stem cell self-renewal. PNAS, 99, 14789–14794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reed-Inderbitzin, E., et al. (2006). RUNX1 associates with histone deacetylases and SUV39H1 to repress transcription. Oncogene, 25, 5777–5786.

    Article  CAS  PubMed  Google Scholar 

  • Selvamurugan, N., Pulumati, M. R., Tyson, D. R., & Partridge, N. C. (2000). Parathyroid hormone regulation of the rat collagenase-3 promoter by protein kinase A-dependent transactivation of core binding factor alpha1. The Journal of Biological Chemistry, 275, 5037–5042.

    Article  CAS  PubMed  Google Scholar 

  • Senyuk, V., Sinha, K. K., Chakraborty, S., Buonamici, S., & Nucifora, G. (2003). P/CAF and GCN5 acetylate the AML1/MDS1/EVI1 fusion oncoprotein. Biochemical and Biophysical Research Communications, 307, 980–986.

    Article  CAS  PubMed  Google Scholar 

  • Seo, W., Ikawa, T., Kawamoto, H., & Taniuchi, I. (2012). Runx1-Cbfβ facilitates early B lymphocyte development by regulating expression of Ebf1. The Journal of Experimental Medicine, 209, 1255–1262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shang, Y., et al. (2009). CHIP functions an E3 ubiquitin ligase of Runx1. Biochemical and Biophysical Research Communications, 386, 242–246.

    Article  CAS  PubMed  Google Scholar 

  • Shia, W.-J., et al. (2012). PRMT1 interacts with AML1-ETO to promote its transcriptional activation and progenitor cell proliferative potential. Blood, 119, 4953–4962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sierra, J., et al. (2003). Regulation of the bone-specific osteocalcin gene by p300 requires Runx2/Cbfa1 and the vitamin D3 receptor but not p300 intrinsic histone acetyltransferase activity. Molecular and Cellular Biology, 23, 3339–3351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka, T., et al. (1996). The extracellular signal-regulated kinase pathway phosphorylates AML1, an acute myeloid leukemia gene product, and potentially regulates its transactivation ability. Molecular and Cellular Biology, 16, 3967–3979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • The Cancer Genome Atlas Research Network. (2013). Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. The New England Journal of Medicine, 368, 2059–2074.

    Article  PubMed Central  Google Scholar 

  • Vu, L. P., et al. (2013). PRMT4 blocks myeloid differentiation by assembling a methyl-RUNX1-dependent repressor complex. Cell Reports, 5, 1625–1638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L., et al. (2011). The leukemogenicity of AML1-ETO is dependent on site-specific lysine acetylation. Science, 333, 765–769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wee, H. J., Huang, G., Shigesada, K., & Ito, Y. (2002). Serine phosphorylation of RUNX2 with novel potential functions as negative regulatory mechanisms. EMBO Reports, 3, 967–974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wee, H. J., Voon, D. C.-C., Bae, S.-C., & Ito, Y. (2008). PEBP2-beta/CBF-beta-dependent phosphorylation of RUNX1 and p300 by HIPK2: Implications for leukemogenesis. Blood, 112, 3777–3787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi, Y., et al. (2004). AML1 is functionally regulated through p300-mediated acetylation on specific lysine residues. The Journal of Biological Chemistry, 279, 15630–15638.

    Article  CAS  PubMed  Google Scholar 

  • Yoshimi, M., Goyama, S., & Kawazu, M. (2012). Multiple phosphorylation sites are important for RUNX1 activity in early hematopoiesis and T-cell differentiation. European Journal of Immunology, 42(4), 1044–1050.

    Article  CAS  PubMed  Google Scholar 

  • Yu, M., et al. (2012). Direct recruitment of polycomb repressive complex 1 to chromatin by core binding transcription factors. Molecular Cell, 45, 330–343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaidi, S. K., et al. (2002). Integration of Runx and Smad regulatory signals at transcriptionally active subnuclear sites. PNAS, 99, 8048–8053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y. W., et al. (2000). A RUNX2/PEBP2alpha A/CBFA1 mutation displaying impaired transactivation and Smad interaction in cleidocranial dysplasia. PNAS, 97, 10549–10554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Biggs, J. R., & Kraft, A. S. (2004). Phorbol ester treatment of K562 cells regulates the transcriptional activity of AML1c through phosphorylation. The Journal of Biological Chemistry, 279, 53116–53125.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L., Fried, F. B., Guo, H., & Friedman, A. D. (2008). Cyclin-dependent kinase phosphorylation of RUNX1/AML1 on 3 sites increases transactivation potency and stimulates cell proliferation. Blood, 111, 1193–1200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, X., et al. (2008). Methylation of RUNX1 by PRMT1 abrogates SIN3A binding and potentiates its transcriptional activity. Genes & Development, 22, 640–653.

    Article  CAS  Google Scholar 

  • Zhao, X., et al. (2014). Downregulation of RUNX1/CBFβ by MLL fusion proteins enhances hematopoietic stem cell self-renewal. Blood, 123, 1729–1738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Delphine Prou, Ph.D., for her helpful suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen D. Nimer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Blumenthal, E., Greenblatt, S., Huang, G., Ando, K., Xu, Y., Nimer, S.D. (2017). Covalent Modifications of RUNX Proteins: Structure Affects Function. In: Groner, Y., Ito, Y., Liu, P., Neil, J., Speck, N., van Wijnen, A. (eds) RUNX Proteins in Development and Cancer. Advances in Experimental Medicine and Biology, vol 962. Springer, Singapore. https://doi.org/10.1007/978-981-10-3233-2_3

Download citation

Publish with us

Policies and ethics