Skip to main content

Runx3 and Cell Fate Decisions in Pancreas Cancer

  • Chapter
  • First Online:
RUNX Proteins in Development and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 962))

Abstract

The RUNX family transcription factors are critical regulators of development and frequently dysregulated in cancer. RUNX3, the least well characterized of the three family members, has been variously described as a tumor promoter or suppressor, sometimes with conflicting results and opinions in the same cancer and likely reflecting a complex role in oncogenesis. We recently identified RUNX3 expression as a crucial determinant of the predilection for pancreatic ductal adenocarcinoma (PDA) cells to proliferate locally or promulgate throughout the body. High RUNX3 expression induces the production and secretion of soluble factors that support metastatic niche construction and stimulates PDA cells to migrate and invade, while simultaneously suppressing proliferation through increased expression of cell cycle regulators such as CDKN1A/p21 WAF1/CIP1. RUNX3 expression and function are coordinated by numerous transcriptional and post-translational inputs, and interactions with diverse cofactors influence whether the resulting RUNX3 complexes enact tumor suppressive or tumor promoting programs. Understanding these exquisitely context-dependent tumor cell behaviors has the potential to inform clinical decision-making including the most appropriate timing and sequencing of local vs. systemic therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aceto, N., Bardia, A., Miyamoto, D. T., Donaldson, M. C., Wittner, B. S., Spencer, J. A., et al. (2014). Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell, 158(5), 1110–1122. doi:10.1016/j.cell.2014.07.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aguirre, A. J., Bardeesy, N., Sinha, M., Lopez, L., Tuveson, D. A., Horner, J., et al. (2003). Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes & Development, 17(24), 3112–3126. doi:10.1101/gad.1158703.

    Article  CAS  Google Scholar 

  • Allison, D. C., Piantadosi, S., Hruban, R. H., Dooley, W. C., Fishman, E. K., Yeo, C. J., et al. (1998). DNA content and other factors associated with ten-year survival after resection of pancreatic carcinoma. Journal of Surgical Oncology, 67(3), 151–159.

    Article  CAS  PubMed  Google Scholar 

  • Bae, S. C., Takahashi, E., Zhang, Y. W., Ogawa, E., Shigesada, K., Namba, Y., et al. (1995). Cloning, mapping and expression of PEBP2 alpha C, a third gene encoding the mammalian Runt domain. Gene, 159(2), 245–248.

    Article  CAS  PubMed  Google Scholar 

  • Bagchi, A., Papazoglu, C., Wu, Y., Capurso, D., Brodt, M., Francis, D., et al. (2007). CHD5 is a tumor suppressor at human 1p36. Cell, 128(3), 459–475. doi:10.1016/j.cell.2006.11.052.

    Article  CAS  PubMed  Google Scholar 

  • Bai, J., Yong, H. M., Chen, F. F., Song, W. B., Li, C., Liu, H., & Zheng, J. N. (2013). RUNX3 is a prognostic marker and potential therapeutic target in human breast cancer. Journal of Cancer Research and Clinical Oncology, 139(11), 1813–1823. doi:10.1007/s00432-013-1498-x.

    Article  CAS  PubMed  Google Scholar 

  • Baker, S. J., Preisinger, A. C., Jessup, J. M., Paraskeva, C., Markowitz, S., Willson, J. K., et al. (1990). p53 gene mutations occur in combination with 17p allelic deletions as late events in colorectal tumorigenesis. Cancer Research, 50(23), 7717–7722.

    CAS  PubMed  Google Scholar 

  • Bangsow, C., Rubins, N., Glusman, G., Bernstein, Y., Negreanu, V., Goldenberg, D., et al. (2001). The RUNX3 gene--sequence, structure and regulated expression. Gene, 279(2), 221–232.

    Article  CAS  PubMed  Google Scholar 

  • Barghout, S. H., Zepeda, N., Vincent, K., Azad, A. K., Xu, Z., Yang, C., et al. (2015). RUNX3 contributes to carboplatin resistance in epithelial ovarian cancer cells. Gynecologic Oncology, 138(3), 647–655. doi:10.1016/j.ygyno.2015.07.009.

    Article  CAS  PubMed  Google Scholar 

  • Barton, C. M., Staddon, S. L., Hughes, C. M., Hall, P. A., O’Sullivan, C., Kloppel, G., et al. (1991). Abnormalities of the p53 tumour suppressor gene in human pancreatic cancer. British Journal of Cancer, 64(6), 1076–1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer, O., Hantisteanu, S., Lotem, J., & Groner, Y. (2014). Carcinogen-induced skin tumor development requires leukocytic expression of the transcription factor Runx3. Cancer Prevention Research, 7(9), 913–926. doi:10.1158/1940-6207.CAPR-14-0098-T.

    Article  CAS  PubMed  Google Scholar 

  • Bauer, O., Sharir, A., Kimura, A., Hantisteanu, S., Takeda, S., & Groner, Y. (2015). Loss of osteoblast Runx3 produces severe congenital osteopenia. Molecular and Cellular Biology, 35(7), 1097–1109. doi:10.1128/MCB.01106-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergamaschi, D., Gasco, M., Hiller, L., Sullivan, A., Syed, N., Trigiante, G., et al. (2003). p53 polymorphism influences response in cancer chemotherapy via modulation of p73-dependent apoptosis. Cancer Cell, 3(4), 387–402.

    Article  CAS  PubMed  Google Scholar 

  • Bledsoe, K. L., McGee-Lawrence, M. E., Camilleri, E. T., Wang, X., Riester, S. M., van Wijnen, A. J., et al. (2014). RUNX3 facilitates growth of Ewing sarcoma cells. Journal of Cellular Physiology, 229(12), 2049–2056. doi:10.1002/jcp.24663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bossi, G., Marampon, F., Maor-Aloni, R., Zani, B., Rotter, V., Oren, M., et al. (2008). Conditional RNA interference in vivo to study mutant p53 oncogenic gain of function on tumor malignancy. Cell Cycle, 7(12), 1870–1879.

    Article  CAS  PubMed  Google Scholar 

  • Caldas, C., Hahn, S. A., da Costa, L. T., Redston, M. S., Schutte, M., Seymour, A. B., et al. (1994). Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nature Genetics, 8(1), 27–32. doi:10.1038/ng0994-27.

    Article  CAS  PubMed  Google Scholar 

  • Carvalho, R., Milne, A. N., Polak, M., Corver, W. E., Offerhaus, G. J., & Weterman, M. A. (2005). Exclusion of RUNX3 as a tumour-suppressor gene in early-onset gastric carcinomas. Oncogene, 24(56), 8252–8258. doi:10.1038/sj.onc.1208963.

    Article  CAS  PubMed  Google Scholar 

  • Chambers, A. F., Wilson, S. M., Kerkvliet, N., O’Malley, F. P., Harris, J. F., & Casson, A. G. (1996). Osteopontin expression in lung cancer. Lung Cancer, 15(3), 311–323.

    Article  CAS  PubMed  Google Scholar 

  • Chen, F., Bai, J., Li, W., Mei, P., Liu, H., Li, L., et al. (2013). RUNX3 suppresses migration, invasion and angiogenesis of human renal cell carcinoma. PloS One, 8(2), e56241. doi:10.1371/journal.pone.0056241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, F., Wang, M., Bai, J., Liu, Q., Xi, Y., Li, W., & Zheng, J. (2014). Role of RUNX3 in suppressing metastasis and angiogenesis of human prostate cancer. PloS One, 9(1), e86917. doi:10.1371/journal.pone.0086917.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng, C. K., Li, L., Cheng, S. H., Lau, K. M., Chan, N. P., Wong, R. S., et al. (2008). Transcriptional repression of the RUNX3/AML2 gene by the t(8;21) and inv(16) fusion proteins in acute myeloid leukemia. Blood, 112(8), 3391–3402. doi:10.1182/blood-2008-02-137083.

    Article  CAS  PubMed  Google Scholar 

  • Chi, X. Z., Yang, J. O., Lee, K. Y., Ito, K., Sakakura, C., Li, Q. L., et al. (2005). RUNX3 suppresses gastric epithelial cell growth by inducing p21(WAF1/Cip1) expression in cooperation with transforming growth factor {beta}-activated SMAD. Molecular and Cellular Biology, 25(18), 8097–8107. doi:10.1128/MCB.25.18.8097-8107.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chi, X. Z., Kim, J., Lee, Y. H., Lee, J. W., Lee, K. S., Wee, H., et al. (2009). Runt-related transcription factor RUNX3 is a target of MDM2-mediated ubiquitination. Cancer Research, 69(20), 8111–8119. doi:10.1158/0008-5472.CAN-09-1057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung, D. D., Honda, K., Cafuir, L., McDuffie, M., & Wotton, D. (2007). The Runx3 distal transcript encodes an additional transcriptional activation domain. The FEBS Journal, 274(13), 3429–3439. doi:10.1111/j.1742-4658.2007.05875.x.

    Article  CAS  PubMed  Google Scholar 

  • Colla, S., Morandi, F., Lazzaretti, M., Rizzato, R., Lunghi, P., Bonomini, S., et al. (2005). Human myeloma cells express the bone regulating gene Runx2/Cbfa1 and produce osteopontin that is involved in angiogenesis in multiple myeloma patients. Leukemia, 19(12), 2166–2176. doi:10.1038/sj.leu.2403976.

    Article  CAS  PubMed  Google Scholar 

  • Courtin, A., Richards, F. M., Bapiro, T. E., Bramhall, J. L., Neesse, A., Cook, N., et al. (2013). Anti-tumour efficacy of capecitabine in a genetically engineered mouse model of pancreatic cancer. PloS One, 8(6), e67330. doi:10.1371/journal.pone.0067330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crippa, S., Salvia, R., Warshaw, A. L., Dominguez, I., Bassi, C., Falconi, M., et al. (2008). Mucinous cystic neoplasm of the pancreas is not an aggressive entity: lessons from 163 resected patients. Annals of Surgery, 247(4), 571–579. doi:10.1097/SLA.0b013e31811f4449.

    Article  PubMed  PubMed Central  Google Scholar 

  • Damdinsuren, A., Matsushita, H., Ito, M., Tanaka, M., Jin, G., Tsukamoto, H., et al. (2015). FLT3-ITD drives Ara-C resistance in leukemic cells via the induction of RUNX3. Leukemia Research, 39(12), 1405–1413. doi:10.1016/j.leukres.2015.09.009.

    Article  CAS  PubMed  Google Scholar 

  • DeLeo, A. B., Jay, G., Appella, E., Dubois, G. C., Law, L. W., & Old, L. J. (1979). Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proceedings of the National Academy of Sciences of the United States of America, 76(5), 2420–2424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Der, C. J., Krontiris, T. G., & Cooper, G. M. (1982). Transforming genes of human bladder and lung carcinoma cell lines are homologous to the ras genes of Harvey and Kirsten sarcoma viruses. Proceedings of the National Academy of Sciences of the United States of America, 79(11), 3637–3640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ducy, P., Zhang, R., Geoffroy, V., Ridall, A. L., & Karsenty, G. (1997). Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell, 89(5), 747–754.

    Article  CAS  PubMed  Google Scholar 

  • Estecio, M. R., Maddipoti, S., Bueso-Ramos, C., DiNardo, C. D., Yang, H., Wei, Y., et al. (2015). RUNX3 promoter hypermethylation is frequent in leukaemia cell lines and associated with acute myeloid leukaemia inv(16) subtype. British Journal of Haematology, 169(3), 344–351. doi:10.1111/bjh.13299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fainaru, O., Woolf, E., Lotem, J., Yarmus, M., Brenner, O., Goldenberg, D., et al. (2004). Runx3 regulates mouse TGF-beta-mediated dendritic cell function and its absence results in airway inflammation. The EMBO Journal, 23(4), 969–979. doi:10.1038/sj.emboj.7600085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fidler, I. J. (2003). The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nature Reviews Cancer, 3(6), 453–458. doi:10.1038/nrc1098.

    Article  CAS  PubMed  Google Scholar 

  • Finlay, C. A., Hinds, P. W., Tan, T. H., Eliyahu, D., Oren, M., & Levine, A. J. (1988). Activating mutations for transformation by p53 produce a gene product that forms an hsc70-p53 complex with an altered half-life. Molecular and Cellular Biology, 8(2), 531–539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer, K. R., Durrans, A., Lee, S., Sheng, J., Li, F., Wong, S. T., et al. (2015). Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature, 527(7579), 472–476. doi:10.1038/nature15748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fredika, M., Chu, K., Fernandez, S., Mu, Z., Zhang, X., Liu, H., et al. (2012). Genomic profiling of pre-clinical models of inflammatory breast cancer identifies a signature of epithelial plasticity and suppression of TGFß signaling. Journal of Clinical and Experimental Pathology, 2(5), 1000119.

    Google Scholar 

  • Fredriksson, S., Horecka, J., Brustugun, O. T., Schlingemann, J., Koong, A. C., Tibshirani, R., & Davis, R. W. (2008). Multiplexed proximity ligation assays to profile putative plasma biomarkers relevant to pancreatic and ovarian cancer. Clinical Chemistry, 54(3), 582–589. doi:10.1373/clinchem.2007.093195.

    Article  CAS  PubMed  Google Scholar 

  • Freed-Pastor, W. A., & Prives, C. (2012). Mutant p53: one name, many proteins. Genes & Development, 26(12), 1268–1286. doi:10.1101/gad.190678.112.

    Article  CAS  Google Scholar 

  • Furger, K. A., Allan, A. L., Wilson, S. M., Hota, C., Vantyghem, S. A., Postenka, C. O., et al. (2003). Beta(3) integrin expression increases breast carcinoma cell responsiveness to the malignancy-enhancing effects of osteopontin. Molecular Cancer Research: MCR, 1(11), 810–819.

    CAS  PubMed  Google Scholar 

  • Goel, A., Arnold, C. N., Tassone, P., Chang, D. K., Niedzwiecki, D., Dowell, J. M., et al. (2004). Epigenetic inactivation of RUNX3 in microsatellite unstable sporadic colon cancers. International Journal of Cancer Journal international du cancer, 112(5), 754–759. doi:10.1002/ijc.20472.

    Article  CAS  PubMed  Google Scholar 

  • Gohler, T., Jager, S., Warnecke, G., Yasuda, H., Kim, E., & Deppert, W. (2005). Mutant p53 proteins bind DNA in a DNA structure-selective mode. Nucleic Acids Research, 33(3), 1087–1100. doi:10.1093/nar/gki252.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guerra, C., & Barbacid, M. (2013). Genetically engineered mouse models of pancreatic adenocarcinoma. Molecular Oncology, 7(2), 232–247. doi:10.1016/j.molonc.2013.02.002.

    Article  CAS  PubMed  Google Scholar 

  • Guo, W. H., Weng, L. Q., Ito, K., Chen, L. F., Nakanishi, H., Tatematsu, M., & Ito, Y. (2002). Inhibition of growth of mouse gastric cancer cells by Runx3, a novel tumor suppressor. Oncogene, 21(54), 8351–8355. doi:10.1038/sj.onc.1206037.

    Article  CAS  PubMed  Google Scholar 

  • Hahn, S. A., Schutte, M., Hoque, A. T., Moskaluk, C. A., da Costa, L. T., Rozenblum, E., et al. (1996). DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science, 271(5247), 350–353.

    Article  CAS  PubMed  Google Scholar 

  • Haley, J. A., Haughney, E., Ullman, E., Bean, J., Haley, J. D., & Fink, M. Y. (2014). Altered Transcriptional Control Networks with Trans-Differentiation of Isogenic Mutant-KRas NSCLC Models. Frontiers in Oncology, 4, 344. doi:10.3389/fonc.2014.00344.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70.

    Article  CAS  PubMed  Google Scholar 

  • Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674. doi:10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  • Hanai, J., Chen, L. F., Kanno, T., Ohtani-Fujita, N., Kim, W. Y., Guo, W. H., et al. (1999). Interaction and functional cooperation of PEBP2/CBF with Smads. Synergistic induction of the immunoglobulin germline Calpha promoter. The Journal of Biological Chemistry, 274(44), 31577–31582.

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa, K., Yazumi, S., Wada, M., Sakurai, T., Kida, M., Yamauchi, J., et al. (2007). Restoration of RUNX3 enhances transforming growth factor-beta-dependent p21 expression in a biliary tract cancer cell line. Cancer Science, 98(6), 838–843. doi:10.1111/j.1349-7006.2007.00460.x.

    Article  CAS  PubMed  Google Scholar 

  • Higashiyama, M., Ito, T., Tanaka, E., & Shimada, Y. (2007). Prognostic significance of osteopontin expression in human gastric carcinoma. Annals of Surgical Oncology, 14(12), 3419–3427. doi:10.1245/s10434-007-9564-8.

    Article  PubMed  Google Scholar 

  • Hingorani, S. R., Petricoin, E. F., Maitra, A., Rajapakse, V., King, C., Jacobetz, M. A., et al. (2003). Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell, 4(6), 437–450.

    Article  CAS  PubMed  Google Scholar 

  • Hingorani, S. R., Wang, L., Multani, A. S., Combs, C., Deramaudt, T. B., Hruban, R. H., et al. (2005). Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell, 7(5), 469–483. doi:10.1016/j.ccr.2005.04.023.

    Article  CAS  PubMed  Google Scholar 

  • Hirama, M., Takahashi, F., Takahashi, K., Akutagawa, S., Shimizu, K., Soma, S., et al. (2003). Osteopontin overproduced by tumor cells acts as a potent angiogenic factor contributing to tumor growth. Cancer Letters, 198(1), 107–117.

    Article  CAS  PubMed  Google Scholar 

  • Hoek, K. S., Eichhoff, O. M., Schlegel, N. C., Dobbeling, U., Kobert, N., Schaerer, L., et al. (2008). In vivo switching of human melanoma cells between proliferative and invasive states. Cancer Research, 68(3), 650–656. doi:10.1158/0008-5472.CAN-07-2491.

    Article  CAS  PubMed  Google Scholar 

  • Horiguchi, S., Shiraha, H., Nagahara, T., Kataoka, J., Iwamuro, M., Matsubara, M., et al. (2013). Loss of runt-related transcription factor 3 induces gemcitabine resistance in pancreatic cancer. Molecular Oncology, 7(4), 840–849. doi:10.1016/j.molonc.2013.04.004.

    Article  CAS  PubMed  Google Scholar 

  • Hruban, R. H., van Mansfeld, A. D., Offerhaus, G. J., van Weering, D. H., Allison, D. C., Goodman, S. N., et al. (1993). K-ras oncogene activation in adenocarcinoma of the human pancreas. A study of 82 carcinomas using a combination of mutant-enriched polymerase chain reaction analysis and allele-specific oligonucleotide hybridization. The American Journal of Pathology, 143(2), 545–554.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hruban, R. H., Adsay, N. V., Albores-Saavedra, J., Anver, M. R., Biankin, A. V., Boivin, G. P., et al. (2006). Pathology of genetically engineered mouse models of pancreatic exocrine cancer: consensus report and recommendations. Cancer Research, 66(1), 95–106. doi:10.1158/0008-5472.CAN-05-2168.

    Article  CAS  PubMed  Google Scholar 

  • Huang, B., Qu, Z., Ong, C. W., Tsang, Y. H., Xiao, G., Shapiro, D., et al. (2012). RUNX3 acts as a tumor suppressor in breast cancer by targeting estrogen receptor alpha. Oncogene, 31(4), 527–534. doi:10.1038/onc.2011.252.

    Article  CAS  PubMed  Google Scholar 

  • Inman, C. K., & Shore, P. (2003). The osteoblast transcription factor Runx2 is expressed in mammary epithelial cells and mediates osteopontin expression. The Journal of Biological Chemistry, 278(49), 48684–48689. doi:10.1074/jbc.M308001200.

    Article  CAS  PubMed  Google Scholar 

  • Irwin, M. S., Kondo, K., Marin, M. C., Cheng, L. S., Hahn, W. C., & Kaelin Jr., W. G. (2003). Chemosensitivity linked to p73 function. Cancer Cell, 3(4), 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Ito, Y. (2012). RUNX3 is expressed in the epithelium of the gastrointestinal tract. EMBO Molecular Medicine, 4(7), 541–542 author reply 543-544. doi:10.1002/emmm.201100203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwatani, K., Fujimoto, T., & Ito, T. (2010). Cyclin D1 blocks the anti-proliferative function of RUNX3 by interfering with RUNX3-p300 interaction. Biochemical and Biophysical Research Communications, 400(3), 426–431. doi:10.1016/j.bbrc.2010.08.094.

    Article  CAS  PubMed  Google Scholar 

  • Izeradjene, K., Combs, C., Best, M., Gopinathan, A., Wagner, A., Grady, W. M., et al. (2007). Kras(G12D) and Smad4/Dpc4 haploinsufficiency cooperate to induce mucinous cystic neoplasms and invasive adenocarcinoma of the pancreas. Cancer Cell, 11(3), 229–243. doi:10.1016/j.ccr.2007.01.017.

    Article  CAS  PubMed  Google Scholar 

  • Jackson, E. L., Willis, N., Mercer, K., Bronson, R. T., Crowley, D., Montoya, R., et al. (2001). Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes & Development, 15(24), 3243–3248. doi:10.1101/gad.943001.

    Article  CAS  Google Scholar 

  • Jackson, E. L., Olive, K. P., Tuveson, D. A., Bronson, R., Crowley, D., Brown, M., & Jacks, T. (2005). The differential effects of mutant p53 alleles on advanced murine lung cancer. Cancer Research, 65(22), 10280–10288. doi:10.1158/0008-5472.CAN-05-2193.

    Article  CAS  PubMed  Google Scholar 

  • Jin, Y. H., Jeon, E. J., Li, Q. L., Lee, Y. H., Choi, J. K., Kim, W. J., et al. (2004). Transforming growth factor-beta stimulates p300-dependent RUNX3 acetylation, which inhibits ubiquitination-mediated degradation. The Journal of Biological Chemistry, 279(28), 29409–29417. doi:10.1074/jbc.M313120200.

    Article  CAS  PubMed  Google Scholar 

  • Jin, Z., Han, Y. X., & Han, X. R. (2013). Loss of RUNX3 expression may contribute to poor prognosis in patients with chondrosarcoma. Journal of Molecular Histology, 44(6), 645–652. doi:10.1007/s10735-013-9511-x.

    Article  CAS  PubMed  Google Scholar 

  • Ju, X., Ishikawa TO, Naka, K., Ito, K., Ito, Y., & Oshima, M. (2014). Context-dependent activation of Wnt signaling by tumor suppressor RUNX3 in gastric cancer cells. Cancer Science, 105(4), 418–424. doi:10.1111/cas.12356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katagiri, Y. U., Sleeman, J., Fujii, H., Herrlich, P., Hotta, H., Tanaka, K., et al. (1999). CD44 variants but not CD44s cooperate with beta1-containing integrins to permit cells to bind to osteopontin independently of arginine-glycine-aspartic acid, thereby stimulating cell motility and chemotaxis. Cancer Research, 59(1), 219–226.

    CAS  PubMed  Google Scholar 

  • Kim, W. Y., & Sharpless, N. E. (2006). The regulation of INK4/ARF in cancer and aging. Cell, 127(2), 265–275. doi:10.1016/j.cell.2006.10.003.

    Article  CAS  PubMed  Google Scholar 

  • Kim, W. J., Kim, E. J., Jeong, P., Quan, C., Kim, J., Li, Q. L., et al. (2005). RUNX3 inactivation by point mutations and aberrant DNA methylation in bladder tumors. Cancer Research, 65(20), 9347–9354. doi:10.1158/0008-5472.CAN-05-1647.

    Article  CAS  PubMed  Google Scholar 

  • Kim, E. K., Jeon, I., Seo, H., Park, Y. J., Song, B., Lee, K. A., et al. (2014). Tumor-derived osteopontin suppresses antitumor immunity by promoting extramedullary myelopoiesis. Cancer Research, 74(22), 6705–6716. doi:10.1158/0008-5472.CAN-14-1482.

    Article  CAS  PubMed  Google Scholar 

  • Kinzler, K. W., & Vogelstein, B. (1997). Cancer-susceptibility genes. Gatekeepers and caretakers. Nature, 386(6627), 761–763. doi:10.1038/386761a0.

    Article  CAS  PubMed  Google Scholar 

  • Kitago, M., Martinez, S. R., Nakamura, T., Sim, M. S., & Hoon, D. S. (2009). Regulation of RUNX3 tumor suppressor gene expression in cutaneous melanoma. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 15(9), 2988–2994. doi:10.1158/1078-0432.CCR-08-3172.

    Article  CAS  Google Scholar 

  • Knudson Jr., A. G. (1971). Mutation and cancer: statistical study of retinoblastoma. Proceedings of the National Academy of Sciences of the United States of America, 68(4), 820–823.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kolb, A., Kleeff, J., Guweidhi, A., Esposito, I., Giese, N. A., Adwan, H., et al. (2005). Osteopontin influences the invasiveness of pancreatic cancer cells and is increased in neoplastic and inflammatory conditions. Cancer Biology & Therapy, 4(7), 740–746.

    Article  CAS  Google Scholar 

  • Koopmann, J., Fedarko, N. S., Jain, A., Maitra, A., Iacobuzio-Donahue, C., Rahman, A., et al. (2004). Evaluation of osteopontin as biomarker for pancreatic adenocarcinoma. Cancer Epidemiology, Biomarkers and Prevention: A Publication of the American Association for Cancer Research, Cosponsored by the American Society of Preventive Oncology, 13(3), 487–491.

    CAS  Google Scholar 

  • Kurklu, B., Whitehead, R. H., Ong, E. K., Minamoto, T., Fox, J. G., Mann, J. R., et al. (2015). Lineage-specific RUNX3 hypomethylation marks the preneoplastic immune component of gastric cancer. Oncogene, 34(22), 2856–2866. doi:10.1038/onc.2014.233.

    Article  CAS  PubMed  Google Scholar 

  • Lacayo, N. J., Meshinchi, S., Kinnunen, P., Yu, R., Wang, Y., Stuber, C. M., et al. (2004). Gene expression profiles at diagnosis in de novo childhood AML patients identify FLT3 mutations with good clinical outcomes. Blood, 104(9), 2646–2654. doi:10.1182/blood-2003-12-4449.

    Article  CAS  PubMed  Google Scholar 

  • Lamouille, S., Xu, J., & Derynck, R. (2014). Molecular mechanisms of epithelial-mesenchymal transition. Nature Reviews Molecular Cell Biology, 15(3), 178–196. doi:10.1038/nrm3758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang, G. A., Iwakuma, T., Suh, Y. A., Liu, G., Rao, V. A., Parant, J. M., et al. (2004). Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell, 119(6), 861–872. doi:10.1016/j.cell.2004.11.006.

    Article  CAS  PubMed  Google Scholar 

  • Lau, Q. C., Raja, E., Salto-Tellez, M., Liu, Q., Ito, K., Inoue, M., et al. (2006). RUNX3 is frequently inactivated by dual mechanisms of protein mislocalization and promoter hypermethylation in breast cancer. Cancer Research, 66(13), 6512–6520. doi:10.1158/0008-5472.CAN-06-0369.

    Article  CAS  PubMed  Google Scholar 

  • LeBleu, V. S., O’Connell, J. T., Gonzalez Herrera, K. N., Wikman, H., Pantel, K., Haigis, M. C., et al. (2014). PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nature Cell Biology, 16(10), 992–1003 1001-1015. doi:10.1038/ncb3039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, K. S., Lee, Y. S., Lee, J. M., Ito, K., Cinghu, S., Kim, J. H., et al. (2010). Runx3 is required for the differentiation of lung epithelial cells and suppression of lung cancer. Oncogene, 29(23), 3349–3361. doi:10.1038/onc.2010.79.

    Article  CAS  PubMed  Google Scholar 

  • Lee, C. W., Chuang, L. S., Kimura, S., Lai, S. K., Ong, C. W., Yan, B., et al. (2011a). RUNX3 functions as an oncogene in ovarian cancer. Gynecologic Oncology, 122(2), 410–417. doi:10.1016/j.ygyno.2011.04.044.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J. H., Pyon, J. K., Kim, D. W., Lee, S. H., Nam, H. S., Kang, S. G., et al. (2011b). Expression of RUNX3 in skin cancers. Clinical and Experimental Dermatology, 36(7), 769–774. doi:10.1111/j.1365-2230.2011.04069.x.

    Article  CAS  PubMed  Google Scholar 

  • Lee, Y. S., Lee, J. W., Jang, J. W., Chi, X. Z., Kim, J. H., Li, Y. H., et al. (2013). Runx3 inactivation is a crucial early event in the development of lung adenocarcinoma. Cancer Cell, 24(5), 603–616. doi:10.1016/j.ccr.2013.10.003.

    Article  PubMed  CAS  Google Scholar 

  • Levanon, D., & Groner, Y. (2004). Structure and regulated expression of mammalian RUNX genes. Oncogene, 23(24), 4211–4219. doi:10.1038/sj.onc.1207670.

    Article  CAS  PubMed  Google Scholar 

  • Levanon, D., Brenner, O., Negreanu, V., Bettoun, D., Woolf, E., Eilam, R., et al. (2001). Spatial and temporal expression pattern of Runx3 (Aml2) and Runx1 (Aml1) indicates non-redundant functions during mouse embryogenesis. Mechanisms of Development, 109(2), 413–417.

    Article  CAS  PubMed  Google Scholar 

  • Levanon, D., Bettoun, D., Harris-Cerruti, C., Woolf, E., Negreanu, V., Eilam, R., et al. (2002). The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. The EMBO Journal, 21(13), 3454–3463. doi:10.1093/emboj/cdf370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levanon, D., Brenner, O., Otto, F., & Groner, Y. (2003). Runx3 knockouts and stomach cancer. EMBO Reports, 4(6), 560–564. doi:10.1038/sj.embor.embor868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levanon, D., Bernstein, Y., Negreanu, V., Bone, K. R., Pozner, A., Eilam, R., et al. (2011). Absence of Runx3 expression in normal gastrointestinal epithelium calls into question its tumour suppressor function. EMBO Molecular Medicine, 3(10), 593–604. doi:10.1002/emmm.201100168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Q. L., Ito, K., Sakakura, C., Fukamachi, H., Inoue, K., Chi, X. Z., et al. (2002). Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell, 109(1), 113–124.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Kleeff, J., Guweidhi, A., Esposito, I., Berberat, P. O., Giese, T., et al. (2004). RUNX3 expression in primary and metastatic pancreatic cancer. Journal of Clinical Pathology, 57(3), 294–299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, C., Lu, W., Zhang, W., Londono-Joshi, A. I., Buchsbaum, D. J., Bu, G., & Li, Y. (2013). The C-terminal region Mesd peptide mimics full-length Mesd and acts as an inhibitor of Wnt/beta-catenin signaling in cancer cells. PloS One, 8(2), e58102. doi:10.1371/journal.pone.0058102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linzer, D. I., & Levine, A. J. (1979). Characterization of a 54 K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell, 17(1), 43–52.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Z., Chen, L., Zhang, X., Xu, X., Xing, H., Zhang, Y., et al. (2014). RUNX3 regulates vimentin expression via miR-30a during epithelial-mesenchymal transition in gastric cancer cells. Journal of Cellular and Molecular Medicine, 18(4), 610–623. doi:10.1111/jcmm.12209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lotem, J., Levanon, D., Negreanu, V., Bauer, O., Hantisteanu, S., Dicken, J., & Groner, Y. (2015). Runx3 at the interface of immunity, inflammation and cancer. Biochimica et Biophysica Acta, 1855(2), 131–143. doi:10.1016/j.bbcan.2015.01.004.

    CAS  PubMed  Google Scholar 

  • Mazur, P. K., & Siveke, J. T. (2012). Genetically engineered mouse models of pancreatic cancer: unravelling tumour biology and progressing translational oncology. Gut, 61(10), 1488–1500. doi:10.1136/gutjnl-2011-300756.

    Article  PubMed  Google Scholar 

  • Michor, F., Iwasa, Y., & Nowak, M. A. (2004). Dynamics of cancer progression. Nature Reviews Cancer, 4(3), 197–205. doi:10.1038/nrc1295.

    Article  CAS  PubMed  Google Scholar 

  • Miething, C., Grundler, R., Mugler, C., Brero, S., Hoepfl, J., Geigl, J., et al. (2007). Retroviral insertional mutagenesis identifies RUNX genes involved in chronic myeloid leukemia disease persistence under imatinib treatment. Proceedings of the National Academy of Sciences of the United States of America, 104(11), 4594–4599. doi:10.1073/pnas.0604716104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Min, B., Kim, M. K., Zhang, J. W., Kim, J., Chung, K. C., Oh, B. C., et al. (2012). Identification of RUNX3 as a component of the MST/Hpo signaling pathway. Journal of Cellular Physiology, 227(2), 839–849. doi:10.1002/jcp.22887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mori, T., Nomoto, S., Koshikawa, K., Fujii, T., Sakai, M., Nishikawa, Y., et al. (2005). Decreased expression and frequent allelic inactivation of the RUNX3 gene at 1p36 in human hepatocellular carcinoma. Liver International: Official Journal of the International Association for the Study of the Liver, 25(2), 380–388. doi:10.1111/j.1478-3231.2005.1059.x.

    Article  CAS  Google Scholar 

  • Nakanishi, Y., Shiraha, H., Nishina, S., Tanaka, S., Matsubara, M., Horiguchi, S., et al. (2011). Loss of runt-related transcription factor 3 expression leads hepatocellular carcinoma cells to escape apoptosis. BMC Cancer, 11, 3. doi:10.1186/1471-2407-11-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neesse, A., Frese, K. K., Bapiro, T. E., Nakagawa, T., Sternlicht, M. D., Seeley, T. W., et al. (2013). CTGF antagonism with mAb FG-3019 enhances chemotherapy response without increasing drug delivery in murine ductal pancreas cancer. Proceedings of the National Academy of Sciences of the United States of America, 110(30), 12325–12330. doi:10.1073/pnas.1300415110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nevadunsky, N. S., Barbieri, J. S., Kwong, J., Merritt, M. A., Welch, W. R., Berkowitz, R. S., & Mok, S. C. (2009). RUNX3 protein is overexpressed in human epithelial ovarian cancer. Gynecologic Oncology, 112(2), 325–330. doi:10.1016/j.ygyno.2008.09.006.

    Article  CAS  PubMed  Google Scholar 

  • Ng, L., Wan, T. M., Lam, C. S., Chow, A. K., Wong, S. K., Man, J. H., et al. (2015). Post-operative plasma osteopontin predicts distant metastasis in human colorectal cancer. PloS One, 10(5), e0126219. doi:10.1371/journal.pone.0126219.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ogasawara, N., Tsukamoto, T., Mizoshita, T., Inada, K. I., Ban, H., Kondo, S., et al. (2009). RUNX3 expression correlates with chief cell differentiation in human gastric cancers. Histology and Histopathology, 24(1), 31–40.

    CAS  PubMed  Google Scholar 

  • Okawa, E. R., Gotoh, T., Manne, J., Igarashi, J., Fujita, T., Silverman, K. A., et al. (2008). Expression and sequence analysis of candidates for the 1p36.31 tumor suppressor gene deleted in neuroblastomas. Oncogene, 27(6), 803–810. doi:10.1038/sj.onc.1210675.

    Article  CAS  PubMed  Google Scholar 

  • Olive, K. P., Tuveson, D. A., Ruhe, Z. C., Yin, B., Willis, N. A., Bronson, R. T., et al. (2004). Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell, 119(6), 847–860. doi:10.1016/j.cell.2004.11.004.

    Article  CAS  PubMed  Google Scholar 

  • Olive, K. P., Jacobetz, M. A., Davidson, C. J., Gopinathan, A., McIntyre, D., Honess, D., et al. (2009). Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science, 324(5933), 1457–1461. doi:10.1126/science.1171362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olivier, M., Langerod, A., Carrieri, P., Bergh, J., Klaar, S., Eyfjord, J., et al. (2006). The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 12(4), 1157–1167. doi:10.1158/1078-0432.CCR-05-1029.

    Article  CAS  Google Scholar 

  • Omar, M. F., Ito, K., Nga, M. E., Soo, R., Peh, B. K., Ismail, T. M., et al. (2012). RUNX3 downregulation in human lung adenocarcinoma is independent of p53, EGFR or KRAS status. Pathology Oncology Research: POR, 18(4), 783–792. doi:10.1007/s12253-011-9485-5.

    Article  CAS  PubMed  Google Scholar 

  • Paget, S. (1889). The distribution of secondary growths in cancer of the breast. Lancet, 1, 571–573.

    Article  Google Scholar 

  • Pan, H. W., Ou, Y. H., Peng, S. Y., Liu, S. H., Lai, P. L., Lee, P. H., et al. (2003). Overexpression of osteopontin is associated with intrahepatic metastasis, early recurrence, and poorer prognosis of surgically resected hepatocellular carcinoma. Cancer, 98(1), 119–127. doi:10.1002/cncr.11487.

    Article  CAS  PubMed  Google Scholar 

  • Peng, Y., Chen, L., Li, C., Lu, W., Agrawal, S., & Chen, J. (2001). Stabilization of the MDM2 oncoprotein by mutant p53. The Journal of Biological Chemistry, 276(9), 6874–6878. doi:10.1074/jbc.C000781200.

    Article  CAS  PubMed  Google Scholar 

  • Perez-Mancera, P. A., Guerra, C., Barbacid, M., & Tuveson, D. A. (2012). What we have learned about pancreatic cancer from mouse models. Gastroenterology, 142(5), 1079–1092. doi:10.1053/j.gastro.2012.03.002.

    Article  PubMed  Google Scholar 

  • Poruk, K. E., Firpo, M. A., Scaife, C. L., Adler, D. G., Emerson, L. L., Boucher, K. M., & Mulvihill, S. J. (2013). Serum osteopontin and tissue inhibitor of metalloproteinase 1 as diagnostic and prognostic biomarkers for pancreatic adenocarcinoma. Pancreas, 42(2), 193–197. doi:10.1097/MPA.0b013e31825e354d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pratap, J., Lian, J. B., Javed, A., Barnes, G. L., van Wijnen, A. J., Stein, J. L., & Stein, G. S. (2006). Regulatory roles of Runx2 in metastatic tumor and cancer cell interactions with bone. Cancer Metastasis Reviews, 25(4), 589–600. doi:10.1007/s10555-006-9032-0.

    Article  CAS  PubMed  Google Scholar 

  • Prosser, J., Thompson, A. M., Cranston, G., & Evans, H. J. (1990). Evidence that p53 behaves as a tumour suppressor gene in sporadic breast tumours. Oncogene, 5(10), 1573–1579.

    CAS  PubMed  Google Scholar 

  • Provenzano, P. P., Cuevas, C., Chang, A. E., Goel, V. K., Von Hoff, D. D., & Hingorani, S. R. (2012). Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell, 21(3), 418–429. doi:10.1016/j.ccr.2012.01.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pulciani, S., Santos, E., Lauver, A. V., Long, L. K., Robbins, K. C., & Barbacid, M. (1982). Oncogenes in human tumor cell lines: molecular cloning of a transforming gene from human bladder carcinoma cells. Proceedings of the National Academy of Sciences of the United States of America, 79(9), 2845–2849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rettenmaier, T. J., Sadowsky, J. D., Thomsen, N. D., Chen, S. C., Doak, A. K., Arkin, M. R., & Wells, J. A. (2014). A small-molecule mimic of a peptide docking motif inhibits the protein kinase PDK1. Proceedings of the National Academy of Sciences of the United States of America, 111(52), 18590–18595. doi:10.1073/pnas.1415365112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowe, G. C., Raghuram, S., Jang, C., Nagy, J. A., Patten, I. S., Goyal, A., et al. (2014). PGC-1alpha induces SPP1 to activate macrophages and orchestrate functional angiogenesis in skeletal muscle. Circulation Research, 115(5), 504–517. doi:10.1161/CIRCRESAHA.115.303829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rozenblum, E., Schutte, M., Goggins, M., Hahn, S. A., Panzer, S., Zahurak, M., et al. (1997). Tumor-suppressive pathways in pancreatic carcinoma. Cancer Research, 57(9), 1731–1734.

    CAS  PubMed  Google Scholar 

  • Rud, A. K., Boye, K., Oijordsbakken, M., Lund-Iversen, M., Halvorsen, A. R., Solberg, S. K., et al. (2013). Osteopontin is a prognostic biomarker in non-small cell lung cancer. BMC Cancer, 13, 540. doi:10.1186/1471-2407-13-540.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salto-Tellez, M., Peh, B. K., Ito, K., Tan, S. H., Chong, P. Y., Han, H. C., et al. (2006). RUNX3 protein is overexpressed in human basal cell carcinomas. Oncogene, 25(58), 7646–7649. doi:10.1038/sj.onc.1209739.

    Article  CAS  PubMed  Google Scholar 

  • Sangaletti, S., Tripodo, C., Sandri, S., Torselli, I., Vitali, C., Ratti, C., et al. (2014). Osteopontin shapes immunosuppression in the metastatic niche. Cancer Research, 74(17), 4706–4719. doi:10.1158/0008-5472.CAN-13-3334.

    Article  CAS  PubMed  Google Scholar 

  • Sato, K., Tomizawa, Y., Iijima, H., Saito, R., Ishizuka, T., Nakajima, T., & Mori, M. (2006). Epigenetic inactivation of the RUNX3 gene in lung cancer. Oncology Reports, 15(1), 129–135.

    CAS  PubMed  Google Scholar 

  • Sherman, M. H., Yu, R. T., Engle, D. D., Ding, N., Atkins, A. R., Tiriac, H., et al. (2014). Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell, 159(1), 80–93. doi:10.1016/j.cell.2014.08.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherr, C. J. (2004). Principles of tumor suppression. Cell, 116(2), 235–246.

    Article  CAS  PubMed  Google Scholar 

  • Shi, M. J., & Stavnezer, J. (1998). CBF alpha3 (AML2) is induced by TGF-beta1 to bind and activate the mouse germline Ig alpha promoter. Journal of Immunology, 161(12), 6751–6760.

    CAS  Google Scholar 

  • Soong, R., Shah, N., Peh, B. K., Chong, P. Y., Ng, S. S., Zeps, N., et al. (2009). The expression of RUNX3 in colorectal cancer is associated with disease stage and patient outcome. British Journal of Cancer, 100(5), 676–679. doi:10.1038/sj.bjc.6604899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stromnes, I. M., Brockenbrough, J. S., Izeradjene, K., Carlson, M. A., Cuevas, C., Simmons, R. M., et al. (2014). Targeted depletion of an MDSC subset unmasks pancreatic ductal adenocarcinoma to adaptive immunity. Gut, 63(11), 1769–1781. doi:10.1136/gutjnl-2013-306271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stromnes, I. M., Schmitt, T. M., Hulbert, A., Brockenbrough, J. S., Nguyen, H. N., Cuevas, C., et al. (2015). T Cells Engineered against a Native Antigen Can Surmount Immunologic and Physical Barriers to Treat Pancreatic Ductal Adenocarcinoma. Cancer Cell, 28(5), 638–652. doi:10.1016/j.ccell.2015.09.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramaniam, M. M., Chan, J. Y., Soong, R., Ito, K., Ito, Y., Yeoh, K. G., et al. (2009). RUNX3 inactivation by frequent promoter hypermethylation and protein mislocalization constitute an early event in breast cancer progression. Breast Cancer Research and Treatment, 113(1), 113–121. doi:10.1007/s10549-008-9917-4.

    Article  CAS  PubMed  Google Scholar 

  • Tabin, C. J., Bradley, S. M., Bargmann, C. I., Weinberg, R. A., Papageorge, A. G., Scolnick, E. M., et al. (1982). Mechanism of activation of a human oncogene. Nature, 300(5888), 143–149.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, T., Nau, M. M., Chiba, I., Birrer, M. J., Rosenberg, R. K., Vinocour, M., et al. (1989). p53: a frequent target for genetic abnormalities in lung cancer. Science, 246(4929), 491–494.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, S., Shiraha, H., Nakanishi, Y., Nishina, S., Matsubara, M., Horiguchi, S., et al. (2012). Runt-related transcription factor 3 reverses epithelial-mesenchymal transition in hepatocellular carcinoma. International journal of cancer Journal international du cancer, 131(11), 2537–2546. doi:10.1002/ijc.27575.

    Article  CAS  PubMed  Google Scholar 

  • Tsunematsu, T., Kudo, Y., Iizuka, S., Ogawa, I., Fujita, T., Kurihara, H., et al. (2009). RUNX3 has an oncogenic role in head and neck cancer. PloS One, 4(6), e5892. doi:10.1371/journal.pone.0005892.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tucker, R. W., Sanford, K. K., Handleman, S. L., & Jones, G. M. (1977). Colony morphology and growth in agarose as tests for spontaneous neoplastic transformation in vitro. Cancer Research, 37(5), 1571–1579.

    CAS  PubMed  Google Scholar 

  • Urquidi, V., Sloan, D., Kawai, K., Agarwal, D., Woodman, A. C., Tarin, D., & Goodison, S. (2002). Contrasting expression of thrombospondin-1 and osteopontin correlates with absence or presence of metastatic phenotype in an isogenic model of spontaneous human breast cancer metastasis. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 8(1), 61–74.

    CAS  Google Scholar 

  • van Es, J. M., Polak, M. M., van den Berg, F. M., Ramsoekh, T. B., Craanen, M. E., Hruban, R. H., & Offerhaus, G. J. (1995). Molecular markers for diagnostic cytology of neoplasms in the head region of the pancreas: mutation of K-ras and overexpression of the p53 protein product. Journal of Clinical Pathology, 48(3), 218–222.

    Article  PubMed  PubMed Central  Google Scholar 

  • Voon, D. C., Wang, H., Koo, J. K., Nguyen, T. A., Hor, Y. T., Chu, Y. S., et al. (2012). Runx3 protects gastric epithelial cells against epithelial-mesenchymal transition-induced cellular plasticity and tumorigenicity. Stem Cells, 30(10), 2088–2099. doi:10.1002/stem.1183.

    Article  CAS  PubMed  Google Scholar 

  • Wada, M., Yazumi, S., Takaishi, S., Hasegawa, K., Sawada, M., Tanaka, H., et al. (2004). Frequent loss of RUNX3 gene expression in human bile duct and pancreatic cancer cell lines. Oncogene, 23(13), 2401–2407. doi:10.1038/sj.onc.1207395.

    Article  CAS  PubMed  Google Scholar 

  • Wai, P. Y., & Kuo, P. C. (2008). Osteopontin: regulation in tumor metastasis. Cancer Metastasis Reviews, 27(1), 103–118. doi:10.1007/s10555-007-9104-9.

    Article  CAS  PubMed  Google Scholar 

  • Wei, D., Gong, W., Oh, S. C., Li, Q., Kim, W. D., Wang, L., et al. (2005). Loss of RUNX3 expression significantly affects the clinical outcome of gastric cancer patients and its restoration causes drastic suppression of tumor growth and metastasis. Cancer Research, 65(11), 4809–4816. doi:10.1158/0008-5472.CAN-04-3741.

    Article  CAS  PubMed  Google Scholar 

  • Whittle, M. C., & Hingorani, S. R. (2015). Disconnect between EMT and metastasis in pancreas cancer. Oncotarget, 6(31), 30445–30446. doi:10.18632/oncotarget.5720.

    PubMed  PubMed Central  Google Scholar 

  • Whittle, M. C., Izeradjene, K., Rani, P. G., Feng, L., Carlson, M. A., DelGiorno, K. E., et al. (2015). RUNX3 Controls a Metastatic Switch in Pancreatic Ductal Adenocarcinoma. Cell, 161(6), 1345–1360. doi:10.1016/j.cell.2015.04.048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilentz, R. E., Iacobuzio-Donahue, C. A., Argani, P., McCarthy, D. M., Parsons, J. L., Yeo, C. J., et al. (2000a). Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia: evidence that DPC4 inactivation occurs late in neoplastic progression. Cancer Research, 60(7), 2002–2006.

    CAS  PubMed  Google Scholar 

  • Wilentz, R. E., Su, G. H., Dai, J. L., Sparks, A. B., Argani, P., Sohn, T. A., et al. (2000b). Immunohistochemical labeling for dpc4 mirrors genetic status in pancreatic adenocarcinomas : a new marker of DPC4 inactivation. The American Journal of Pathology, 156(1), 37–43. doi:10.1016/S0002-9440(10)64703-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, M., Li, C., Zhu, G., Wang, Y., Jules, J., Lu, Y., et al. (2014). Deletion of core-binding factor beta (Cbfbeta) in mesenchymal progenitor cells provides new insights into Cbfbeta/Runxs complex function in cartilage and bone development. Bone, 65, 49–59. doi:10.1016/j.bone.2014.04.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue, L. N., Bai, F. H., Wang, X. Y., Lin, M., Tan, Y., Yao, X. Y., & Xu, K. Q. (2014). Expression of RUNX3 gene in pancreatic adenocarcinoma and its clinical significance. Genetics and Molecular Research: GMR, 13(2), 3940–3946. doi:10.4238/2014.May.23.4.

    Article  CAS  PubMed  Google Scholar 

  • Yagi, R., Chen, L. F., Shigesada, K., Murakami, Y., & Ito, Y. (1999). A WW domain-containing yes-associated protein (YAP) is a novel transcriptional co-activator. The EMBO Journal, 18(9), 2551–2562. doi:10.1093/emboj/18.9.2551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada, C., Ozaki, T., Ando, K., Suenaga, Y., Inoue, K., Ito, Y., et al. (2010). RUNX3 modulates DNA damage-mediated phosphorylation of tumor suppressor p53 at Ser-15 and acts as a co-activator for p53. The Journal of Biological Chemistry, 285(22), 16693–16703. doi:10.1074/jbc.M109.055525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamano, M., Fujii, H., Takagaki, T., Kadowaki, N., Watanabe, H., & Shirai, T. (2000). Genetic progression and divergence in pancreatic carcinoma. The American Journal of Pathology, 156(6), 2123–2133. doi:10.1016/S0002-9440(10)65083-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashiro, T., Aberg, T., Levanon, D., Groner, Y., & Thesleff, I. (2002). Expression of Runx1, −2 and −3 during tooth, palate and craniofacial bone development. Mechanisms of Development, 119(Suppl 1), S107–S110.

    Article  PubMed  Google Scholar 

  • Yang, Y., Ye, Z., Zou, Z., Xiao, G., Luo, G., & Yang, H. (2014). Clinicopathological significance of RUNX3 gene hypermethylation in hepatocellular carcinoma. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine, 35(10), 10333–10340. doi:10.1007/s13277-014-2329-7.

    Article  CAS  Google Scholar 

  • Yano, S., Miwa, S., Mii, S., Hiroshima, Y., Uehara, F., Yamamoto, M., et al. (2014). Invading cancer cells are predominantly in G0/G1 resulting in chemoresistance demonstrated by real-time FUCCI imaging. Cell Cycle, 13(6), 953–960. doi:10.4161/cc.27818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Z., Chen, G., Cheng, Y., Martinka, M., & Li, G. (2011). Prognostic significance of RUNX3 expression in human melanoma. Cancer, 117(12), 2719–2727. doi:10.1002/cncr.25838.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X., He, H., Zhang, X., Guo, W., & Wang, Y. (2015). RUNX3 Promoter Methylation Is Associated with Hepatocellular Carcinoma Risk: A Meta-Analysis. Cancer Investigation, 33(4), 121–125. doi:10.3109/07357907.2014.1003934.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, X., Carstens, J. L., Kim, J., Scheible, M., Kaye, J., Sugimoto, H., et al. (2015). Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature, 527(7579), 525–530. doi:10.1038/nature16064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil R. Hingorani M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Whittle, M.C., Hingorani, S.R. (2017). Runx3 and Cell Fate Decisions in Pancreas Cancer. In: Groner, Y., Ito, Y., Liu, P., Neil, J., Speck, N., van Wijnen, A. (eds) RUNX Proteins in Development and Cancer. Advances in Experimental Medicine and Biology, vol 962. Springer, Singapore. https://doi.org/10.1007/978-981-10-3233-2_21

Download citation

Publish with us

Policies and ethics