Skip to main content

Mechanism of ETV6-RUNX1 Leukemia

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 962))

Abstract

The t(12;21)(p13;q22) translocation is the most frequently occurring single genetic abnormality in pediatric leukemia. This translocation results in the fusion of the ETV6 and RUNX1 genes. Since its discovery in the 1990s, the function of the ETV6-RUNX1 fusion gene has attracted intense interest. In this chapter, we will summarize current knowledge on the clinical significance of ETV6-RUNX1, the experimental models used to unravel its function in leukemogenesis, the identification of co-operating mutations and the mechanisms responsible for their acquisition, the function of the encoded transcription factor and finally, the future therapeutic approaches available to mitigate the associated disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anderson, K., Lutz, C., van Delft, F. W., Bateman, C. M., Guo, Y., Colman, S. M., et al. (2011). Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature, 469, 356–361.

    Article  CAS  PubMed  Google Scholar 

  • Andreasson, P., Schwaller, J., Anastasiadou, E., Aster, J., & Gilliland, D. G. (2001). The expression of ETV6/CBFA2 (TEL/AML1) is not sufficient for the transformation of hematopoietic cell lines in vitro or the induction of hematologic disease in vivo. Cancer Genetics and Cytogenetics, 130, 93–104.

    Article  CAS  PubMed  Google Scholar 

  • Aronson, B. D., Fisher, A. L., Blechman, K., Caudy, M., & Gergen, J. P. (1997). Groucho-dependent and -independent repression activities of Runt domain proteins. Molecular and Cellular Biology, 17, 5581–5587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernardin, F., Yang, Y., Cleaves, R., Zahurak, M., Cheng, L., Civin, C. I., et al. (2002). TEL-AML1, expressed from t(12;21) in human acute lymphocytic leukemia, induces acute leukemia in mice. Cancer Research, 62, 3904–3908.

    CAS  PubMed  Google Scholar 

  • Bohlander, S. K. (2005). ETV6: A versatile player in leukemogenesis. Seminars in Cancer Biology, 15, 162–174.

    Article  CAS  PubMed  Google Scholar 

  • Bokemeyer, A., Eckert, C., Meyr, F., Koerner, G., von Stackelberg, A., Ullmann, R., et al. (2014). Copy number genome alterations are associated with treatment response and outcome in relapsed childhood ETV6/RUNX1-positive acute lymphoblastic leukemia. Haematologica, 99, 706–714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bories, J. C., Cayuela, J. M., Loiseau, P., & Sigaux, F. (1991). Expression of human recombination activating genes (RAG1 and RAG2) in neoplastic lymphoid cells: Correlation with cell differentiation and antigen receptor expression. Blood, 78, 2053–2061.

    CAS  PubMed  Google Scholar 

  • Brettingham-Moore, K. H., Taberlay, P. C., & Holloway, A. F. (2015). Interplay between transcription factors and the epigenome: Insight from the role of RUNX1 in leukemia. Frontiers in Immunology, 6, 499.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brown, P. (2011). TEL-AML1 in cord blood: 1 % or 0.01 %? Blood, 117, 2–4.

    Article  CAS  PubMed  Google Scholar 

  • Castor, A., Nilsson, L., Astrand-Grundstrom, I., Buitenhuis, M., Ramirez, C., Anderson, K., et al. (2005). Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia. Nature Medicine, 11, 630–637.

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarti, S. R., & Nucifora, G. (1999). The leukemia-associated gene TEL encodes a transcription repressor which associates with SMRT and mSin3A. Biochemical and Biophysical Research Communications, 264, 871–877.

    Article  CAS  PubMed  Google Scholar 

  • Dang, J., Wei, L., de Ridder, J., Su, X., Rust, A. G., Roberts, K. G., et al. (2015). PAX5 is a tumor suppressor in mouse mutagenesis models of acute lymphoblastic leukemia. Blood, 125, 3609–3617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Braekeleer, E., Douet-Guilbert, N., Morel, F., Le Bris, M. J., Ferec, C., & De Braekeleer, M. (2011). RUNX1 translocations and fusion genes in malignant hemopathies. Future Oncology, 7, 77–91.

    Article  CAS  PubMed  Google Scholar 

  • Di Noia, J. M., & Neuberger, M. S. (2007). Molecular mechanisms of antibody somatic hypermutation. Annual Review of Biochemistry, 76, 1–22.

    Article  CAS  PubMed  Google Scholar 

  • Diakos, C., Krapf, G., Gerner, C., Inthal, A., Lemberger, C., Ban, J., et al. (2007). RNAi-mediated silencing of TEL/AML1 reveals a heat-shock protein- and survivin-dependent mechanism for survival. Blood, 109, 2607–2610.

    Article  CAS  PubMed  Google Scholar 

  • Diakos, C., Zhong, S., Xiao, Y., Zhou, M., Vasconcelos, G. M., Krapf, G., et al. (2010). TEL-AML1 regulation of survivin and apoptosis via miRNA-494 and miRNA-320a. Blood, 116, 4885–4893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durst, K. L., & Hiebert, S. W. (2004). Role of RUNX family members in transcriptional repression and gene silencing. Oncogene, 23, 4220–4224.

    Article  CAS  PubMed  Google Scholar 

  • Fan, D., Zhou, X., Li, Z., Li, Z. Q., Duan, C., Liu, T., et al. (2015). Stem cell programs are retained in human leukemic lymphoblasts. Oncogene, 34, 2083–2093.

    Article  CAS  PubMed  Google Scholar 

  • Fears, S., Gavin, M., Zhang, D. E., Hetherington, C., Ben-David, Y., Rowley, J. D., et al. (1997). Functional characterization of ETV6 and ETV6/CBFA2 in the regulation of the MCSFR proximal promoter. Proceedings of the National Academy of Sciences of the United States of America, 94, 1949–1954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenrick, R., Amann, J. M., Lutterbach, B., Wang, L., Westendorf, J. J., Downing, J. R., et al. (1999). Both TEL and AML-1 contribute repression domains to the t(12;21) fusion protein. Molecular and Cellular Biology, 19, 6566–6574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenrick, R., Wang, L., Nip, J., Amann, J. M., Rooney, R. J., Walker-Daniels, J., et al. (2000). TEL, a putative tumor suppressor, modulates cell growth and cell morphology of ras-transformed cells while repressing the transcription of stromelysin-1. Molecular and Cellular Biology, 20, 5828–5839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fine, B. M., Stanulla, M., Schrappe, M., Ho, M., Viehmann, S., Harbott, J., et al. (2004). Gene expression patterns associated with recurrent chromosomal translocations in acute lymphoblastic leukemia. Blood, 103, 1043–1049.

    Article  CAS  PubMed  Google Scholar 

  • Fischer, M., Schwieger, M., Horn, S., Niebuhr, B., Ford, A., Roscher, S., et al. (2005). Defining the oncogenic function of the TEL/AML1 (ETV6/RUNX1) fusion protein in a mouse model. Oncogene, 24, 7579–7591.

    Article  CAS  PubMed  Google Scholar 

  • Ford, A. M., Bennett, C. A., Price, C. M., Bruin, M. C., Van Wering, E. R., & Greaves, M. (1998). Fetal origins of the TEL-AML1 fusion gene in identical twins with leukemia. Proceedings of the National Academy of Sciences of the United States of America, 95, 4584–4588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ford, A. M., Fasching, K., Panzer-Grumayer, E. R., Koenig, M., Haas, O. A., & Greaves, M. F. (2001). Origins of “late” relapse in childhood acute lymphoblastic leukemia with TEL-AML1 fusion genes. Blood, 98, 558–564.

    Article  CAS  PubMed  Google Scholar 

  • Ford, A. M., Palmi, C., Bueno, C., Hong, D., Cardus, P., Knight, D., et al. (2009). The TEL-AML1 leukemia fusion gene dysregulates the TGF-beta pathway in early B lineage progenitor cells. The Journal of Clinical Investigation, 119, 826–836.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Forestier, E., Heyman, M., Andersen, M. K., Autio, K., Blennow, E., Borgstrom, G., et al. (2008). Outcome of ETV6/RUNX1-positive childhood acute lymphoblastic leukaemia in the NOPHO-ALL-1992 protocol: frequent late relapses but good overall survival. British Journal of Haematology, 140, 665–672.

    Article  PubMed  Google Scholar 

  • Fuka, G., Kauer, M., Kofler, R., Haas, O. A., & Panzer-Grumayer, R. (2011). The leukemia-specific fusion gene ETV6/RUNX1 perturbs distinct key biological functions primarily by gene repression. PloS One, 6, e26348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuka, G., Kantner, H. P., Grausenburger, R., Inthal, A., Bauer, E., Krapf, G., et al. (2012). Silencing of ETV6/RUNX1 abrogates PI3K/AKT/mTOR signaling and impairs reconstitution of leukemia in xenografts. Leukemia, 26, 927–933.

    Article  CAS  PubMed  Google Scholar 

  • Gandemer, V., Chevret, S., Petit, A., Vermylen, C., Leblanc, T., Michel, G., et al. (2012). Excellent prognosis of late relapses of ETV6/RUNX1-positive childhood acute lymphoblastic leukemia: lessons from the FRALLE 93 protocol. Haematologica, 97, 1743–1750.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gawad, C., Koh, W., & Quake, S. R. (2014). Dissecting the clonal origins of childhood acute lymphoblastic leukemia by single-cell genomics. Proceedings of the National Academy of Sciences of the United States of America, 111, 17947–17952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golub, T. R., Barker, G. F., Bohlander, S. K., Hiebert, S. W., Ward, D. C., Bray-Ward, P., et al. (1995). Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 92, 4917–4921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grausenburger, R., Bastelberger, S., Eckert, C., Kauer, M., Stanulla, M., Frech, C., et al. (2015). Genetic alterations in glucocorticoid signaling pathway components are associated with adverse prognosis in children with relapsed ETV6/RUNX1-positive acute lymphoblastic leukemia. Leukemia and Lymphoma, 1–11.

    Google Scholar 

  • Greaves, M. F. (1988). Speculations on the cause of childhood acute lymphoblastic leukemia. Leukemia, 2, 120–125.

    CAS  PubMed  Google Scholar 

  • Greaves, M. (1999). Molecular genetics, natural history and the demise of childhood leukaemia. European Journal of Cancer, 35, 173–185.

    Article  CAS  PubMed  Google Scholar 

  • Greaves, M. (2009). Darwin and evolutionary tales in leukemia. The Ham-Wasserman Lecture. Hematology American Society Hematology Education Program, 3–12.

    Google Scholar 

  • Greaves, M. F., & Wiemels, J. (2003). Origins of chromosome translocations in childhood leukaemia. Nature Reviews. Cancer, 3, 639–649.

    Article  CAS  PubMed  Google Scholar 

  • Growney, J. D., Shigematsu, H., Li, Z., Lee, B. H., Adelsperger, J., Rowan, R., et al. (2005). Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype. Blood, 106, 494–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guidez, F., Petrie, K., Ford, A. M., Lu, H., Bennett, C. A., MacGregor, A., et al. (2000). Recruitment of the nuclear receptor corepressor N-CoR by the TEL moiety of the childhood leukemia-associated TEL-AML1 oncoprotein. Blood, 96, 2557–2561.

    CAS  PubMed  Google Scholar 

  • Gunji, H., Waga, K., Nakamura, F., Maki, K., Sasaki, K., Nakamura, Y., et al. (2004). TEL/AML1 shows dominant-negative effects over TEL as well as AML1. Biochemical and Biophysical Research Communications, 322, 623–630.

    Article  CAS  PubMed  Google Scholar 

  • Haferlach, T., Kohlmann, A., Wieczorek, L., Basso, G., Kronnie, G. T., Bene, M. C., et al. (2010). Clinical utility of microarray-based gene expression profiling in the diagnosis and subclassification of leukemia: Report from the international microarray innovations in leukemia study group. Journal of Clinical Oncology, 28, 2529–2537.

    Article  CAS  PubMed  Google Scholar 

  • Hann, I., Vora, A., Harrison, G., Harrison, C., Eden, O., Hill, F., et al. (2001). Determinants of outcome after intensified therapy of childhood lymphoblastic leukaemia: Results from medical research council United Kingdom acute lymphoblastic leukaemia XI protocol. British Journal of Haematology, 113, 103–114.

    Article  CAS  PubMed  Google Scholar 

  • Harbott, J., Viehmann, S., Borkhardt, A., Henze, G., & Lampert, F. (1997). Incidence of TEL/AML1 fusion gene analyzed consecutively in children with acute lymphoblastic leukemia in relapse. Blood, 90, 4933–4937.

    CAS  PubMed  Google Scholar 

  • Hernandez-Munain, C., & Krangel, M. S. (1994). Regulation of the T-cell receptor delta enhancer by functional cooperation between c-Myb and core-binding factors. Molecular and Cellular Biology, 14, 473–483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiebert, S. W., Sun, W., Davis, J. N., Golub, T., Shurtleff, S., Buijs, A., et al. (1996). The t(12;21) translocation converts AML-1B from an activator to a repressor of transcription. Molecular and Cellular Biology, 16, 1349–1355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hock, H., Meade, E., Medeiros, S., Schindler, J. W., Valk, P. J., Fujiwara, Y., et al. (2004). Tel/Etv6 is an essential and selective regulator of adult hematopoietic stem cell survival. Genes & Development, 18, 2336–2341.

    Article  CAS  Google Scholar 

  • Hong, D., Gupta, R., Ancliff, P., Atzberger, A., Brown, J., Soneji, S., et al. (2008). Initiating and cancer-propagating cells in TEL-AML1-associated childhood leukemia. Science, 319, 336–339.

    Article  CAS  PubMed  Google Scholar 

  • Hotfilder, M., Rottgers, S., Rosemann, A., Jurgens, H., Harbott, J., & Vormoor, J. (2002). Immature CD34+CD19- progenitor/stem cells in TEL/AML1-positive acute lymphoblastic leukemia are genetically and functionally normal. Blood, 100, 640–646.

    Article  CAS  PubMed  Google Scholar 

  • Iacobucci, I., Storlazzi, C. T., Cilloni, D., Lonetti, A., Ottaviani, E., Soverini, S., et al. (2009). Identification and molecular characterization of recurrent genomic deletions on 7p12 in the IKZF1 gene in a large cohort of BCR-ABL1-positive acute lymphoblastic leukemia patients: On behalf of Gruppo Italiano Malattie Ematologiche dell’Adulto Acute Leukemia Working Party (GIMEMA AL WP). Blood, 114, 2159–2167.

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa, M., Asai, T., Saito, T., Seo, S., Yamazaki, I., Yamagata, T., et al. (2004). AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nature Medicine, 10, 299–304.

    Article  CAS  PubMed  Google Scholar 

  • Imai, Y., Kurokawa, M., Tanaka, K., Friedman, A. D., Ogawa, S., Mitani, K., et al. (1998). TLE, the human homolog of groucho, interacts with AML1 and acts as a repressor of AML1-induced transactivation. Biochemical and Biophysical Research Communications, 252, 582–589.

    Article  CAS  PubMed  Google Scholar 

  • Inthal, A., Krapf, G., Beck, D., Joas, R., Kauer, M. O., Orel, L., et al. (2008). Role of the erythropoietin receptor in ETV6/RUNX1-positive acute lymphoblastic leukemia. Clinical Cancer Research, 14, 7196–7204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irvin, B. J., Wood, L. D., Wang, L., Fenrick, R., Sansam, C. G., Packham, G., et al. (2003). TEL, a putative tumor suppressor, induces apoptosis and represses transcription of Bcl-XL. The Journal of Biological Chemistry, 278, 46378–46386.

    Article  CAS  PubMed  Google Scholar 

  • Javed, A., Guo, B., Hiebert, S., Choi, J. Y., Green, J., Zhao, S. C., et al. (2000). Groucho/TLE/R-esp proteins associate with the nuclear matrix and repress RUNX (CBF(alpha)/AML/PEBP2(alpha)) dependent activation of tissue-specific gene transcription. Journal of Cell Science, 113, 2221–2231.

    CAS  PubMed  Google Scholar 

  • Kaindl, U., Morak, M., Portsmouth, C., Mecklenbrauker, A., Kauer, M., Zeginigg, M., et al. (2014). Blocking ETV6/RUNX1-induced MDM2 overexpression by Nutlin-3 reactivates p53 signaling in childhood leukemia. Leukemia, 28, 600–608.

    Article  CAS  PubMed  Google Scholar 

  • Kim, D. H., Moldwin, R. L., Vignon, C., Bohlander, S. K., Suto, Y., Giordano, L., et al. (1996). TEL-AML1 translocations with TEL and CDKN2 inactivation in acute lymphoblastic leukemia cell lines. Blood, 88, 785–794.

    CAS  PubMed  Google Scholar 

  • Kitabayashi, I., Yokoyama, A., Shimizu, K., & Ohki, M. (1998). Interaction and functional cooperation of the leukemia-associated factors AML1 and p300 in myeloid cell differentiation. The EMBO Journal, 17, 2994–3004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konrad, M., Metzler, M., Panzer, S., Ostreicher, I., Peham, M., Repp, R., et al. (2003). Late relapses evolve from slow-responding subclones in t(12;21)-positive acute lymphoblastic leukemia: evidence for the persistence of a preleukemic clone. Blood, 101, 3635–3640.

    Article  CAS  PubMed  Google Scholar 

  • Krentz, S., Hof, J., Mendioroz, A., Vaggopoulou, R., Dorge, P., Lottaz, C., et al. (2013). Prognostic value of genetic alterations in children with first bone marrow relapse of childhood B-cell precursor acute lymphoblastic leukemia. Leukemia, 27, 295–304.

    Article  CAS  PubMed  Google Scholar 

  • Krishna Narla, R., Navara, C., Sarquis, M., & Uckun, F. M. (2001). Chemosensitivity of TEL-AML1 fusion transcript positive acute lymphoblastic leukemia cells. Leukemia & Lymphoma, 41, 615–623.

    Article  CAS  Google Scholar 

  • Kuiper, R. P., Schoenmakers, E. F., van Reijmersdal, S. V., Hehir-Kwa, J. Y., van Kessel, A. G., van Leeuwen, F. N., et al. (2007). High-resolution genomic profiling of childhood ALL reveals novel recurrent genetic lesions affecting pathways involved in lymphocyte differentiation and cell cycle progression. Leukemia, 21, 1258–1266.

    Article  CAS  PubMed  Google Scholar 

  • Kuster, L., Grausenburger, R., Fuka, G., Kaindl, U., Krapf, G., Inthal, A., et al. (2011). ETV6/RUNX1-positive relapses evolve from an ancestral clone and frequently acquire deletions of genes implicated in glucocorticoid signaling. Blood, 117, 2658–2667.

    Article  CAS  PubMed  Google Scholar 

  • Lausten-Thomsen, U., Madsen, H. O., Vestergaard, T. R., Hjalgrim, H., Nersting, J., & Schmiegelow, K. (2011). Prevalence of t(12;21)[ETV6-RUNX1]-positive cells in healthy neonates. Blood, 117, 186–189.

    Article  CAS  PubMed  Google Scholar 

  • Levanon, D., Goldstein, R. E., Bernstein, Y., Tang, H., Goldenberg, D., Stifani, S., et al. (1998). Transcriptional repression by AML1 and LEF-1 is mediated by the TLE/Groucho corepressors. Proceedings of the National Academy of Sciences of the United States of America, 95, 11590–11595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, M., Jones, L., Gaillard, C., Binnewies, M., Ochoa, R., Garcia, E., et al. (2013). Initially disadvantaged, TEL-AML1 cells expand and initiate leukemia in response to irradiation and cooperating mutations. Leukemia, 27, 1570–1573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lilljebjorn, H., Soneson, C., Andersson, A., Heldrup, J., Behrendtz, M., Kawamata, N., et al. (2010). The correlation pattern of acquired copy number changes in 164 ETV6/RUNX1-positive childhood acute lymphoblastic leukemias. Human Molecular Genetics, 19, 3150–3158.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Linka, Y., Ginzel, S., Kruger, M., Novosel, A., Gombert, M., Kremmer, E., et al. (2013). The impact of TEL-AML1 (ETV6-RUNX1) expression in precursor B cells and implications for leukaemia using three different genome-wide screening methods. Blood cancer Journal, 3, e151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loh, M. L., Goldwasser, M. A., Silverman, L. B., Poon, W. M., Vattikuti, S., Cardoso, A., et al. (2006). Prospective analysis of TEL/AML1-positive patients treated on Dana-Farber Cancer Institute Consortium protocol 95-01. Blood, 107, 4508–4513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez, R. G., Carron, C., Oury, C., Gardellin, P., Bernard, O., & Ghysdael, J. (1999). TEL is a sequence-specific transcriptional repressor. The Journal of Biological Chemistry, 274, 30132–30138.

    Article  CAS  PubMed  Google Scholar 

  • Lutterbach, B., Westendorf, J. J., Linggi, B., Isaac, S., Seto, E., & Hiebert, S. W. (2000). A mechanism of repression by acute myeloid leukemia-1, the target of multiple chromosomal translocations in acute leukemia. The Journal of Biological Chemistry, 275, 651–656.

    Article  CAS  PubMed  Google Scholar 

  • Maia, A. T., Ford, A. M., Jalali, G. R., Harrison, C. J., Taylor, G. M., Eden, O. B., et al. (2001). Molecular tracking of leukemogenesis in a triplet pregnancy. Blood, 98, 478–482.

    Article  CAS  PubMed  Google Scholar 

  • Mangolini, M., de Boer, J., Walf-Vorderwulbecke, V., Pieters, R., den Boer, M. L., & Williams, O. (2013). STAT3 mediates oncogenic addiction to TEL-AML1 in t(12;21) acute lymphoblastic leukemia. Blood, 122, 542–549.

    Article  CAS  PubMed  Google Scholar 

  • Marculescu, R., Le, T., Simon, P., Jaeger, U., & Nadel, B. (2002). V(D)J-mediated translocations in lymphoid neoplasms: A functional assessment of genomic instability by cryptic sites. The Journal of Experimental Medicine, 195, 85–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLean, T. W., Ringold, S., Neuberg, D., Stegmaier, K., Tantravahi, R., Ritz, J., et al. (1996). TEL/AML-1 dimerizes and is associated with a favorable outcome in childhood acute lymphoblastic leukemia. Blood, 88, 4252–4258.

    CAS  PubMed  Google Scholar 

  • Moorman, A. V., Enshaei, A., Schwab, C., Wade, R., Chilton, L., Elliott, A., et al. (2014). A novel integrated cytogenetic and genomic classification refines risk stratification in pediatric acute lymphoblastic leukemia. Blood, 124, 1434–1444.

    Article  CAS  PubMed  Google Scholar 

  • Mori, H., Colman, S. M., Xiao, Z., Ford, A. M., Healy, L. E., Donaldson, C., et al. (2002). Chromosome translocations and covert leukemic clones are generated during normal fetal development. Proceedings of the National Academy of Sciences of the United States of America, 99, 8242–8247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moriyama, T., Metzger, M. L., Wu, G., Nishii, R., Qian, M., Devidas, M., et al. (2015). Germline genetic variation in ETV6 and risk of childhood acute lymphoblastic leukaemia: A systematic genetic study. The Lancet Oncology, 16, 1659–1666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrow, M., Horton, S., Kioussis, D., Brady, H. J., & Williams, O. (2004). TEL-AML1 promotes development of specific hematopoietic lineages consistent with preleukemic activity. Blood, 103, 3890–3896.

    Article  CAS  PubMed  Google Scholar 

  • Morrow, M., Samanta, A., Kioussis, D., Brady, H. J., & Williams, O. (2007). TEL-AML1 preleukemic activity requires the DNA binding domain of AML1 and the dimerization and corepressor binding domains of TEL. Oncogene, 26, 4404–4414.

    Article  CAS  PubMed  Google Scholar 

  • Mullighan, C. G., Goorha, S., Radtke, I., Miller, C. B., Coustan-Smith, E., Dalton, J. D., et al. (2007). Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature, 446, 758–764.

    Article  CAS  PubMed  Google Scholar 

  • Mullighan, C. G., Miller, C. B., Radtke, I., Phillips, L. A., Dalton, J., Ma, J., et al. (2008a). BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature, 453, 110–114.

    Article  CAS  PubMed  Google Scholar 

  • Mullighan, C. G., Phillips, L. A., Su, X., Ma, J., Miller, C. B., Shurtleff, S. A., et al. (2008b). Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science, 322, 1377–1380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noetzli, L., Lo, R. W., Lee-Sherick, A. B., Callaghan, M., Noris, P., Savoia, A., et al. (2015). Germline mutations in ETV6 are associated with thrombocytopenia, red cell macrocytosis and predisposition to lymphoblastic leukemia. Nature Genetics, 47, 535–538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Numata, M., Saito, S., & Nagata, K. (2010). RAG-dependent recombination at cryptic RSSs within TEL-AML1 t(12;21)(p13;q22) chromosomal translocation region. Biochemical and Biophysical Research Communications, 402, 718–724.

    Article  CAS  PubMed  Google Scholar 

  • Okada, H., Watanabe, T., Niki, M., Takano, H., Chiba, N., Yanai, N., et al. (1998). AML1(−/−) embryos do not express certain hematopoiesis-related gene transcripts including those of the PU.1 gene. Oncogene, 17, 2287–2293.

    Article  CAS  PubMed  Google Scholar 

  • Okuda, T., van Deursen, J., Hiebert, S. W., Grosveld, G., & Downing, J. R. (1996). AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell, 84, 321–330.

    Article  CAS  PubMed  Google Scholar 

  • Okuda, T., Cai, Z., Yang, S., Lenny, N., Lyu, C. J., van Deursen, J. M., et al. (1998). Expression of a knocked-in AML1-ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and directly generates dysplastic hematopoietic progenitors. Blood, 91, 3134–3143.

    CAS  PubMed  Google Scholar 

  • Osato, M., Asou, N., Abdalla, E., Hoshino, K., Yamasaki, H., Okubo, T., et al. (1999). Biallelic and heterozygous point mutations in the runt domain of the AML1/PEBP2alphaB gene associated with myeloblastic leukemias. Blood, 93, 1817–1824.

    CAS  PubMed  Google Scholar 

  • Panzer-Grumayer, E. R., Cazzaniga, G., van der Velden, V. H., del Giudice, L., Peham, M., Mann, G., et al. (2005). Immunogenotype changes prevail in relapses of young children with TEL-AML1-positive acute lymphoblastic leukemia and derive mainly from clonal selection. Clinical Cancer Research, 11, 7720–7727.

    Article  PubMed  CAS  Google Scholar 

  • Papaemmanuil, E., Rapado, I., Li, Y., Potter, N. E., Wedge, D. C., Tubio, J., et al. (2014). RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia. Nature Genetics, 46, 116–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrovick, M. S., Hiebert, S. W., Friedman, A. D., Hetherington, C. J., Tenen, D. G., & Zhang, D. E. (1998). Multiple functional domains of AML1: PU.1 and C/EBPalpha synergize with different regions of AML1. Molecular and Cellular Biology, 18, 3915–3925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pine, S. R., Wiemels, J. L., Jayabose, S., & Sandoval, C. (2003). TEL-AML1 fusion precedes differentiation to pre-B cells in childhood acute lymphoblastic leukemia. Leukemia Research, 27, 155–164.

    Article  CAS  PubMed  Google Scholar 

  • Pui, C. H., Pei, D., Campana, D., Cheng, C., Sandlund, J. T., Bowman, W. P., et al. (2014). A revised definition for cure of childhood acute lymphoblastic leukemia. Leukemia, 28, 2336–2343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Putz, G., Rosner, A., Nuesslein, I., Schmitz, N., & Buchholz, F. (2006). AML1 deletion in adult mice causes splenomegaly and lymphomas. Oncogene, 25, 929–939.

    Article  CAS  PubMed  Google Scholar 

  • Ramakers-van Woerden, N. L., Pieters, R., Loonen, A. H., Hubeek, I., van Drunen, E., Beverloo, H. B., et al. (2000). TEL/AML1 gene fusion is related to in vitro drug sensitivity for L-asparaginase in childhood acute lymphoblastic leukemia. Blood, 96, 1094–1099.

    CAS  PubMed  Google Scholar 

  • Raschke, S., Balz, V., Efferth, T., Schulz, W. A., & Florl, A. R. (2005). Homozygous deletions of CDKN2A caused by alternative mechanisms in various human cancer cell lines. Genes, Chromosomes & Cancer, 42, 58–67.

    Article  CAS  Google Scholar 

  • Raynaud, S., Cave, H., Baens, M., Bastard, C., Cacheux, V., Grosgeorge, J., et al. (1996). The 12;21 translocation involving TEL and deletion of the other TEL allele: two frequently associated alterations found in childhood acute lymphoblastic leukemia. Blood, 87, 2891–2899.

    CAS  PubMed  Google Scholar 

  • Romana, S. P., Mauchauffe, M., Le Coniat, M., Chumakov, I., Le Paslier, D., Berger, R., et al. (1995). The t(12;21) of acute lymphoblastic leukemia results in a tel-AML1 gene fusion. Blood, 85, 3662–3670.

    CAS  PubMed  Google Scholar 

  • Romana, S. P., Le Coniat, M., Poirel, H., Marynen, P., Bernard, O., & Berger, R. (1996). Deletion of the short arm of chromosome 12 is a secondary event in acute lymphoblastic leukemia with t(12;21). Leukemia, 10, 167–170.

    CAS  PubMed  Google Scholar 

  • Rompaey, L. V., Potter, M., Adams, C., & Grosveld, G. (2000). Tel induces a G1 arrest and suppresses Ras-induced transformation. Oncogene, 19, 5244–5250.

    Article  CAS  PubMed  Google Scholar 

  • Ross, M. E., Zhou, X., Song, G., Shurtleff, S. A., Girtman, K., Williams, W. K., et al. (2003). Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood, 102, 2951–2959.

    Article  CAS  PubMed  Google Scholar 

  • Roudaia, L., Cheney, M. D., Manuylova, E., Chen, W., Morrow, M., Park, S., et al. (2009). CBFbeta is critical for AML1-ETO and TEL-AML1 activity. Blood, 113, 3070–3079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubnitz, J. E., Wichlan, D., Devidas, M., Shuster, J., Linda, S. B., Kurtzberg, J., et al. (2008). Prospective analysis of TEL gene rearrangements in childhood acute lymphoblastic leukemia: A Children’s Oncology Group study. Journal of Clinical Oncology, 26, 2186–2191.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schindler, J. W., Van Buren, D., Foudi, A., Krejci, O., Qin, J., Orkin, S. H., et al. (2009). TEL-AML1 corrupts hematopoietic stem cells to persist in the bone marrow and initiate leukemia. Cell Stem Cell, 5, 43–53.

    Article  CAS  PubMed  Google Scholar 

  • Schwieger, M., Lohler, J., Friel, J., Scheller, M., Horak, I., & Stocking, C. (2002). AML1-ETO inhibits maturation of multiple lymphohematopoietic lineages and induces myeloblast transformation in synergy with ICSBP deficiency. The Journal of Experimental Medicine, 196, 1227–1240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seeger, K., Adams, H. P., Buchwald, D., Beyermann, B., Kremens, B., Niemeyer, C., et al. (1998). TEL-AML1 fusion transcript in relapsed childhood acute lymphoblastic leukemia. The Berlin-Frankfurt-Munster Study Group. Blood, 91, 1716–1722.

    CAS  PubMed  Google Scholar 

  • Seeger, K., Buchwald, D., Peter, A., Taube, T., von Stackelberg, A., Schmitt, G., et al. (1999). TEL-AML1 fusion in relapsed childhood acute lymphoblastic leukemia. Blood, 94, 374–376.

    CAS  PubMed  Google Scholar 

  • Seeger, K., von Stackelberg, A., Taube, T., Buchwald, D., Korner, G., Suttorp, M., et al. (2001). Relapse of TEL-AML1–positive acute lymphoblastic leukemia in childhood: A matched-pair analysis. Journal of Clinical Oncology, 19, 3188–3193.

    Article  CAS  PubMed  Google Scholar 

  • Shurtleff, S. A., Buijs, A., Behm, F. G., Rubnitz, J. E., Raimondi, S. C., Hancock, M. L., et al. (1995). TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia, 9, 1985–1989.

    CAS  PubMed  Google Scholar 

  • Song, W. J., Sullivan, M. G., Legare, R. D., Hutchings, S., Tan, X., Kufrin, D., et al. (1999). Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nature Genetics, 23, 166–175.

    Article  CAS  PubMed  Google Scholar 

  • Stams, W. A., den Boer, M. L., Beverloo, H. B., Meijerink, J. P., van Wering, E. R., Janka-Schaub, G. E., et al. (2005). Expression levels of TEL, AML1, and the fusion products TEL-AML1 and AML1-TEL versus drug sensitivity and clinical outcome in t(12;21)-positive pediatric acute lymphoblastic leukemia. Clinical Cancer Research, 11, 2974–2980.

    Article  CAS  PubMed  Google Scholar 

  • Stams, W. A., Beverloo, H. B., den Boer, M. L., de Menezes, R. X., Stigter, R. L., van Drunen, E., et al. (2006). Incidence of additional genetic changes in the TEL and AML1 genes in DCOG and COALL-treated t(12;21)-positive pediatric ALL, and their relation with drug sensitivity and clinical outcome. Leukemia, 20, 410–416.

    Article  CAS  PubMed  Google Scholar 

  • Swaminathan, S., Klemm, L., Park, E., Papaemmanuil, E., Ford, A., Kweon, S. M., et al. (2015). Mechanisms of clonal evolution in childhood acute lymphoblastic leukemia. Nature Immunology, 16, 766–774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi, A., Satake, M., Yamaguchi-Iwai, Y., Bae, S. C., Lu, J., Maruyama, M., et al. (1995). Positive and negative regulation of granulocyte-macrophage colony-stimulating factor promoter activity by AML1-related transcription factor, PEBP2. Blood, 86, 607–616.

    CAS  PubMed  Google Scholar 

  • Topka, S., Vijai, J., Walsh, M. F., Jacobs, L., Maria, A., Villano, D., et al. (2015). Germline ETV6 mutations confer susceptibility to acute lymphoblastic leukemia and thrombocytopenia. PLoS Genetics, 11, e1005262.

    Article  PubMed  PubMed Central  Google Scholar 

  • Torrano, V., Procter, J., Cardus, P., Greaves, M., & Ford, A. M. (2011). ETV6-RUNX1 promotes survival of early B lineage progenitor cells via a dysregulated erythropoietin receptor. Blood, 118, 4910–4918.

    Article  CAS  PubMed  Google Scholar 

  • Tsai, A. G., Lu, H., Raghavan, S. C., Muschen, M., Hsieh, C. L., & Lieber, M. R. (2008). Human chromosomal translocations at CpG sites and a theoretical basis for their lineage and stage specificity. Cell, 135, 1130–1142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuzuki, S., & Seto, M. (2013). TEL (ETV6)-AML1 (RUNX1) initiates self-renewing fetal pro-B cells in association with a transcriptional program shared with embryonic stem cells in mice. Stem Cells, 31, 236–247.

    Article  CAS  PubMed  Google Scholar 

  • Tsuzuki, S., Seto, M., Greaves, M., & Enver, T. (2004). Modeling first-hit functions of the t(12;21) TEL-AML1 translocation in mice. Proceedings of the National Academy of Sciences of the United States of America, 101, 8443–8448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchida, H., Zhang, J., & Nimer, S. D. (1997). AML1A and AML1B can transactivate the human IL-3 promoter. Journal of Immunology, 158, 2251–2258.

    CAS  Google Scholar 

  • van der Weyden, L., Giotopoulos, G., Rust, A. G., Matheson, L. S., van Delft, F. W., Kong, J., et al. (2011). Modeling the evolution of ETV6-RUNX1-induced B-cell precursor acute lymphoblastic leukemia in mice. Blood, 118, 1041–1051.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van der Weyden, L., Giotopoulos, G., Wong, K., Rust, A. G., Robles-Espinoza, C. D., Osaki, H., et al. (2015). Somatic drivers of B-ALL in a model of ETV6-RUNX1; Pax5(+/−) leukemia. BMC Cancer, 15, 585.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waanders, E., Scheijen, B., van der Meer, L. T., van Reijmersdal, S. V., van Emst, L., Kroeze, Y., et al. (2012). The origin and nature of tightly clustered BTG1 deletions in precursor B-cell acute lymphoblastic leukemia support a model of multiclonal evolution. PLoS Genetics, 8, e1002533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Q., Stacy, T., Binder, M., Marin-Padilla, M., Sharpe, A. H., & Speck, N. A. (1996). Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proceedings of the National Academy of Sciences of the United States of America, 93, 3444–3449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L. C., Kuo, F., Fujiwara, Y., Gilliland, D. G., Golub, T. R., & Orkin, S. H. (1997). Yolk sac angiogenic defect and intra-embryonic apoptosis in mice lacking the Ets-related factor TEL. The EMBO Journal, 16, 4374–4383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L. C., Swat, W., Fujiwara, Y., Davidson, L., Visvader, J., Kuo, F., et al. (1998). The TEL/ETV6 gene is required specifically for hematopoiesis in the bone marrow. Genes & Development, 12, 2392–2402.

    Article  CAS  Google Scholar 

  • Wiemels, J. L., Ford, A. M., Van Wering, E. R., Postma, A., & Greaves, M. (1999). Protracted and variable latency of acute lymphoblastic leukemia after TEL-AML1 gene fusion in utero. Blood, 94, 1057–1062.

    CAS  PubMed  Google Scholar 

  • Wotton, D., Ghysdael, J., Wang, S., Speck, N. A., & Owen, M. J. (1994). Cooperative binding of Ets-1 and core binding factor to DNA. Molecular and Cellular Biology, 14, 840–850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yergeau, D. A., Hetherington, C. J., Wang, Q., Zhang, P., Sharpe, A. H., Binder, M., et al. (1997). Embryonic lethality and impairment of haematopoiesis in mice heterozygous for an AML1-ETO fusion gene. Nature Genetics, 15, 303–306.

    Article  CAS  PubMed  Google Scholar 

  • Zelent, A., Greaves, M., & Enver, T. (2004). Role of the TEL-AML1 fusion gene in the molecular pathogenesis of childhood acute lymphoblastic leukaemia. Oncogene, 23, 4275–4283.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, M., & Swanson, P. C. (2008). V(D)J recombinase binding and cleavage of cryptic recombination signal sequences identified from lymphoid malignancies. The Journal of Biological Chemistry, 283, 6717–6727.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, M. Y., Churpek, J. E., Keel, S. B., Walsh, T., Lee, M. K., Loeb, K. R., et al. (2015). Germline ETV6 mutations in familial thrombocytopenia and hematologic malignancy. Nature Genetics, 47, 180–185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuna, J., Madzo, J., Krejci, O., Zemanova, Z., Kalinova, M., Muzikova, K., et al. (2011). ETV6/RUNX1 (TEL/AML1) is a frequent prenatal first hit in childhood leukemia. Blood, 117, 368–369.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Owen Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Sundaresh, A., Williams, O. (2017). Mechanism of ETV6-RUNX1 Leukemia. In: Groner, Y., Ito, Y., Liu, P., Neil, J., Speck, N., van Wijnen, A. (eds) RUNX Proteins in Development and Cancer. Advances in Experimental Medicine and Biology, vol 962. Springer, Singapore. https://doi.org/10.1007/978-981-10-3233-2_13

Download citation

Publish with us

Policies and ethics