Skip to main content

CBFß and HIV Infection

  • Chapter
  • First Online:
RUNX Proteins in Development and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 962))

  • 4132 Accesses

Abstract

In order to achieve a persistent infection, viruses must overcome the host immune system. Host restriction factors dominantly block virus transmission, but are subject to down regulation by viral accessory proteins. HIV encodes several accessory factors that overcome different cellular restriction factors. For example, the HIV-1 protein Vif down regulates the human APOBEC3 family of restriction factors by targeting them for proteolysis by the ubiquitin-proteasome pathway. Recently, this function was shown to require the transcription cofactor CBFβ, which acts as a template to assist in Vif folding and allow for assembly of an APOBEC3-targeting E3 ligase complex. In uninfected cells, CBFβ is an essential binding partner of RUNX transcription factors. By binding CBFβ, Vif has also been shown to perturb transcription of genes regulated by the RUNX proteins, including restrictive APOBEC3 family members. Here we review how the link between CBFβ and Vif supports transcriptional and post-transcriptional repression of innate immunity. The ability of a single viral protein to coopt multiple host pathways is an economical strategy for a pathogen with limited protein coding capacity to achieve a productive infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ai, Y., et al. (2014). Core-binding factor subunit beta is not required for non-primate lentiviral Vif-mediated APOBEC3 degradation. Journal of Virology, 88(20), 12112–12122.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anderson, B. D., & Harris, R. S. (2015). Transcriptional regulation of APOBEC3 antiviral immunity through the CBF-/RUNX axis. Science Advances, 1(8), e1500296–e1500296.

    Article  PubMed  PubMed Central  Google Scholar 

  • Aydin, H., Taylor, M. W., & Lee, J. E. (2014). Structure-guided analysis of the human APOBEC3-HIV restrictome. Structure/Folding and Design, 22(5), 668–684.

    CAS  PubMed  Google Scholar 

  • Baldauf, H.-M., et al. (2012). SAMHD1 restricts HIV-1 infection in resting CD4+ T cells. Nature Medicine, 18(11), 1682–1689.

    Article  CAS  PubMed  Google Scholar 

  • Binka, M., et al. (2011). The activity spectrum of Vif from multiple HIV-1 subtypes against APOBEC3G, APOBEC3F, and APOBEC3H. Journal of Virology, 86(1), 49–59.

    Article  PubMed  CAS  Google Scholar 

  • Bogerd, H. P., et al. (2004). A single amino acid difference in the host APOBEC3G protein controls the primate species specificity of HIV type 1 virion infectivity factor. Proceedings of the National Academy of Sciences of the United States of America, 101(11), 3770–3774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohn, M.-F., et al. (2013). Crystal structure of the DNA cytosine deaminase APOBEC3F: The catalytically active and HIV-1 Vif-binding domain. Structure/Folding and Design, 21, 1042–1050.

    CAS  PubMed  Google Scholar 

  • Bouyac, M., et al. (1997). Phenotypically Vif- human immunodeficiency virus type 1 is produced by chronically infected restrictive cells. Journal of Virology, 71(3), 2473–2477.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaipan, C., et al. (2013). APOBEC3G restricts HIV-1 to a greater extent than APOBEC3F and APOBEC3DE in human primary CD4+ T cells and macrophages. Journal of Virology, 87(1), 444–453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chelico, L. (2014). Suppression of APOBEC3-mediated restriction of HIV-1 by Vif. Front Microbiol, 5, 450.

    PubMed  PubMed Central  Google Scholar 

  • Chen, G., et al. (2009). A patch of positively charged amino acids surrounding the human immunodeficiency virus type 1 Vif SLVx4Yx9Y motif influences its interaction with APOBEC3G. Journal of Virology, 83(17), 8674–8682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Consortium, T. E. P., et al. (2013). An integrated encyclopedia of DNA elements in the human genome. Nature, 488(7414), 57–74.

    Google Scholar 

  • Conticello, S. G., Harris, R. S., & Neuberger, M. S. (2003). The Vif protein of HIV triggers degradation of the human antiretroviral DNA deaminase APOBEC3G. Current Biology: CB, 13(22), 2009–2013.

    Article  CAS  PubMed  Google Scholar 

  • Cunningham, L., et al. (2012). Identification of benzodiazepine Ro5-3335 as an inhibitor of CBF leukemia through quantitative high throughput screen against RUNX1-CBFβ interaction. Proceedings of the National Academy of Sciences, 109(36), 14592–14597.

    Article  CAS  Google Scholar 

  • Dang, Y., et al. (2006). Identification of APOBEC3DE as another antiretroviral factor from the human APOBEC family. Journal of Virology, 80(21), 10522–10533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang, Y., et al. (2009). Identification of a novel WxSLVK motif in the N terminus of human immunodeficiency virus and simian immunodeficiency virus Vif that is critical for APOBEC3G and APOBEC3F neutralization. Journal of Virology, 83(17), 8544–8552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang, Y., et al. (2010). Identification of 81LGxGxxIxW89 and 171EDRW174 domains from human immunodeficiency virus type 1 Vif that regulate APOBEC3G and APOBEC3F neutralizing activity. Journal of Virology, 84(11), 5741–5750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daugherty, M. D., & Malik, H. S. (2012). Rules of engagement: Molecular insights from host-virus arms races. Annual Review of Genetics, 46(1), 677–700.

    Article  CAS  PubMed  Google Scholar 

  • de Bruijn, M. F., & Speck, N. A. (2004). Core-binding factors in hematopoiesis and immune function. Oncogene, 23(24), 4238–4248.

    Article  CAS  PubMed  Google Scholar 

  • Desimmie, B. A., et al. (2014). Multiple APOBEC3 restriction factors for HIV-1 and one Vif to rule them all. Journal of Molecular Biology, 426(6), 1220–1245.

    Article  CAS  PubMed  Google Scholar 

  • Doitsh, G., et al. (2015). Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature, 505(7484), 509–514.

    Article  CAS  Google Scholar 

  • Farrow, M. A., et al. (2005). Nuclear localization of HIV type 1 Vif isolated from a long-term asymptomatic individual and potential role in virus attenuation. AIDS Research and Human Retroviruses, 21(6), 565–574.

    Article  CAS  PubMed  Google Scholar 

  • Finkel, T. H., et al. (1995). Apoptosis occurs predominantly in bystander cells and not in productively infected cells of HIV- and SIV-infected lymph nodes. Nature Medicine, 1(2), 129–134.

    Article  CAS  PubMed  Google Scholar 

  • Finzi, D., et al. (1997). Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science, 278(5341), 1295–1300.

    Article  CAS  PubMed  Google Scholar 

  • Finzi, D., et al. (1999). Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nature Medicine, 5(5), 512–517.

    Article  CAS  PubMed  Google Scholar 

  • Fisher, A. G., et al. (1987). The sor gene of HIV-1 is required for efficient virus transmission in vitro. Science, 237(4817), 888–893.

    Article  CAS  PubMed  Google Scholar 

  • Gabuzda, D. H., et al. (1992). Role of vif in replication of human immunodeficiency virus type 1 in CD4+ T lymphocytes. Journal of Virology, 66(11), 6489–6495.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goncalves, J., Jallepalli, P., & Gabuzda, D. H. (1994). Subcellular localization of the Vif protein of human immunodeficiency virus type 1. Journal of Virology, 68(2), 704–712.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gorczynski, M. J., et al. (2007). Allosteric inhibition of the protein-protein interaction between the leukemia-associated proteins Runx 1 and CBFβ. Chemistry & Biology, 14(10), 1186–1197.

    Article  CAS  Google Scholar 

  • Gu, T. L., et al. (2000). Auto-inhibition and partner proteins, core-binding factor beta (CBFbeta) and Ets-1, modulate DNA binding by CBFalpha2 (AML1). Molecular and Cellular Biology, 20(1), 91–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, F., et al. (2006). Inhibition of formula-primed reverse transcription by human APOBEC3G during human immunodeficiency virus type 1 replication. Journal of Virology, 80(23), 11710–11722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, F., et al. (2007). The interaction of APOBEC3G with human immunodeficiency virus type 1 nucleocapsid inhibits tRNA3Lys annealing to viral RNA. Journal of Virology, 81(20), 11322–11331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, Y., et al. (2014). Structural basis for hijacking CBF-β and CUL5 E3 ligase complex by HIV-1 Vif. Nature, 505(7482), 229–233.

    Article  CAS  PubMed  Google Scholar 

  • Han, X., et al. (2014). Evolutionarily conserved requirement for CBF- in the assembly of the HIV/SIV Vif-Cullin 5-RING E3 ubiquitin ligase. Journal of Virology, 88, 3320–3328.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harris, R. S., & Liddament, M. T. (2004). Retroviral restriction by APOBEC proteins. Nature Reviews Immunology, 4(11), 868–877.

    Article  CAS  PubMed  Google Scholar 

  • Harris, R. S., et al. (2003). DNA deamination mediates innate immunity to retroviral infection. Cell, 113(6), 803–809.

    Article  CAS  PubMed  Google Scholar 

  • Harris, R. S., Hultquist, J. F., & Evans, D. T. (2012). The restriction factors of human immunodeficiency virus. Journal of Biological Chemistry, 287(49), 40875–40883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, Z., et al. (2008). Characterization of conserved motifs in HIV-1 Vif required for APOBEC3G and APOBEC3F interaction. Journal of Molecular Biology, 381(4), 1000–1011.

    Article  CAS  PubMed  Google Scholar 

  • He, N., et al. (2010). HIV-1 Tat and host AFF4 recruit two transcription elongation factors into a bifunctional complex for coordinated activation of HIV-1 transcription. Molecular Cell, 38(3), 428–438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmes, R. K., Malim, M. H., & Bishop, K. N. (2007). APOBEC-mediated viral restriction: Not simply editing? Trends in Biochemical Sciences, 32(3), 118–128.

    Article  CAS  PubMed  Google Scholar 

  • Hrecka, K., et al. (2011). Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature, 474(7353), 658–661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, X., et al. (1999). Solution structure of core binding factor beta and map of the CBF alpha binding site. Nature Structural Biology, 6(7), 624–627.

    Article  CAS  PubMed  Google Scholar 

  • Huang, G., et al. (2001). Dimerization with PEBP2beta protects RUNX1/AML1 from ubiquitin-proteasome-mediated degradation. The EMBO Journal, 20(4), 723–733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hultquist, J. F., et al. (2012). Vif proteins of human and simian immunodeficiency viruses require cellular CBFβ to degrade APOBEC3 restriction factors. Journal of Virology, 86(5), 2874–2877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huthoff, H., & Malim, M. H. (2007). Identification of amino acid residues in APOBEC3G required for regulation by human immunodeficiency virus type 1 Vif and Virion encapsidation. Journal of Virology, 81(8), 3807–3815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito, Y. (2008). RUNX genes in development and cancer: Regulation of viral gene expression and the discovery of RUNX family genes. Advances in Cancer Research, 99, 33–76.

    Article  CAS  PubMed  Google Scholar 

  • Iwatani, Y., et al. (2007). Deaminase-independent inhibition of HIV-1 reverse transcription by APOBEC3G. Nucleic Acids Research, 35(21), 7096–7108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jager, S., et al. (2012). Vif hijacks CBF-beta to degrade APOBEC3G and promote HIV-1 infection. Nature, 481(7381), 371–375.

    Google Scholar 

  • Jarmuz, A., et al. (2002). An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Genomics, 79(3), 285–296.

    Article  CAS  PubMed  Google Scholar 

  • Kamura, T. (2004). VHL-box and SOCS-box domains determine binding specificity for Cul2-Rbx1 and Cul5-Rbx2 modules of ubiquitin ligases. Genes & Development, 18(24), 3055–3065.

    Article  CAS  Google Scholar 

  • Kamura, T., et al. (1998). The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes & Development, 12(24), 3872–3881.

    Article  CAS  Google Scholar 

  • Kane, J. R., et al. (2015). Lineage-specific viral hijacking of non-canonical E3 ubiquitin ligase cofactors in the evolution of Vif anti-APOBEC3 activity. Cell Reports, 11, 1236–1250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, D. Y., et al. (2013). CBFβ stabilizes HIV Vif to counteract APOBEC3 at the expense of RUNX1 target gene expression. Mol Cell, 49(4), 632–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, Y. K., et al. (2013). Structural basis of intersubunit recognition in elongin BC-cullin 5-SOCS box ubiquitin-protein ligase complexes. Acta Crystallographica, Section D: Biological Crystallography, 69(Pt 8), 1587–1597.

    Article  CAS  Google Scholar 

  • Kitamura, S., et al. (2012). The APOBEC3C crystal structure and the interface for HIV-1 Vif binding. Nature Structural & Molecular Biology, 19(10), 1005–1010.

    Article  CAS  Google Scholar 

  • Klase, Z., et al. (2014). Activation of HIV-1 from latent infection via synergy of RUNX1 inhibitor Ro5-3335 and SAHA J. Luban, ed. PLoS Pathogens, 10(3), e1003997.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koning, F. A., et al. (2009). Defining APOBEC3 expression patterns in human tissues and hematopoietic cell subsets. Journal of Virology, 83(18), 9474–9485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouno, T., et al. (2015). Structure of the Vif-binding domain of the antiviral enzyme APOBEC3G. Nature Structural & Molecular Biology, 22(6), 485–491.

    Article  CAS  Google Scholar 

  • Laguette, N., et al. (2011). SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature, 474, 654–657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lecossier, D., et al. (2003). Hypermutation of HIV-1 DNA in the absence of the Vif protein. Science, 300(5622), 1112.

    Article  CAS  PubMed  Google Scholar 

  • Letko, M., et al. (2015). Identification of the HIV-1 Vif and human APOBEC3G protein interface. Cell Reports, 13(9), 1789–1799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, X. Y., et al. (2007). APOBEC3G inhibits DNA strand transfer during HIV-1 reverse transcription. The Journal of Biological Chemistry, 282(44), 32065–32074.

    Article  CAS  PubMed  Google Scholar 

  • Li, M. M. H., Wu, L. I., & Emerman, M. (2009). The range of human APOBEC3H sensitivity to lentiviral Vif proteins. Journal of Virology, 84(1), 88–95.

    Article  PubMed Central  CAS  Google Scholar 

  • Luo, K., et al. (2007). Cytidine deaminases APOBEC3G and APOBEC3F interact with human immunodeficiency virus type 1 integrase and inhibit proviral DNA formation. Journal of Virology, 81(13), 7238–7248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malim, M. H., & Emerman, M. (2008). HIV-1 accessory proteins—Ensuring viral survival in a hostile environment. Cell Host and Microbe, 3(6), 388–398.

    Article  CAS  PubMed  Google Scholar 

  • Mangeat, B., et al. (2003). Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature, 424(6944), 99–103.

    Article  CAS  PubMed  Google Scholar 

  • Mangeat, B., et al. (2004). A single amino acid determinant governs the species-specific sensitivity of APOBEC3G to Vif action. The Journal of Biological Chemistry, 279(15), 14481–14483.

    Article  CAS  PubMed  Google Scholar 

  • Mariani, R., et al. (2003). Species-specific exclusion of APOBEC3G from HIV-1 Virions by Vif. Cell, 114(1), 21–31.

    Article  CAS  PubMed  Google Scholar 

  • Marin, M., et al. (2003). HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation. Nature Medicine, 9(11), 1398–1403.

    Article  CAS  PubMed  Google Scholar 

  • Mbisa, J. L., et al. (2007). Human immunodeficiency virus type 1 cDNAs produced in the presence of APOBEC3G exhibit defects in plus-strand DNA transfer and integration. Journal of Virology, 81(13), 7099–7110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehle, A. (2004). Phosphorylation of a novel SOCS-box regulates assembly of the HIV-1 Vif-Cul5 complex that promotes APOBEC3G degradation. Genes & Development, 18(23), 2861–2866.

    Article  CAS  Google Scholar 

  • Miyagi, E., et al. (2014). CBFβ enhances de novo protein biosynthesis of its binding partners HIV-1 Vif and RUNX1 and potentiates the Vif-induced degradation of APOBEC3G. Journal of Virology, 88(9), 4839–4852.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mulder, L. C., et al. (2010). Moderate influence of human APOBEC3F on HIV-1 replication in primary lymphocytes. Journal of Virology, 84(18), 9613–9617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muro-Cacho, C. A., Pantaleo, G., & Fauci, A. S. (1995). Analysis of apoptosis in lymph nodes of HIV-infected persons. Intensity of apoptosis correlates with the general state of activation of the lymphoid tissue and not with stage of disease or viral burden. Journal of Immunology (Baltimore, Md.: 1950), 154(10), 5555–5566.

    CAS  Google Scholar 

  • Nabel, G., & Baltimore, D. (1990). An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 344(6262):178

    Google Scholar 

  • Nakashima, M., et al. (2016). Structural insights into HIV-1 Vif-APOBEC3F interaction. Journal of Virology, 90(2), 1034–1047.

    Article  CAS  Google Scholar 

  • Newman, E. N., et al. (2005). Antiviral function of APOBEC3G can be dissociated from cytidine deaminase activity. Current Biology: CB, 15(2), 166–170.

    Article  CAS  PubMed  Google Scholar 

  • Ogawa, E., et al. (1993). Molecular cloning and characterization of PEBP2 beta, the heterodimeric partner of a novel Drosophila runt-related DNA binding protein PEBP2 alpha. Virology, 194(1), 314–331.

    Article  CAS  PubMed  Google Scholar 

  • Ooms, M., Brayton, B., et al. (2013a). HIV-1 Vif adaptation to human APOBEC3H haplotypes. Cell Host and Microbe, 14(4), 411–421.

    Article  CAS  PubMed  Google Scholar 

  • Ooms, M., Letko, M., et al. (2013b). The resistance of human APOBEC3H to HIV-1 NL4-3 molecular clone is determined by a single amino acid in Vif L. Menéndez-Arias, ed. PloS One, 8(2), e57744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pery, E., et al. (2009). Regulation of APOBEC3 proteins by a novel YXXL motif in human immunodeficiency virus type 1 Vif and simian immunodeficiency virus SIVagm Vif. Journal of Virology, 83(5), 2374–2381.

    Article  CAS  PubMed  Google Scholar 

  • Richards, C., et al. (2015). The binding interface between human APOBEC3F and HIV-1 Vif elucidated by genetic and computational approaches. Cell Reports, 13, 1781–1788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell, R. A., & Pathak, V. K. (2007). Identification of two distinct human immunodeficiency virus type 1 Vif determinants critical for interactions with human APOBEC3G and APOBEC3F. Journal of Virology, 81(15), 8201–8210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell, R. A., Smith, J., Barr, R., Bhattacharyya, D., & Pathak, V. K. (2009). Distinct domains within APOBEC3G and APOBEC3F interact with separate regions of human immunodeficiency virus type 1 Vif. Journal of Virology, 83(4), 1992–2003.

    Article  CAS  PubMed  Google Scholar 

  • Sakai, H., et al. (1993). Cell-dependent requirement of human immunodeficiency virus type 1 Vif protein for maturation of virus particles. Journal of Virology, 67(3), 1663–1666.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schröfelbauer, B., Chen, D., & Landau, N. R. (2004). A single amino acid of APOBEC3G controls its species-specific interaction with virion infectivity factor (Vif). Proceedings of the National Academy of Sciences of the United States of America, 101(11), 3927–3932.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sheehy, A. M., et al. (2002). Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature, 418(6898), 646–650.

    Article  CAS  PubMed  Google Scholar 

  • Sheehy, A. M., Gaddis, N. C., & Malim, M. H. (2003). The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nature Medicine, 9(11), 1404–1407.

    Article  CAS  PubMed  Google Scholar 

  • Simon, J. H., et al. (1998). Evidence for a newly discovered cellular anti-HIV-1 phenotype. Nature Medicine, 4(12), 1397–1400.

    Article  CAS  PubMed  Google Scholar 

  • Siu, K. K., Sultana, A., Azimi, F. C., & Lee, J. E. (n.d.). Structural determinants of HIV-1 Vif susceptibility and DNA binding in APOBEC3F. Nature Communications, 4, 1–10.

    Google Scholar 

  • Smith, J. L., & Pathak, V. K. (2010). Identification of specific determinants of human APOBEC3F, APOBEC3C, and APOBEC3DE and African green monkey APOBEC3F that interact with HIV-1 Vif. Journal of Virology, 84(24), 12599–12608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sova, P., & Volsky, D. J. (1993). Efficiency of viral DNA synthesis during infection of permissive and nonpermissive cells with vif-negative human immunodeficiency virus type 1. Journal of Virology, 67(10), 6322–6326.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stanley, B. J., et al. (2008). Structural insight into the human immunodeficiency virus Vif SOCS box and its role in human E3 ubiquitin ligase assembly. Journal of Virology, 82(17), 8656–8663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanley, D. J., et al. (2012). Inhibition of a NEDD8 cascade restores restriction of HIV by APOBEC3G B. R. Cullen, ed. PLoS Pathogens, 8(12), e1003085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stopak, K., et al. (2003). HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability. Mol Cell, 12(3), 591–601.

    Article  CAS  PubMed  Google Scholar 

  • Szabo, S. J., et al. (2000). A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell, 100(6), 655–669.

    Article  CAS  PubMed  Google Scholar 

  • Tahirov, T. H., et al. (2001). Structural analyses of DNA recognition by the AML1/Runx-1 Runt domain and its allosteric control by CBFbeta. Cell, 104(5), 755–767.

    Article  CAS  PubMed  Google Scholar 

  • Tang, Y. Y., et al. (2000). Biophysical characterization of interactions between the core binding factor alpha and beta subunits and DNA. FEBS Letters, 470(2), 167–172.

    Article  CAS  PubMed  Google Scholar 

  • von Schwedler, U., et al. (1993). Vif is crucial for human immunodeficiency virus type 1 proviral DNA synthesis in infected cells. Journal of Virology, 67(8), 4945–4955.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Voon, D. C.-C., Hor, Y. T., & Ito, Y. (2015). The RUNX complex: Reaching beyond haematopoiesis into immunity. Immunology, 146(4), 523–536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, S. W., & Speck, N. A. (1992). Purification of core-binding factor, a protein that binds the conserved core site in murine leukemia virus enhancers. Molecular and Cellular Biology, 12(1), 89–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, S., et al. (1993). Cloning and characterization of subunits of the T-cell receptor and murine leukemia virus enhancer core-binding factor. Molecular and Cellular Biology, 13(6), 3324–3339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Q., et al. (1996). The CBFbeta subunit is essential for CBFalpha2 (AML1) function in vivo. Cell, 87(4), 697–708.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., et al. (2012). The cellular antiviral protein APOBEC3G interacts with HIV-1 reverse transcriptase and inhibits its function during viral replication. Journal of Virology, 86(7), 3777–3786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warren, A. J., et al. (2000). Structural basis for the heterodimeric interaction between the acute leukaemia-associated transcription factors AML1 and CBFbeta. The EMBO Journal, 19(12), 3004–3015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wichroski, M. J. (2004). Analysis of HIV-1 viral infectivity factor-mediated proteasome-dependent depletion of APOBEC3G: Correlating function and subcellular localization. Journal of Biological Chemistry, 280(9), 8387–8396.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita, T., et al. (2008). Identification of amino acid residues in HIV-1 Vif critical for binding and exclusion of APOBEC3G/F. Microbes and Infection, 10(10–11), 1142–1149.

    Article  CAS  PubMed  Google Scholar 

  • Yan, J., et al. (2004). CBFbeta allosterically regulates the Runx1 Runt domain via a dynamic conformational equilibrium. Nature Structural & Molecular Biology, 11(9), 901–906.

    Article  CAS  Google Scholar 

  • Yu, X., et al. (2003). Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science, 302(5647), 1056–1060.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H., et al. (2003). The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature, 424(6944), 94–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, W., et al. (2008). Distinct determinants in HIV-1 Vif and human APOBEC3 proteins are required for the suppression of diverse host anti-viral proteins. PloS One, 3(12), e3963.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, W., et al. (2012). T-cell differentiation factor CBF-β regulates HIV-1 Vif-mediated evasion of host restriction. Nature, 481(7381), 376–379.

    CAS  Google Scholar 

  • Zhang, W., et al. (2014). Cellular requirements for BIV Vif-Mediated Inactivation of Bovine APOBEC3 Proteins. Journal of Virology. 88(21):12528–12540

    Google Scholar 

  • Zhen, A., et al. (2010). A single amino acid difference in human APOBEC3H variants determines HIV-1 Vif sensitivity. Journal of Virology, 84(4), 1902–1911.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, Y.-H., et al. (2004). Human APOBEC3F is another host factor that blocks human immunodeficiency virus type 1 replication. Journal of Virology, 78(11), 6073–6076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Drs. Jennifer Binning, Serena Sanulli and Judd Hultquist for useful feedback on the manuscript. JDG acknowledges grant support from the National Institutes of Health (P50 GM082250). DYK was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2014R1A4A1071040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Gross .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kim, D.Y., Gross, J.D. (2017). CBFß and HIV Infection. In: Groner, Y., Ito, Y., Liu, P., Neil, J., Speck, N., van Wijnen, A. (eds) RUNX Proteins in Development and Cancer. Advances in Experimental Medicine and Biology, vol 962. Springer, Singapore. https://doi.org/10.1007/978-981-10-3233-2_25

Download citation

Publish with us

Policies and ethics