Skip to main content

ETV6-RUNX1 + Acute Lymphoblastic Leukaemia in Identical Twins

  • Chapter
  • First Online:
RUNX Proteins in Development and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 962))

Abstract

Acute leukaemia is the major subtype of paediatric cancer with a cumulative risk of 1 in 2000 for children up to the age of 15 years. Childhood acute lymphoblastic leukaemia (ALL) is a biologically and clinically diverse disease with distinctive subtypes; multiple chromosomal translocations exist within the subtypes and each carries its own prognostic relevance. The most common chromosome translocation observed is the t(12;21) that results in an in-frame fusion between the first five exons of ETV6 (TEL) and almost the entire coding region of RUNX1 (AML1).

The natural history of childhood ALL is almost entirely clinically silent and is well advanced at the point of diagnosis. It has, however, been possible to backtrack this process through molecular analysis of appropriate clinical samples: (i) leukaemic clones in monozygotic twins that are either concordant or discordant for ALL; (ii) archived neonatal blood spots or Guthrie cards from individuals who later developed leukaemia; and (iii) stored, viable cord blood cells.

Here, we outline our studies on the aetiology and pathology of childhood ALL that provide molecular evidence for a monoclonal, prenatal origin of ETV6-RUNX1+ leukaemia in monozygotic identical twins. We provide mechanistic support for the concept that altered patterns of infection during early childhood can deliver the necessary promotional drive for the progression of ETV6-RUNX1+ pre-leukaemic cells into a postnatal overt leukaemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alpar, D., Wren, D., Ermini, L., Mansur, M. B., van Delft, F. W., Bateman, C. M., et al. (2015). Clonal origins of ETV6-RUNX1(+) acute lymphoblastic leukemia: Studies in monozygotic twins. Leukemia, 29, 839–846.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, K., Lutz, C., van Delft, F. W., Bateman, C. M., Guo, Y., Colman, S. M., et al. (2011). Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature, 469, 356–361.

    Article  CAS  PubMed  Google Scholar 

  • Bateman, C. M., Colman, S. M., Chaplin, T., Young, B. D., Eden, T. O., Bhakta, M., et al. (2010). Acquisition of genome-wide copy number alterations in monozygotic twins with acute lymphoblastic leukemia. Blood, 115, 3553–3558.

    Article  CAS  PubMed  Google Scholar 

  • Bateman, C. M., Alpar, D., Ford, A. M., Colman, S. M., Wren, D., Morgan, M., et al. (2015). Evolutionary trajectories of hyperdiploid ALL in monozygotic twins. Leukemia, 29, 58–65.

    Article  CAS  PubMed  Google Scholar 

  • Broadfield, Z. J., Hain, R. D., Harrison, C. J., Reza Jalali, G., McKinley, M., Michalova, K., et al. (2004). Complex chromosomal abnormalities in utero, 5 years before leukaemia. British Journal of Haematology, 126, 307–312.

    Article  PubMed  Google Scholar 

  • Bungaro, S., Irving, J., Tussiwand, R., Mura, R., Minto, L., Molteni, C., et al. (2008). Genomic analysis of different clonal evolution in a twin pair with t(12;21) positive acute lymphoblastic leukemia sharing the same prenatal clone. Leukemia, 22, 208–211.

    Article  CAS  PubMed  Google Scholar 

  • Castor, A., Nilsson, L., Astrand-Grundstrom, I., Buitenhuis, M., Ramirez, C., Anderson, K., et al. (2005). Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia. Nature Medicine, 11, 630–637.

    Article  CAS  PubMed  Google Scholar 

  • Clarkson, B. D., & Boyse, E. A. (1971). Possible explanation of the high concoddance for acute leukaemia in monozygotic twins. Lancet, 1, 699–701.

    Article  CAS  PubMed  Google Scholar 

  • Dickinson, H. O. (2005). The causes of childhood leukaemia. BMJ, 330, 1279–1280.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dockerty, J. D., Draper, G., Vincent, T., Rowan, S. D., & Bunch, K. J. (2001). Case-control study of parental age, parity and socioeconomic level in relation to childhood cancers. International Journal of Epidemiology, 30, 1428–1437.

    Article  CAS  PubMed  Google Scholar 

  • Ford, A. M., Bennett, C. A., Price, C. M., Bruin, M. C., Van Wering, E. R., & Greaves, M. (1998). Fetal origins of the TEL-AML1 fusion gene in identical twins with leukemia. Proceedings of the National Academy of Sciences of the United States of America, 95, 4584–4588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ford, A. M., Fasching, K., Panzer-Grumayer, E. R., Koenig, M., Haas, O. A., & Greaves, M. F. (2001). Origins of “late” relapse in childhood acute lymphoblastic leukemia with TEL-AML1 fusion genes. Blood, 98, 558–564.

    Article  CAS  PubMed  Google Scholar 

  • Ford, A. M., Palmi, C., Bueno, C., Hong, D., Cardus, P., Knight, D., et al. (2009). The TEL-AML1 leukemia fusion gene dysregulates the TGF-beta pathway in early B lineage progenitor cells. The Journal of Clinical Investigation, 119, 826–836.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Golub, T. R., Barker, G. F., Bohlander, S. K., Hiebert, S. W., Ward, D. C., Bray-Ward, P., et al. (1995). Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 92, 4917–4921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greaves, M. F. (1988). Speculations on the cause of childhood acute lymphoblastic leukemia. Leukemia, 2, 120–125.

    CAS  PubMed  Google Scholar 

  • Greaves, M. (2006). Infection, immune responses and the aetiology of childhood leukaemia. Nature Reviews. Cancer, 6, 193–203.

    Article  CAS  PubMed  Google Scholar 

  • Greaves, M. F., Maia, A. T., Wiemels, J. L., & Ford, A. M. (2003). Leukemia in twins: Lessons in natural history. Blood, 102, 2321–2333.

    Article  CAS  PubMed  Google Scholar 

  • Hardy, R. R., & Hayakawa, K. (2001). B cell development pathways. Annual Review of Immunology, 19, 595–621.

    Article  CAS  PubMed  Google Scholar 

  • Hong, D., Gupta, R., Ancliff, P., Atzberger, A., Brown, J., Soneji, S., et al. (2008). Initiating and cancer-propagating cells in TEL-AML1-associated childhood leukemia. Science, 319, 336–339.

    Article  CAS  PubMed  Google Scholar 

  • Hotfilder, M., Rottgers, S., Rosemann, A., Jurgens, H., Harbott, J., & Vormoor, J. (2002). Immature CD34+CD19- progenitor/stem cells in TEL/AML1-positive acute lymphoblastic leukemia are genetically and functionally normal. Blood, 100, 640–646.

    Article  CAS  PubMed  Google Scholar 

  • Kempski, H. M., & Sturt, N. T. (2000). The TEL-AML1 fusion accompanied by loss of the untranslocated TEL allele in B-precursor acute lymphoblastic leukaemia of childhood. Leukemia & Lymphoma, 40, 39–47.

    Article  CAS  Google Scholar 

  • Kinlen, L. (1988). Evidence for an infective cause of childhood leukaemia: Comparison of a Scottish new town with nuclear reprocessing sites in Britain. Lancet, 2, 1323–1327.

    Article  CAS  PubMed  Google Scholar 

  • le Viseur, C., Hotfilder, M., Bomken, S., Wilson, K., Rottgers, S., Schrauder, A., et al. (2008). In childhood acute lymphoblastic leukemia, blasts at different stages of immunophenotypic maturation have stem cell properties. Cancer Cell, 14, 47–58.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, Z., Woo, C. J., Iglesias-Ussel, M. D., Ronai, D., & Scharff, M. D. (2004). The generation of antibody diversity through somatic hypermutation and class switch recombination. Genes & Development, 18, 1–11.

    Article  Google Scholar 

  • Ma, Y., Dobbins, S. E., Sherborne, A. L., Chubb, D., Galbiati, M., Cazzaniga, G., et al. (2013). Developmental timing of mutations revealed by whole-genome sequencing of twins with acute lymphoblastic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 110, 7429–7433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacKenzie, J., Perry, J., Ford, A. M., Jarrett, R. F., & Greaves, M. (1999). JC and BK virus sequences are not detectable in leukaemic samples from children with common acute lymphoblastic leukaemia. British Journal of Cancer, 81, 898–899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacKenzie, J., Gallagher, A., Clayton, R. A., Perry, J., Eden, O. B., Ford, A. M., et al. (2001). Screening for herpesvirus genomes in common acute lymphoblastic leukemia. Leukemia, 15, 415–421.

    Article  CAS  PubMed  Google Scholar 

  • Maia, A. T., Ford, A. M., Jalali, G. R., Harrison, C. J., Taylor, G. M., Eden, O. B., & Greaves, M. F. (2001). Molecular tracking of leukemogenesis in a triplet pregnancy. Blood, 98, 478–482.

    Article  CAS  PubMed  Google Scholar 

  • Maia, A. T., Koechling, J., Corbett, R., Metzler, M., Wiemels, J. L., & Greaves, M. (2004). Protracted postnatal natural histories in childhood leukemia. Genes, Chromosomes & Cancer, 39, 335–340.

    Article  CAS  Google Scholar 

  • McNally, R. J., & Eden, T. O. (2004). An infectious aetiology for childhood acute leukaemia: A review of the evidence. British Journal of Haematology, 127, 243–263.

    Article  PubMed  Google Scholar 

  • Mori, H., Colman, S. M., Xiao, Z., Ford, A. M., Healy, L. E., Donaldson, C., et al. (2002). Chromosome translocations and covert leukemic clones are generated during normal fetal development. Proceedings of the National Academy of Sciences of the United States of America, 99, 8242–8247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mullighan, C. G. (2012). Molecular genetics of B-precursor acute lymphoblastic leukemia. The Journal of Clinical Investigation, 122, 3407–3415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mullighan, C. G., Phillips, L. A., Su, X., Ma, J., Miller, C. B., Shurtleff, S. A., & Downing, J. R. (2008). Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science, 322, 1377–1380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oettinger, M. A., Schatz, D. G., Gorka, C., & Baltimore, D. (1990). RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science, 248, 1517–1523.

    Article  CAS  PubMed  Google Scholar 

  • Okuda, T., van Deursen, J., Hiebert, S. W., Grosveld, G., & Downing, J. R. (1996). AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell, 84, 321–330.

    Article  CAS  PubMed  Google Scholar 

  • Papaemmanuil, E., Rapado, I., Li, Y., Potter, N. E., Wedge, D. C., Tubio, J., et al. (2014). RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia. Nature Genetics, 46, 116–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel, N., Goff, L. K., Clark, T., Ford, A. M., Foot, N., Lillington, D., et al. (2003). Expression profile of wild-type ETV6 in childhood acute leukaemia. British Journal of Haematology, 122, 94–98.

    Article  CAS  PubMed  Google Scholar 

  • Raynaud, S., Cave, H., Baens, M., Bastard, C., Cacheux, V., Grosgeorge, J., et al. (1996). The 12;21 translocation involving TEL and deletion of the other TEL allele: Two frequently associated alterations found in childhood acute lymphoblastic leukemia. Blood, 87, 2891–2899.

    CAS  PubMed  Google Scholar 

  • Romana, S. P., Mauchauffe, M., Le Coniat, M., Chumakov, I., Le Paslier, D., Berger, R., & Bernard, O. A. (1995). The t(12;21) of acute lymphoblastic leukemia results in a tel-AML1 gene fusion. Blood, 85, 3662–3670.

    CAS  PubMed  Google Scholar 

  • Rowley, J. D., Le Beau, M. M., & Rabbitts, T. H. (2015). Chromosomal translocations and genome rearrangements in cancer. Cham: Springer.

    Book  Google Scholar 

  • Shurtleff, S. A., Buijs, A., Behm, F. G., Rubnitz, J. E., Raimondi, S. C., Hancock, M. L., et al. (1995). TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia, 9, 1985–1989.

    CAS  PubMed  Google Scholar 

  • Strong, S. J., & Corney, G. (1967). The placenta in twin pregnancy. Oxford: Pergamon Press.

    Google Scholar 

  • Swaminathan, S., Klemm, L., Park, E., Papaemmanuil, E., Ford, A., Kweon, S. M., et al. (2015). Mechanisms of clonal evolution in childhood acute lymphoblastic leukemia. Nature Immunology, 16, 766–774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teuffel, O., Betts, D. R., Dettling, M., Schaub, R., Schafer, B. W., & Niggli, F. K. (2004). Prenatal origin of separate evolution of leukemia in identical twins. Leukemia, 18, 1624–1629.

    Article  CAS  PubMed  Google Scholar 

  • Tsai, A. G., Lu, H., Raghavan, S. C., Muschen, M., Hsieh, C. L., & Lieber, M. R. (2008). Human chromosomal translocations at CpG sites and a theoretical basis for their lineage and stage specificity. Cell, 135, 1130–1142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Q., Stacy, T., Binder, M., Marin-Padilla, M., Sharpe, A. H., & Speck, N. A. (1996). Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proceedings of the National Academy of Sciences of the United States of America, 93, 3444–3449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiemels, J. L., Cazzaniga, G., Daniotti, M., Eden, O. B., Addison, G. M., Masera, G., et al. (1999a). Prenatal origin of acute lymphoblastic leukaemia in children. Lancet, 354, 1499–1503.

    Article  CAS  PubMed  Google Scholar 

  • Wiemels, J. L., Ford, A. M., Van Wering, E. R., Postma, A., & Greaves, M. (1999b). Protracted and variable latency of acute lymphoblastic leukemia after TEL-AML1 gene fusion in utero. Blood, 94, 1057–1062.

    CAS  PubMed  Google Scholar 

  • Wiemels, J. L., & Greaves, M. (1999). Structure and possible mechanisms of TEL-AML1 gene fusions in childhood acute lymphoblastic leukemia. Cancer Research, 59, 4075–4082.

    CAS  PubMed  Google Scholar 

  • Zhang, M., & Swanson, P. C. (2008). V(D)J recombinase binding and cleavage of cryptic recombination signal sequences identified from lymphoid malignancies. The Journal of Biological Chemistry, 283, 6717–6727.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony M. Ford Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Ford, A.M., Greaves, M. (2017). ETV6-RUNX1 + Acute Lymphoblastic Leukaemia in Identical Twins. In: Groner, Y., Ito, Y., Liu, P., Neil, J., Speck, N., van Wijnen, A. (eds) RUNX Proteins in Development and Cancer. Advances in Experimental Medicine and Biology, vol 962. Springer, Singapore. https://doi.org/10.1007/978-981-10-3233-2_14

Download citation

Publish with us

Policies and ethics