Skip to main content

A Regulatory Role for RUNX1, RUNX3 in the Maintenance of Genomic Integrity

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 962))

Abstract

All human cells are constantly attacked by endogenous and exogenous agents that damage the integrity of their genomes. Yet, the ensuing damage is mostly fixed and very rarely gives rise to genomic defects that promote cancer formation. This is due to the co-ordinated functioning of DNA repair proteins and checkpoint mechanisms that accurately detect and repair DNA damage to ensure genomic fitness. According to accumulating evidence, the RUNX family of transcription factors participate in the maintenance of genomic stability through transcriptional and non-transcriptional mechanisms. RUNX1 and RUNX3 maintain genomic integrity in a transcriptional manner by regulating the transactivation of apoptotic genes following DNA damage via complex formation with p53. RUNX1 and RUNX3 also maintain genomic integrity in a non-transcriptional manner during interstand crosslink repair by promoting the recruitment of FANCD2 to sites of DNA damage. Since RUNX genes are frequently aberrant in human cancer, here, we argue that one of the major modes by which RUNX inactivation promotes neoplastic transformation is through the loss of genomic integrity. In particular, there exists strong evidence that leukemic RUNX1-fusions such as RUNX1-ETO disrupt genomic integrity and induce a “mutator” phenotype during the early stages of leukemogenesis. Consistent with increased DNA damage accumulation induced by RUNX1-ETO, PARP inhibition has been shown to be an effective synthetic-lethal therapeutic approach against RUNX1-ETO expressing leukemias. Here, in this chapter we will examine current evidence suggesting that the tumor suppressor potential of RUNX proteins can be at least partly attributed to their ability to ensure high-fidelity DNA repair and thus prevent mutational accumulation during cancer progression.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alcalay, M., Meani, N., Gelmetti, V., Fantozzi, A., Fagioli, M., Orleth, A., et al. (2003). Acute myeloid leukemia fusion proteins deregulate genes involved in stem cell maintenance and DNA repair. The Journal of Clinical Investigation, 112, 1751–1761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Aparicio, S. A., Behjati, S., Biankin, A. V., et al. (2013a). Signatures of mutational processes in human cancer. Nature, 500, 415–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Campbell, P. J., & Stratton, M. R. (2013b). Deciphering signatures of mutational processes operative in human cancer. Cell Reports, 3, 246–259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alter, B. P. (2003). Cancer in Fanconi anemia, 1927–2001. Cancer, 97, 425–440.

    Article  PubMed  Google Scholar 

  • Andor, N., Graham, T. A., Jansen, M., Xia, L. C., Aktipis, C. A., Petritsch, C., et al. (2016). Pan-cancer analysis of the extent and consequences of intratumor heterogeneity. Nature Medicine, 22, 105–113.

    Article  CAS  PubMed  Google Scholar 

  • Baca, S. C., Prandi, D., Lawrence, M. S., Mosquera, J. M., Romanel, A., Drier, Y., et al. (2013). Punctuated evolution of prostate cancer genomes. Cell, 153, 666–677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartek, J., & Lukas, J. (2007). DNA damage checkpoints: From initiation to recovery or adaptation. Current Opinion in Cell Biology, 19, 238–245.

    Article  CAS  PubMed  Google Scholar 

  • Bartek, J., Bartkova, J., & Lukas, J. (2007). DNA damage signalling guards against activated oncogenes and tumour progression. Oncogene, 26, 7773–7779.

    Article  CAS  PubMed  Google Scholar 

  • Bartkova, J., Horejsi, Z., Koed, K., Kramer, A., Tort, F., Zieger, K., et al. (2005). DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature, 434, 864–870.

    Article  CAS  PubMed  Google Scholar 

  • Bartkova, J., Rezaei, N., Liontos, M., Karakaidos, P., Kletsas, D., Issaeva, N., et al. (2006). Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature, 444, 633–637.

    Article  CAS  PubMed  Google Scholar 

  • Blyth, K., Vaillant, F., Jenkins, A., McDonald, L., Pringle, M. A., Huser, C., et al. (2010). Runx2 in normal tissues and cancer cells: A developing story. Blood Cells, Molecules, and Diseases, 45, 117–123.

    Google Scholar 

  • Boveri, T. (2008). Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Henry Harris. Journal of Cell Science, 121(Suppl 1), 1–84.

    Article  PubMed  Google Scholar 

  • Byrd, R. S., Zwerdling, T., Moghaddam, B., Pinter, J. D., & Steinfeld, M. B. (2011). Monosomy 21q22.11-q22.13 presenting as a Fanconi anemia phenotype. American Journal of Medical Genetics. Part A, 155A, 120–125.

    Article  PubMed  Google Scholar 

  • Caldecott, K. W. (2008). Single-strand break repair and genetic disease. Nature Reviews. Genetics, 9, 619–631.

    CAS  PubMed  Google Scholar 

  • Ceccaldi, R., Sarangi, P., & D’Andrea, A. D. (2016). The Fanconi anaemia pathway: New players and new functions. Nature Reviews. Molecular Cell Biology, 17, 337–349.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, A. S., Culhane, A. C., Chan, M. W., Venkataramu, C. R., Ehrich, M., Nasir, A., et al. (2008). Epithelial progeny of estrogen-exposed breast progenitor cells display a cancer-like methylome. Cancer Research, 68, 1786–1796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuang, L. S., & Ito, Y. (2010). RUNX3 is multifunctional in carcinogenesis of multiple solid tumors. Oncogene, 29, 2605–2615.

    Article  CAS  PubMed  Google Scholar 

  • Chung, W. C., Jung, S. H., Joo, K. R., Kim, M. J., Youn, G. J., Kim, Y., et al. (2013). An inverse relationship between the expression of the gastric tumor suppressor RUNX3 and infection with Helicobacter pylori in gastric epithelial dysplasia. Gut Liver, 7, 688–695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Click, E. S., Cox, B., Olson, S. B., Grompe, M., Akkari, Y., Moreau, L. A., et al. (2011). Fanconi anemia-like presentation in an infant with constitutional deletion of 21q including the RUNX1 gene. American Journal of Medical Genetics. Part A, 155A, 1673–1679.

    Article  PubMed  Google Scholar 

  • Duensing, S., & Munger, K. (2002). The human papillomavirus type 16 E6 and E7 oncoproteins independently induce numerical and structural chromosome instability. Cancer Research, 62, 7075–7082.

    CAS  PubMed  Google Scholar 

  • Dvash, E., Har-Tal, M., Barak, S., Meir, O., & Rubinstein, M. (2015). Leukotriene C4 is the major trigger of stress-induced oxidative DNA damage. Nature Communications, 6, 10112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esposito, M. T., Zhao, L., Fung, T. K., Rane, J. K., Wilson, A., Martin, N., et al. (2015). Synthetic lethal targeting of oncogenic transcription factors in acute leukemia by PARP inhibitors. Nature Medicine, 21, 1481–1490.

    Article  CAS  PubMed  Google Scholar 

  • Forster, V. J., Nahari, M. H., Martinez-Soria, N., Bradburn, A. K., Ptasinska, A., Assi, S. A., et al. (2016). The leukemia-associated RUNX1/ETO oncoprotein confers a mutator phenotype. Leukemia, 30, 250–253.

    Article  CAS  PubMed  Google Scholar 

  • Gao, J., Aksoy, B. A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S. O., et al. (2013). Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Science Signal, 6, l1.

    Article  Google Scholar 

  • Giambra, V., Jenkins, C. E., Lam, S. H., Hoofd, C., Belmonte, M., Wang, X., et al. (2015). Leukemia stem cells in T-ALL require active Hif1alpha and Wnt signaling. Blood, 125, 3917–3927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorgoulis, V. G., & Halazonetis, T. D. (2010). Oncogene-induced senescence: The bright and dark side of the response. Current Opinion in Cell Biology, 22, 816–827.

    Article  CAS  PubMed  Google Scholar 

  • Guo, C., Tang, T. S., & Friedberg, E. C. (2010). SnapShot: Nucleotide excision repair. Cell, 140(754–754), e751.

    Google Scholar 

  • Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144, 646–674.

    Article  CAS  PubMed  Google Scholar 

  • Hanawalt, P. C., & Spivak, G. (2008). Transcription-coupled DNA repair: Two decades of progress and surprises. Nature Reviews. Molecular Cell Biology, 9, 958–970.

    Article  CAS  PubMed  Google Scholar 

  • Harper, J. W., & Elledge, S. J. (2007). The DNA damage response: Ten years after. Molecular Cell, 28, 739–745.

    Article  CAS  PubMed  Google Scholar 

  • Hartlerode, A. J., & Scully, R. (2009). Mechanisms of double-strand break repair in somatic mammalian cells. The Biochemical Journal, 423, 157–168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helleday, T., Eshtad, S., & Nik-Zainal, S. (2014). Mechanisms underlying mutational signatures in human cancers. Nature Reviews. Genetics, 15, 585–598.

    Article  CAS  PubMed  Google Scholar 

  • Holland, A. J., & Cleveland, D. W. (2012). Chromoanagenesis and cancer: Mechanisms and consequences of localized, complex chromosomal rearrangements. Nature Medicine, 18, 1630–1638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, B., Qu, Z., Ong, C. W., Tsang, Y. H., Xiao, G., Shapiro, D., et al. (2012). RUNX3 acts as a tumor suppressor in breast cancer by targeting estrogen receptor alpha. Oncogene, 31, 527–534.

    Article  CAS  PubMed  Google Scholar 

  • Ito, K., Lim, A. C., Salto-Tellez, M., Motoda, L., Osato, M., Chuang, L. S., et al. (2008). RUNX3 attenuates beta-catenin/T cell factors in intestinal tumorigenesis. Cancer Cell, 14, 226–237.

    Article  CAS  PubMed  Google Scholar 

  • Ito, K., Chuang, L. S., Ito, T., Chang, T. L., Fukamachi, H., Salto-Tellez, M., & Ito, Y. (2011). Loss of Runx3 is a key event in inducing precancerous state of the stomach. Gastroenterology, 140(1536–1546), e1538.

    Google Scholar 

  • Ito, Y., Bae, S. C., & Chuang, L. S. (2015). The RUNX family: Developmental regulators in cancer. Nature Reviews. Cancer, 15, 81–95.

    Article  CAS  PubMed  Google Scholar 

  • Jackson, S. P., & Bartek, J. (2009). The DNA-damage response in human biology and disease. Nature, 461, 1071–1078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacob, B., Osato, M., Yamashita, N., Wang, C. Q., Taniuchi, I., Littman, D. R., et al. (2010). Stem cell exhaustion due to Runx1 deficiency is prevented by Evi5 activation in leukemogenesis. Blood, 115, 1610–1620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeggo, P. A., Pearl, L. H., & Carr, A. M. (2016). DNA repair, genome stability and cancer: A historical perspective. Nature Reviews. Cancer, 16, 35–42.

    Article  CAS  PubMed  Google Scholar 

  • Kang, K. A., Zhang, R., Kim, G. Y., Bae, S. C., & Hyun, J. W. (2012). Epigenetic changes induced by oxidative stress in colorectal cancer cells: Methylation of tumor suppressor RUNX3. Tumour Biology, 33, 403–412.

    Article  CAS  PubMed  Google Scholar 

  • Krejci, O., Wunderlich, M., Geiger, H., Chou, F. S., Schleimer, D., Jansen, M., et al. (2008). p53 signaling in response to increased DNA damage sensitizes AML1-ETO cells to stress-induced death. Blood, 111, 2190–2199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunkel, T. A., & Erie, D. A. (2005). DNA mismatch repair. Annual Review of Biochemistry, 74, 681–710.

    Article  CAS  PubMed  Google Scholar 

  • Leach, F. S., Nicolaides, N. C., Papadopoulos, N., Liu, B., Jen, J., Parsons, R., et al. (1993). Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell, 75, 1215–1225.

    Article  CAS  PubMed  Google Scholar 

  • Lecona, E., & Fernandez-Capetillo, O. (2014). Replication stress and cancer: It takes two to tango. Experimental Cell Research, 329, 26–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, K. S., Lee, Y. S., Lee, J. M., Ito, K., Cinghu, S., Kim, J. H., et al. (2010). Runx3 is required for the differentiation of lung epithelial cells and suppression of lung cancer. Oncogene, 29, 3349–3361.

    Article  CAS  PubMed  Google Scholar 

  • Lee, K., Shim, J., Bae, J., Kim, Y. J., & Lee, J. (2012). Stabilization of RNT-1 protein, runt-related transcription factor (RUNX) protein homolog of Caenorhabditis elegans, by oxidative stress through mitogen-activated protein kinase pathway. The Journal of Biological Chemistry, 287, 10444–10452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, Y. S., Lee, J. W., Jang, J. W., Chi, X. Z., Kim, J. H., Li, Y. H., et al. (2013). Runx3 inactivation is a crucial early event in the development of lung adenocarcinoma. Cancer Cell, 24, 603–616.

    Article  PubMed  Google Scholar 

  • Li, Q. L., Ito, K., Sakakura, C., Fukamachi, H., Inoue, K., Chi, X. Z., et al. (2002). Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell, 109, 113–124.

    Article  CAS  PubMed  Google Scholar 

  • Lieber, M. R. (2010). The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annual Review of Biochemistry, 79, 181–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindahl, T. (1993). Instability and decay of the primary structure of DNA. Nature, 362, 709–715.

    Article  CAS  PubMed  Google Scholar 

  • Lu, X. X., Yu, J. L., Ying, L. S., Han, J., Wang, S., Yu, Q. M., et al. (2012). Stepwise cumulation of RUNX3 methylation mediated by Helicobacter pylori infection contributes to gastric carcinoma progression. Cancer, 118, 5507–5517.

    Article  CAS  PubMed  Google Scholar 

  • Maseki, N., Miyoshi, H., Shimizu, K., Homma, C., Ohki, M., Sakurai, M., & Kaneko, Y. (1993). The 8;21 chromosome translocation in acute myeloid leukemia is always detectable by molecular analysis using AML1. Blood, 81, 1573–1579.

    CAS  PubMed  Google Scholar 

  • Maya-Mendoza, A., Ostrakova, J., Kosar, M., Hall, A., Duskova, P., Mistrik, M., et al. (2015). Myc and Ras oncogenes engage different energy metabolism programs and evoke distinct patterns of oxidative and DNA replication stress. Molecular Oncology, 9, 601–616.

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi, H., Shimizu, K., Kozu, T., Maseki, N., Kaneko, Y., & Ohki, M. (1991). t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proceedings of the National Academy of Sciences of the United States of America, 88, 10431–10434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moldovan, G. L., & D’Andrea, A. D. (2009). FANCD2 hurdles the DNA interstrand crosslink. Cell, 139, 1222–1224.

    Article  PubMed  PubMed Central  Google Scholar 

  • Motoda, L., Osato, M., Yamashita, N., Jacob, B., Chen, L. Q., Yanagida, M., et al. (2007). Runx1 protects hematopoietic stem/progenitor cells from oncogenic insult. Stem Cells, 25, 2976–2986.

    Article  CAS  PubMed  Google Scholar 

  • Moynahan, M. E., & Jasin, M. (2010). Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nature Reviews. Molecular Cell Biology, 11, 196–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negrini, S., Gorgoulis, V. G., & Halazonetis, T. D. (2010). Genomic instability – An evolving hallmark of cancer. Nature Reviews. Molecular Cell Biology, 11, 220–228.

    Article  CAS  PubMed  Google Scholar 

  • Nik-Zainal, S., Alexandrov, L. B., Wedge, D. C., Van Loo, P., Greenman, C. D., Raine, K., et al. (2012). Mutational processes molding the genomes of 21 breast cancers. Cell, 149, 979–993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nik-Zainal, S., Kucab, J. E., Morganella, S., Glodzik, D., Alexandrov, L. B., Arlt, V. M., et al. (2015). The genome as a record of environmental exposure. Mutagenesis, 30, 763–770.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimoto, N., Arai, S., Ichikawa, M., Nakagawa, M., Goyama, S., Kumano, K., et al. (2011). Loss of AML1/Runx1 accelerates the development of MLL-ENL leukemia through down-regulation of p19ARF. Blood, 118, 2541–2550.

    Article  CAS  PubMed  Google Scholar 

  • Nouspikel, T. (2009). DNA repair in mammalian cells: Nucleotide excision repair: Variations on versatility. Cellular and Molecular Life Sciences, 66, 994–1009.

    Article  CAS  PubMed  Google Scholar 

  • Pontel, L. B., Rosado, I. V., Burgos-Barragan, G., Garaycoechea, J. I., Yu, R., Arends, M. J., et al. (2015). Endogenous formaldehyde is a hematopoietic stem cell genotoxin and metabolic carcinogen. Molecular Cell, 60, 177–188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poon, S. L., Pang, S. T., McPherson, J. R., Yu, W., Huang, K. K., Guan, P., et al. (2013). Genome-wide mutational signatures of aristolochic acid and its application as a screening tool. Science Translational Medicine, 5, 197ra101.

    Article  PubMed  Google Scholar 

  • Santen, R. J., Yue, W., & Wang, J. P. (2015). Estrogen metabolites and breast cancer. Steroids, 99, 61–66.

    Article  CAS  PubMed  Google Scholar 

  • Satoh, Y., Matsumura, I., Tanaka, H., Harada, H., Harada, Y., Matsui, K., et al. (2012). C-terminal mutation of RUNX1 attenuates the DNA-damage repair response in hematopoietic stem cells. Leukemia, 26, 303–311.

    Article  CAS  PubMed  Google Scholar 

  • Schreiber, V., Dantzer, F., Ame, J. C., & de Murcia, G. (2006). Poly(ADP-ribose): novel functions for an old molecule. Nature Reviews. Molecular Cell Biology, 7, 517–528.

    Article  CAS  PubMed  Google Scholar 

  • Shibata, D., Peinado, M. A., Ionov, Y., Malkhosyan, S., & Perucho, M. (1994). Genomic instability in repeated sequences is an early somatic event in colorectal tumorigenesis that persists after transformation. Nature Genetics, 6, 273–281.

    Article  CAS  PubMed  Google Scholar 

  • Simsek, D., & Jasin, M. (2010). Alternative end-joining is suppressed by the canonical NHEJ component Xrcc4-ligase IV during chromosomal translocation formation. Nature Structural & Molecular Biology, 17, 410–416.

    Article  CAS  Google Scholar 

  • Sugasawa, K., Okuda, Y., Saijo, M., Nishi, R., Matsuda, N., Chu, G., et al. (2005). UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex. Cell, 121, 387–400.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, Y., Imamura, J., Kanai, F., Ichimura, T., Isobe, T., Koike, M., et al. (2007). Runx3 interacts with DNA repair protein Ku70. Experimental Cell Research, 313, 3251–3260.

    Article  CAS  PubMed  Google Scholar 

  • Taniuchi, I., Osato, M., & Ito, Y. (2012). Runx1: No longer just for leukemia. The EMBO Journal, 31, 4098–4099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsang, Y. H., Lamb, A., Romero-Gallo, J., Huang, B., Ito, K., Peek Jr., R. M., et al. (2010). Helicobacter pylori CagA targets gastric tumor suppressor RUNX3 for proteasome-mediated degradation. Oncogene, 29, 5643–5650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wajapeyee, N., Wang, S. Z., Serra, R. W., Solomon, P. D., Nagarajan, A., Zhu, X., & Green, M. R. (2010). Senescence induction in human fibroblasts and hematopoietic progenitors by leukemogenic fusion proteins. Blood, 115, 5057–5060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L., Brugge, J. S., & Janes, K. A. (2011). Intersection of FOXO- and RUNX1-mediated gene expression programs in single breast epithelial cells during morphogenesis and tumor progression. Proceedings of the National Academy of Sciences of the United States of America, 108, E803–E812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, C. Q., Krishnan, V., Tay, L. S., Chin, D. W., Koh, C. P., Chooi, J. Y., et al. (2014). Disruption of Runx1 and Runx3 leads to bone marrow failure and leukemia predisposition due to transcriptional and DNA repair defects. Cell Reports, 8, 767–782.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., Hamard, P. J., & Nimer, S. D. (2015). PARP inhibitors: A treatment option for AML? Nature Medicine, 21, 1393–1394.

    Article  CAS  PubMed  Google Scholar 

  • Wilson 3rd, D. M., & Bohr, V. A. (2007). The mechanics of base excision repair, and its relationship to aging and disease. DNA Repair (Amst), 6, 544–559.

    Article  CAS  Google Scholar 

  • Wolff, E. M., Liang, G., Cortez, C. C., Tsai, Y. C., Castelao, J. E., Cortessis, V. K., et al. (2008). RUNX3 methylation reveals that bladder tumors are older in patients with a history of smoking. Cancer Research, 68, 6208–6214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolyniec, K., Wotton, S., Kilbey, A., Jenkins, A., Terry, A., Peters, G., et al. (2009). RUNX1 and its fusion oncoprotein derivative, RUNX1-ETO, induce senescence-like growth arrest independently of replicative stress. Oncogene, 28, 2502–2512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, D., Ozaki, T., Yoshihara, Y., Kubo, N., & Nakagawara, A. (2013). Runt-related transcription factor 1 (RUNX1) stimulates tumor suppressor p53 protein in response to DNA damage through complex formation and acetylation. The Journal of Biological Chemistry, 288, 1353–1364.

    Article  CAS  PubMed  Google Scholar 

  • Xu, H., Chaturvedi, R., Cheng, Y., Bussiere, F. I., Asim, M., Yao, M. D., et al. (2004). Spermine oxidation induced by Helicobacter pylori results in apoptosis and DNA damage: Implications for gastric carcinogenesis. Cancer Research, 64, 8521–8525.

    Article  CAS  PubMed  Google Scholar 

  • Yamada, C., Ozaki, T., Ando, K., Suenaga, Y., Inoue, K., Ito, Y., et al. (2010). RUNX3 modulates DNA damage-mediated phosphorylation of tumor suppressor p53 at Ser-15 and acts as a co-activator for p53. The Journal of Biological Chemistry, 285, 16693–16703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimoto, S., Loo, T. M., Atarashi, K., Kanda, H., Sato, S., Oyadomari, S., et al. (2013). Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature, 499, 97–101.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, Y., Zhou, L., Miyamoto, T., Iwasaki, H., Harakawa, N., Hetherington, C. J., et al. (2001). AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proceedings of the National Academy of Sciences of the United States of America, 98, 10398–10403.

    Google Scholar 

Download references

Acknowledgement

The authors are supported by the National Medical Research Council (NMRC), Singapore, the National Research Foundation (NRF) under the Singapore Ministry of Education under its Research Centres of Excellence initiative and by the NRF under its Translational and Clinical Research Flagship Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaidehi Krishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Krishnan, V., Ito, Y. (2017). A Regulatory Role for RUNX1, RUNX3 in the Maintenance of Genomic Integrity. In: Groner, Y., Ito, Y., Liu, P., Neil, J., Speck, N., van Wijnen, A. (eds) RUNX Proteins in Development and Cancer. Advances in Experimental Medicine and Biology, vol 962. Springer, Singapore. https://doi.org/10.1007/978-981-10-3233-2_29

Download citation

Publish with us

Policies and ethics