Skip to main content

Roles of RUNX in Hippo Pathway Signaling

  • Chapter
  • First Online:
RUNX Proteins in Development and Cancer

Abstract

The Runt-domain (RD) transcription factors (RUNX genes) are an important family of transcriptional mediators that interact with a variety of proteins including the Hippo pathway effector proteins, YAP and TAZ. In this chapter we focus on two examples of RUNX-TAZ/YAP interactions that have particular significance in human cancer. Specifically, recent evidence has found that RUNX2 cooperates with TAZ to promote epithelial to mesenchymal transition mediated by the soluble N-terminal ectodomain of E-Cadherin, sE-Cad. Contrastingly, in gastric cancer, RUNX3 acts as a tumor suppressor via inhibition of the YAP-TEAD complex and disruption of downstream YAP-mediated gene transcription and the oncogenic phenotype. The reports highlighted in this chapter add to the growing repertoire of instances of Hippo pathway crosstalk that have been identified in cancer. Elucidation of these increasingly complex interactions may help to identify novel strategies to target Hippo pathway dysregulation in human cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baniwal, S. K., Khalid, O., Gabet, Y., Shah, R. R., Purcell, D. J., Mav, D., et al. (2010). Runx2 transcriptome of prostate cancer cells: Insights into invasiveness and bone metastasis. Molecular Cancer, 9, 258.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barnes, G. L., Hebert, K. E., Kamal, M., Javed, A., Einhorn, T. A., Lian, J. B., et al. (2004). Fidelity of Runx2 activity in breast cancer cells is required for the generation of metastases-associated osteolytic disease. Cancer Research, 64, 4506–4513.

    Article  CAS  PubMed  Google Scholar 

  • Brouxhon, S. M., Kyrkanides, S., Teng, X., Raja, V., O'banion, M. K., Clarke, R., et al. (2013). Monoclonal antibody against the ectodomain of E-cadherin (DECMA-1) suppresses breast carcinogenesis: Involvement of the HER/PI3K/Akt/mTOR and IAP pathways. Clinical Cancer Research, 19, 3234–3246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brouxhon, S. M., Kyrkanides, S., Teng, X., O'banion, M. K., Clarke, R., Byers, S., & Ma, L. (2014). Soluble-E-cadherin activates HER and IAP family members in HER2+ and TNBC human breast cancers. Molecular Carcinogenesis, 53, 893–906.

    Article  CAS  PubMed  Google Scholar 

  • Brusgard, J. L., Choe, M., Chumsri, S., Renoud, K., Mackerell Jr., A. D., Sudol, M., & Passaniti, A. (2015). RUNX2 and TAZ-dependent signaling pathways regulate soluble E-Cadherin levels and tumorsphere formation in breast cancer cells. Oncotarget, 6, 28132–28150.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cadoo, K. A., Fornier, M. N., & Morris, P. G. (2013). Biological subtypes of breast cancer: Current concepts and implications for recurrence patterns. The Quarterly Journal of Nuclear Medicine and Molecular Imaging, 57, 312–321.

    CAS  PubMed  Google Scholar 

  • Camargo, F. D., Gokhale, S., Johnnidis, J. B., Fu, D., Bell, G. W., Jaenisch, R., & Brummelkamp, T. R. (2007). YAP1 increases organ size and expands undifferentiated progenitor cells. Current Biology, 17, 2054–2060.

    Article  CAS  PubMed  Google Scholar 

  • Chan, S. W., Lim, C. J., Guo, K., Ng, C. P., Lee, I., Hunziker, W., et al. (2008). A role for TAZ in migration, invasion, and tumorigenesis of breast cancer cells. Cancer Research, 68, 2592–2598.

    Article  CAS  PubMed  Google Scholar 

  • Chen, D., Sun, Y., Wei, Y., Zhang, P., Rezaeian, A. H., Teruya-Feldstein, J., et al. (2012). LIFR is a breast cancer metastasis suppressor upstream of the Hippo-YAP pathway and a prognostic marker. Nature Medicine, 18, 1511–1517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Q., Zhang, N., GRAY, R. S., Li, H., Ewald, A. J., Zahnow, C. A., & Pan, D. (2014). A temporal requirement for Hippo signaling in mammary gland differentiation, growth, and tumorigenesis. Genes & Development, 28, 432–437.

    Article  CAS  Google Scholar 

  • Chi, X. Z., Yang, J. O., Lee, K. Y., Ito, K., Sakakura, C., Li, Q. L., et al. (2005). RUNX3 suppresses gastric epithelial cell growth by inducing p21(WAF1/Cip1) expression in cooperation with transforming growth factor β-activated SMAD. Molecular and Cellular Biology, 25, 8097–8107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chimge, N. O., & Frenkel, B. (2013). The RUNX family in breast cancer: Relationships with estrogen signaling. Oncogene, 32, 2121–2130.

    Article  CAS  PubMed  Google Scholar 

  • Chimge, N. O., Baniwal, S. K., Little, G. H., Chen, Y. B., Kahn, M., Tripathy, D., et al. (2011). Regulation of breast cancer metastasis by Runx2 and estrogen signaling: The role of SNAI2. Breast Cancer Research, 13, R127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chimge, N. O., Baniwal, S. K., Luo, J., Coetzee, S., Khalid, O., Berman, B. P., et al. (2012). Opposing effects of Runx2 and estradiol on breast cancer cell proliferation: In vitro identification of reciprocally regulated gene signature related to clinical letrozole responsiveness. Clinical Cancer Research, 18, 901–911.

    Article  CAS  PubMed  Google Scholar 

  • Choe, M., Brusgard, J. L., Chumsri, S., Bhandary, L., Zhao, X. F., Lu, S., et al. (2015). The RUNX2 transcription factor negatively regulates SIRT6 expression to alter glucose metabolism in breast cancer cells. Journal of Cellular Biochemistry, 116, 2210–2226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuang, L. S., Ito, K., & Ito, Y. (2013). RUNX family: Regulation and diversification of roles through interacting proteins. International Journal of Cancer, 132, 1260–1271.

    Article  CAS  PubMed  Google Scholar 

  • Chunthapong, J., Seftor, E. A., Khalkhali-Ellis, Z., Seftor, R. E., Amir, S., Lubaroff, D. M., et al. (2004). Dual roles of E-cadherin in prostate cancer invasion. Journal of Cellular Biochemistry, 91, 649–661.

    Article  CAS  PubMed  Google Scholar 

  • Cordenonsi, M., Zanconato, F., Azzolin, L., Forcato, M., Rosato, A., Frasson, C., et al. (2011). The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell, 147, 759–772.

    Article  CAS  PubMed  Google Scholar 

  • Cui, C. B., Cooper, L. F., Yang, X., Karsenty, G., & Aukhil, I. (2003). Transcriptional coactivation of bone-specific transcription factor Cbfa1 by TAZ. Molecular and Cellular Biology, 23, 1004–1013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • David, J. M., & Rajasekaran, A. K. (2012). Dishonorable discharge: The oncogenic roles of cleaved E-cadherin fragments. Cancer Research, 72, 2917–2923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies, G., Jiang, W. G., & Mason, M. D. (2001). Matrilysin mediates extracellular cleavage of E-cadherin from prostate cancer cells: A key mechanism in hepatocyte growth factor/scatter factor-induced cell-cell dissociation and in vitro invasion. Clinical Cancer Research, 7, 3289–3297.

    CAS  PubMed  Google Scholar 

  • Eroles, P., Bosch, A., Perez-Fidalgo, J. A., & Lluch, A. (2012). Molecular biology in breast cancer: Intrinsic subtypes and signaling pathways. Cancer Treatment Reviews, 38, 698–707.

    Article  CAS  PubMed  Google Scholar 

  • Fan, X. Y., Hu, X. L., Han, T. M., Wang, N. N., Zhu, Y. M., Hu, W., et al. (2011). Association between RUNX3 promoter methylation and gastric cancer: A meta-analysis. BMC Gastroenterology, 11, 92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrari, N., Mcdonald, L., Morris, J. S., Cameron, E. R., & Blyth, K. (2013). RUNX2 in mammary gland development and breast cancer. Journal of Cellular Physiology, 228, 1137–1142.

    Article  CAS  PubMed  Google Scholar 

  • Finch-Edmondson, M. L., Strauss, R. P., Passman, A., Sudol, M., Yeoh, G. C., & Callus, B. A. (2015). TAZ protein accumulation is negatively regulated by YAP abundance in mammalian cells. The Journal of Biological Chemistry, 290(46), 27928–27938.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foley, J., Nickerson, N. K., Nam, S., Allen, K. T., Gilmore, J. L., Nephew, K. P., et al. (2010). EGFR signaling in breast cancer: Bad to the bone. Seminars in Cell & Developmental Biology, 21, 951–960.

    Article  CAS  Google Scholar 

  • Gaffney, C. J., Oka, T., Mazack, V., Hilman, D., Gat, U., Muramatsu, T., et al. (2012). Identification, basic characterization and evolutionary analysis of differentially spliced mRNA isoforms of human YAP1 gene. Gene, 509, 215–222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganapathy, V., Banach-Petrosky, W., Xie, W., Kareddula, A., Nienhuis, H., Miles, G., & Reiss, M. (2012). Luminal breast cancer metastasis is dependent on estrogen signaling. Clinical & Experimental Metastasis, 29, 493–509.

    Article  CAS  Google Scholar 

  • Grabowska, M. M., & Day, M. L. (2012). Soluble E-cadherin: More than a symptom of disease. Frontiers in Bioscience (Landmark Edition), 17, 1948–1964.

    Article  CAS  Google Scholar 

  • Hao, Y., Chun, A., Cheung, K., Rashidi, B., & Yang, X. (2008). Tumor suppressor LATS1 is a negative regulator of oncogene YAP. The Journal of Biological Chemistry, 283, 5496–5509.

    Article  CAS  PubMed  Google Scholar 

  • Harvey, K. F., Pfleger, C. M., & Hariharan, I. K. (2003). The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell, 114, 457–467.

    Article  CAS  PubMed  Google Scholar 

  • Harvey, K. F., Zhang, X., & Thomas, D. M. (2013). The Hippo pathway and human cancer. Nature Reviews. Cancer, 13, 246–257.

    Article  CAS  PubMed  Google Scholar 

  • Hiemer, S. E., Szymaniak, A. D., & Varelas, X. (2014). The transcriptional regulators TAZ and YAP direct transforming growth factor β-induced tumorigenic phenotypes in breast cancer cells. The Journal of Biological Chemistry, 289, 13461–13474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofmann, G., Balic, M., Dandachi, N., Resel, M., Schippinger, W., Regitnig, P., et al. (2013). The predictive value of serum soluble E-cadherin levels in breast cancer patients undergoing preoperative systemic chemotherapy. Clinical Biochemistry, 46, 1585–1589.

    Article  CAS  PubMed  Google Scholar 

  • Huang, J., Wu, S., Barrera, J., Matthews, K., & Pan, D. (2005). The hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating yorkie, the Drosophila homolog of YAP. Cell, 122, 421–434.

    Article  CAS  PubMed  Google Scholar 

  • Huguenin, M., Muller, E. J., Trachsel-Rosmann, S., Oneda, B., Ambort, D., Sterchi, E. E., & Lottaz, D. (2008). The metalloprotease meprinβ processes E-cadherin and weakens intercellular adhesion. PloS One, 3, e2153.

    Article  PubMed  PubMed Central  Google Scholar 

  • Inge, L. J., Barwe, S. P., D'ambrosio, J., Gopal, J., Lu, K., Ryazantsev, S., et al. (2011). Soluble E-cadherin promotes cell survival by activating epidermal growth factor receptor. Experimental Cell Research, 317, 838–848.

    Article  CAS  PubMed  Google Scholar 

  • Inman, C. K., & Shore, P. (2003). The osteoblast transcription factor Runx2 is expressed in mammary epithelial cells and mediates osteopontin expression. The Journal of Biological Chemistry, 278, 48684–48689.

    Article  CAS  PubMed  Google Scholar 

  • Ithimakin, S., Day, K. C., Malik, F., Zen, Q., Dawsey, S. J., Bersano-Begey, T. F., et al. (2013). HER2 drives luminal breast cancer stem cells in the absence of HER2 amplification: Implications for efficacy of adjuvant trastuzumab. Cancer Research, 73, 1635–1646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito, K., Lim, A. C., Salto-Tellez, M., Motoda, L., Osato, M., Chuang, L. S., et al. (2008). RUNX3 attenuates β-catenin/T cell factors in intestinal tumorigenesis. Cancer Cell, 14, 226–237.

    Article  CAS  PubMed  Google Scholar 

  • Ito, K., Chuang, L. S., Ito, T., Chang, T. L., Fukamachi, H., Salto-Tellez, M., & Ito, Y. (2011). Loss of Runx3 is a key event in inducing precancerous state of the stomach. Gastroenterology, 140, 1536–1546.

    Article  CAS  PubMed  Google Scholar 

  • Ito, Y., Bae, S. C., & Chuang, L. S. (2015). The RUNX family: Developmental regulators in cancer. Nature Reviews. Cancer, 15, 81–95.

    Article  CAS  PubMed  Google Scholar 

  • Jansson, L., & Larsson, J. (2012). Normal hematopoietic stem cell function in mice with enforced expression of the Hippo signaling effector YAP1. PloS One, 7, e32013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Javed, A., Barnes, G. L., Pratap, J., Antkowiak, T., Gerstenfeld, L. C., Van Wijnen, A. J., et al. (2005). Impaired intranuclear trafficking of Runx2 (AML3/CBFA1) transcription factors in breast cancer cells inhibits osteolysis in vivo. Proceedings of the National Academy of Sciences of the United States of America, 102, 1454–1459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, C. G., Lv, L., Liu, F. R., Wang, Z. N., Liu, F. N., Li, Y. S., et al. (2011). Downregulation of connective tissue growth factor inhibits the growth and invasion of gastric cancer cells and attenuates peritoneal dissemination. Molecular Cancer, 10, 122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao, S., Wang, H., Shi, Z., Dong, A., Zhang, W., Song, X., et al. (2014). A peptide mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer. Cancer Cell, 25, 166–180.

    Article  CAS  PubMed  Google Scholar 

  • Justice, R. W., Zilian, O., Woods, D. F., Noll, M., & Bryant, P. J. (1995). The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes & Development, 9, 534–546.

    Article  CAS  Google Scholar 

  • Kanai, F., Marignani, P. A., Sarbassova, D., Yagi, R., Hall, R. A., Donowitz, M., et al. (2000). TAZ: A novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins. The EMBO Journal, 19, 6778–6791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, N. G., Koh, E., Chen, X., & Gumbiner, B. M. (2011). E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. Proceedings of the National Academy of Sciences of the United States of America, 108, 11930–11935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuefer, R., Hofer, M. D., Gschwend, J. E., Pienta, K. J., Sanda, M. G., Chinnaiyan, A. M., et al. (2003). The role of an 80 kDa fragment of E-cadherin in the metastatic progression of prostate cancer. Clinical Cancer Research, 9, 6447–6452.

    CAS  PubMed  Google Scholar 

  • Kuefer, R., Hofer, M. D., Zorn, C. S., Engel, O., Volkmer, B. G., Juarez-Brito, M. A., et al. (2005). Assessment of a fragment of e-cadherin as a serum biomarker with predictive value for prostate cancer. British Journal of Cancer, 92, 2018–2023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai, D., Ho, K. C., Hao, Y., & Yang, X. (2011). Taxol resistance in breast cancer cells is mediated by the hippo pathway component TAZ and its downstream transcriptional targets Cyr61 and CTGF. Cancer Research, 71, 2728–2738.

    Article  CAS  PubMed  Google Scholar 

  • Lam-Himlin, D. M., Daniels, J. A., Gayyed, M. F., Dong, J., Maitra, A., Pan, D., et al. (2006). The hippo pathway in human upper gastrointestinal dysplasia and carcinoma: A novel oncogenic pathway. International Journal of Gastrointestinal Cancer, 37, 103–109.

    PubMed  Google Scholar 

  • Lee, J. M., Dedhar, S., Kalluri, R., & Thompson, E. W. (2006). The epithelial-mesenchymal transition: New insights in signaling, development, and disease. The Journal of Cell Biology, 172, 973–981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, Y. S., Lee, J. W., Jang, J. W., Chi, X. Z., Kim, J. H., Li, Y. H., et al. (2013). Runx3 inactivation is a crucial early event in the development of lung adenocarcinoma. Cancer Cell, 24, 603–616.

    Article  PubMed  Google Scholar 

  • Lei, Q. Y., Zhang, H., Zhao, B., Zha, Z. Y., Bai, F., Pei, X. H., et al. (2008). TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the hippo pathway. Molecular and Cellular Biology, 28, 2426–2436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Q. L., Ito, K., Sakakura, C., Fukamachi, H., Inoue, K., Chi, X. Z., et al. (2002). Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell, 109, 113–124.

    Article  CAS  PubMed  Google Scholar 

  • Lim, B., Park, J. L., Kim, H. J., Park, Y. K., Kim, J. H., Sohn, H. A., et al. (2013). Integrative genomics analysis reveals the multilevel dysregulation and oncogenic characteristics of TEAD4 in gastric cancer. Carcinogenesis, 35, 1020–1027.

    Article  PubMed  Google Scholar 

  • Lin, M. T., Zuon, C. Y., Chang, C. C., Chen, S. T., Chen, C. P., Lin, B. R., et al. (2005). Cyr61 induces gastric cancer cell motility/invasion via activation of the integrin/nuclear factor-kappaB/cyclooxygenase-2 signaling pathway. Clinical Cancer Research, 11, 5809–5820.

    Article  CAS  PubMed  Google Scholar 

  • Liu, A. M., Wong, K. F., Jiang, X., Qiao, Y., & Luk, J. M. (2012). Regulators of mammalian Hippo pathway in cancer. Biochimica et Biophysica Acta, 1826, 357–364.

    CAS  PubMed  Google Scholar 

  • Liu-Chittenden, Y., Huang, B., Shim, J. S., Chen, Q., Lee, S. J., Anders, R. A., et al. (2012). Genetic and pharmacological disruption of the TEAD–YAP complex suppresses the oncogenic activity of YAP. Genes & Development, 26, 1300–1305.

    Article  CAS  Google Scholar 

  • Mcdonald, L., Ferrari, N., Terry, A., BELL, M., Mohammed, Z. M., Orange, C., et al. (2014). RUNX2 correlates with subtype-specific breast cancer in a human tissue microarray, and ectopic expression of Runx2 perturbs differentiation in the mouse mammary gland. Disease Models & Mechanisms, 7, 525–534.

    Article  CAS  Google Scholar 

  • Mehrotra, J., Vali, M., Mcveigh, M., Kominsky, S. L., Fackler, M. J., Lahti-Domenici, J., et al. (2004). Very high frequency of hypermethylated genes in breast cancer metastasis to the bone, brain, and lung. Clinical Cancer Research, 10, 3104–3109.

    Article  CAS  PubMed  Google Scholar 

  • Min, B., Kim, M. K., Zhang, J. W., Kim, J., Chung, K. C., Oh, B. C., et al. (2012). Identification of RUNX3 as a component of the MST/Hpo signaling pathway. Journal of Cellular Physiology, 227, 839–849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Najy, A. J., Day, K. C., & Day, M. L. (2008). The ectodomain shedding of E-cadherin by ADAM15 supports ErbB receptor activation. The Journal of Biological Chemistry, 283, 18393–18401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noe, V., Fingleton, B., Jacobs, K., Crawford, H. C., Vermeulen, S., Steelant, W., et al. (2001). Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. Journal of Cell Science, 114, 111–118.

    CAS  PubMed  Google Scholar 

  • Oh, H., & Irvine, K. D. (2008). In vivo regulation of Yorkie phosphorylation and localization. Development, 135, 1081–1088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozaki, T., Nakagawara, A., & Nagase, H. (2013a). RUNX Family Participates in the Regulation of p53-Dependent DNA Damage Response. International Journal of Genomics, 2013, 271347.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ozaki, T., Wu, D., Sugimoto, H., Nagase, H., & Nakagawara, A. (2013b). Runt-related transcription factor 2 (RUNX2) inhibits p53-dependent apoptosis through the collaboration with HDAC6 in response to DNA damage. Cell Death & Disease, 4, e610.

    Article  CAS  Google Scholar 

  • Ozaki, T., Sugimoto, H., Nakamura, M., Hiraoka, K., Yoda, H., Sang, M., et al. (2015). Runt-related transcription factor 2 attenuates the transcriptional activity as well as DNA damage-mediated induction of pro-apoptotic TAp73 to regulate chemosensitivity. The FEBS Journal, 282, 114–128.

    Article  CAS  PubMed  Google Scholar 

  • Pantalacci, S., Tapon, N., & Leopold, P. (2003). The Salvador partner Hippo promotes apoptosis and cell-cycle exit in Drosophila. Nature Cell Biology, 5, 921–927.

    Article  CAS  PubMed  Google Scholar 

  • Plouffe, S. W., Hong, A. W., & Guan, K. L. (2015). Disease implications of the Hippo/YAP pathway. Trends in Molecular Medicine, 21, 212–222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pratap, J., Galindo, M., Zaidi, S. K., Vradii, D., Bhat, B. M., Robinson, J. A., et al. (2003). Cell growth regulatory role of Runx2 during proliferative expansion of preosteoblasts. Cancer Research, 63, 5357–5362.

    CAS  PubMed  Google Scholar 

  • Pratap, J., Javed, A., Languino, L. R., Van Wijnen, A. J., Stein, J. L., Stein, G. S., & Lian, J. B. (2005). The Runx2 osteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion. Molecular and Cellular Biology, 25, 8581–8591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pratap, J., Lian, J. B., Javed, A., Barnes, G. L., Van Wijnen, A. J., Stein, J. L., & Stein, G. S. (2006). Regulatory roles of Runx2 in metastatic tumor and cancer cell interactions with bone. Cancer Metastasis Reviews, 25, 589–600.

    Article  CAS  PubMed  Google Scholar 

  • Pratap, J., Lian, J. B., & Stein, G. S. (2011). Metastatic bone disease: Role of transcription factors and future targets. Bone, 48, 30–36.

    Article  CAS  PubMed  Google Scholar 

  • Qiao, Y., Lin, S. J., Chen, Y., Voon, D. C., Zhu, F., Chuang, L. S., et al. (2015). RUNX3 is a novel negative regulator of oncogenic TEAD-YAP complex in gastric cancer. Oncogene, 35(20), 2664–2674.

    Article  PubMed  Google Scholar 

  • Shah, M. A., & Ajani, J. A. (2010). Gastric cancer--an enigmatic and heterogeneous disease. Journal of the American Medical Association, 303, 1753–1754.

    Article  CAS  PubMed  Google Scholar 

  • Siegel, R., Naishadham, D., & Jemal, A. (2013). Cancer statistics, 2013. CA: A Cancer Journal for Clinicians, 63, 11–30.

    Google Scholar 

  • Symowicz, J., Adley, B. P., Gleason, K. J., Johnson, J. J., Ghosh, S., Fishman, D. A., et al. (2007). Engagement of collagen-binding integrins promotes matrix metalloproteinase-9-dependent E-cadherin ectodomain shedding in ovarian carcinoma cells. Cancer Research, 67, 2030–2039.

    Article  CAS  PubMed  Google Scholar 

  • Tapon, N., Harvey, K. F., Bell, D. W., Wahrer, D. C., Schiripo, T. A., Haber, D., & Hariharan, I. K. (2002). salvador Promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell, 110, 467–478.

    Article  CAS  PubMed  Google Scholar 

  • Thiery, J. P., Acloque, H., Huang, R. Y., & Nieto, M. A. (2009). Epithelial-mesenchymal transitions in development and disease. Cell, 139, 871–890.

    Article  CAS  PubMed  Google Scholar 

  • Valastyan, S., & Weinberg, R. A. (2011). Tumor metastasis: Molecular insights and evolving paradigms. Cell, 147, 275–292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varelas, X., Sakuma, R., Samavarchi-Tehrani, P., Peerani, R., Rao, B. M., Dembowy, J., et al. (2008). TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nature Cell Biology, 10, 837–848.

    Article  CAS  PubMed  Google Scholar 

  • Vitolo, M. I., Anglin, I. E., Mahoney Jr., W. M., Renoud, K. J., Gartenhaus, R. B., Bachman, K. E., & Passaniti, A. (2007). The RUNX2 transcription factor cooperates with the YES-associated protein, YAP65, to promote cell transformation. Cancer Biology & Therapy, 6, 856–863.

    Article  CAS  Google Scholar 

  • Wang, X., Su, L., & Ou, Q. (2012). Yes-associated protein promotes tumour development in luminal epithelial derived breast cancer. European Journal of Cancer, 48, 1227–1234.

    Article  CAS  PubMed  Google Scholar 

  • Wu, S., Huang, J., Dong, J., & Pan, D. (2003). hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell, 114, 445–456.

    Article  CAS  PubMed  Google Scholar 

  • Yagi, R., Chen, L. F., Shigesada, K., Murakami, Y., & Ito, Y. (1999). A WW domain-containing yes-associated protein (YAP) is a novel transcriptional co-activator. The EMBO Journal, 18, 2551–2562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yano, T., Ito, K., Fukamachi, H., Chi, X. Z., Wee, H. J., Inoue, K., et al. (2006). The RUNX3 tumor suppressor upregulates Bim in gastric epithelial cells undergoing transforming growth factor beta-induced apoptosis. Molecular and Cellular Biology, 26, 4474–4488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, F. X., Luo, J., Mo, J. S., Liu, G., Kim, Y. C., Meng, Z., et al. (2014a). Mutant Gq/11 promote uveal melanoma tumorigenesis by activating YAP. Cancer Cell, 25, 822–830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, W., Qiao, Y., Tang, X., Ma, L., Wang, Y., Zhang, X., et al. (2014b). Tumor suppressor long non-coding RNA, MT1DP is negatively regulated by YAP and Runx2 to inhibit FoxA1 in liver cancer cells. Cellular Signalling, 26, 2961–2968.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, M., Tomlinson, V., Lara, R., Holliday, D., Chelala, C., Harada, T., et al. (2008). Yes-associated protein (YAP) functions as a tumor suppressor in breast. Cell Death and Differentiation, 15, 1752–1759.

    Article  CAS  PubMed  Google Scholar 

  • Zanconato, F., Forcato, M., Battilana, G., Azzolin, L., Quaranta, E., Bodega, B., et al. (2015). Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nature Cell Biology, 17, 1218–1227.

    Article  CAS  PubMed  Google Scholar 

  • Zanconato, F., Cordenonsi, M., & Piccolo, S. (2016). YAP/TAZ at the roots of cancer. Cancer Cell, 29, 783–803.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., Xu, Z. P., Yang, Y. C., Zhu, J. S., Zhou, Z., & Chen, W. X. (2012). Expression of Yes-associated protein in gastric adenocarcinoma and inhibitory effects of its knockdown on gastric cancer cell proliferation and metastasis. International Journal of Immunopathology and Pharmacology, 25, 583–590.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Z., Zhu, J. S., Xu, Z. P., & Zhang, Q. (2011). Lentiviral vector-mediated siRNA knockdown of the YAP gene inhibits growth and induces apoptosis in the SGC7901 gastric cancer cell line. Molecular Medicine Reports, 4, 1075–1082.

    CAS  PubMed  Google Scholar 

  • Zuo, J. H., Zhu, W., Li, M. Y., Li, X. H., Yi, H., Zeng, G. Q., et al. (2011). Activation of EGFR promotes squamous carcinoma SCC10A cell migration and invasion via inducing EMT-like phenotype change and MMP-9-mediated degradation of E-cadherin. Journal of Cellular Biochemistry, 112, 2508–2517.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research of MS, YQ, and MFE has been supported by generous “Seed Grants” from NUS-MBI-IMCB-A*STAR of the Republic of Singapore. AP was supported by a VA Health Services Research & Development award and a Pilot Grant project from the Marlene & Stewart Greenebaum Cancer Center. The authors would also like to acknowledge the assistance of Chun Xi Wong in preparation of the figure illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonino Passaniti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Passaniti, A., Brusgard, J.L., Qiao, Y., Sudol, M., Finch-Edmondson, M. (2017). Roles of RUNX in Hippo Pathway Signaling. In: Groner, Y., Ito, Y., Liu, P., Neil, J., Speck, N., van Wijnen, A. (eds) RUNX Proteins in Development and Cancer. Advances in Experimental Medicine and Biology, vol 962. Springer, Singapore. https://doi.org/10.1007/978-981-10-3233-2_26

Download citation

Publish with us

Policies and ethics