Skip to main content

RUNX1-ETO Leukemia

  • Chapter
  • First Online:
RUNX Proteins in Development and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 962))

Abstract

AML1-ETO leukemia is the most common cytogenetic subtype of acute myeloid leukemia, defined by the presence of t(8;21). Remarkable progress has been achieved in understanding the molecular pathogenesis of AML1-ETO leukemia. Proteomic surveies have shown that AML-ETO forms a stable complex with several transcription factors, including E proteins. Genome-wide transcriptome and ChIP-seq analyses have revealed the genes directly regulated by AML1-ETO, such as CEBPA. Several lines of evidence suggest that AML1-ETO suppresses endogenous DNA repair in cells to promote mutagenesis, which facilitates acquisition of cooperating secondary events. Furthermore, it has become increasingly apparent that a delicate balance of AML1-ETO and native AML1 is important to sustain the malignant cell phenotype. Translation of these findings into the clinical setting is just beginning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcalay, M., Meani, N., Gelmetti, V., Fantozzi, A., Fagioli, M., Orleth, A., et al. (2003). Acute myeloid leukemia fusion proteins deregulate genes involved in stem cell maintenance and DNA repair. The Journal of Clinical Investigation, 112, 1751–1761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amann, J. M., Nip, J., Strom, D. K., Lutterbach, B., Harada, H., Lenny, N., et al. (2001). ETO, a target of t(8;21) in acute leukemia, makes distinct contacts with multiple histone deacetylases and binds mSin3A through its oligomerization domain. Molecular and Cellular Biology, 21, 6470–6483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banker, D. E., Radich, J., Becker, A., Kerkof, K., Norwood, T., Willman, C., & Appelbaum, F. R. (1998). The t(8;21) translocation is not consistently associated with high Bcl-2 expression in de novo acute myeloid leukemias of adults. Clinical Cancer Research, 4, 3051–3062.

    CAS  PubMed  Google Scholar 

  • Barseguian, K., Lutterbach, B., Hiebert, S. W., Nickerson, J., Lian, J. B., Stein, J. L., et al. (2002). Multiple subnuclear targeting signals of the leukemia-related AML1/ETO and ETO repressor proteins. Proceedings of the National Academy of Sciences of the United States of America, 99, 15434–15439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben-Ami, O., Friedman, D., Leshkowitz, D., Goldenberg, D., Orlovsky, K., Pencovich, N., et al. (2013). Addiction of t(8;21) and inv(16) acute myeloid leukemia to native RUNX1. Cell Reports, 4, 1131–1143.

    Article  CAS  PubMed  Google Scholar 

  • Berg, T., Fliegauf, M., Burger, J., Staege, M. S., Liu, S., Martinez, N., et al. (2008). Transcriptional upregulation of p21/WAF/Cip1 in myeloid leukemic blasts expressing AML1-ETO. Haematologica, 93, 1728–1733.

    Article  CAS  PubMed  Google Scholar 

  • Bitter, M. A., le Beau, M. M., Rowley, J. D., Larson, R. A., Golomb, H. M., & Vardiman, J. W. (1987). Associations between morphology, karyotype, and clinical features in myeloid leukemias. Human Pathology, 18, 211–225.

    Article  CAS  PubMed  Google Scholar 

  • Boissel, N., Leroy, H., Brethon, B., Philippe, N., de Botton, S., Auvrignon, A., et al. (2006). Incidence and prognostic impact of c-Kit, FLT3, and Ras gene mutations in core binding factor acute myeloid leukemia (CBF-AML). Leukemia, 20, 965–970.

    Article  CAS  PubMed  Google Scholar 

  • Bots, M., Verbrugge, I., Martin, B. P., Salmon, J. M., Ghisi, M., Baker, A., et al. (2014). Differentiation therapy for the treatment of t(8;21) acute myeloid leukemia using histone deacetylase inhibitors. Blood, 123, 1341–1352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breig, O., Bras, S., Martinez Soria, N., Osman, D., Heidenreich, O., Haenlin, M., & Waltzer, L. (2014). Pontin is a critical regulator for AML1-ETO-induced leukemia. Leukemia, 28, 1271–1279.

    Article  CAS  PubMed  Google Scholar 

  • Chen, M., Zhu, N., Liu, X., Laurent, B., Tang, Z., Eng, R., et al. (2015). JMJD1C is required for the survival of acute myeloid leukemia by functioning as a coactivator for key transcription factors. Genes & Development, 29, 2123–2139.

    Article  CAS  Google Scholar 

  • Cheng, C. K., Li, L., Cheng, S. H., Lau, K. M., Chan, N. P., Wong, R. S., et al. (2008). Transcriptional repression of the RUNX3/AML2 gene by the t(8;21) and inv(16) fusion proteins in acute myeloid leukemia. Blood, 112, 3391–3402.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, C. K., Li, L., Cheng, S. H., Ng, K., Chan, N. P., Ip, R. K., et al. (2011). Secreted-frizzled related protein 1 is a transcriptional repression target of the t(8;21) fusion protein in acute myeloid leukemia. Blood, 118, 6638–6648.

    Article  CAS  PubMed  Google Scholar 

  • Choi, Y., Elagib, K. E., Delehanty, L. L., & Goldfarb, A. N. (2006). Erythroid inhibition by the leukemic fusion AML1-ETO is associated with impaired acetylation of the major erythroid transcription factor GATA-1. Cancer Research, 66, 2990–2996.

    Article  CAS  PubMed  Google Scholar 

  • Chou, F. S., Wunderlich, M., Griesinger, A., & Mulloy, J. C. (2011). NRASG12D induces stepwise transformation in preleukemic human umbilical cord blood cultures expressing the AML1-ETO fusion gene. Blood, 117, 2237–2240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou, F. S., Griesinger, A., Wunderlich, M., Lin, S., Link, K. A., Shrestha, M., et al. (2012). The thrombopoietin/MPL/Bcl-xL pathway is essential for survival and self-renewal in human preleukemia induced by AML1-ETO. Blood, 120, 709–719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunningham, L., Finckbeiner, S., Hyde, R. K., Southall, N., Marugan, J., Yedavalli, V. R., et al. (2012). Identification of benzodiazepine Ro5-3335 as an inhibitor of CBF leukemia through quantitative high throughput screen against RUNX1-CBFbeta interaction. Proceedings of the National Academy of Sciences of the United States of America, 109, 14592–14597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis, J. N., Mcghee, L., & Meyers, S. (2003). The ETO (MTG8) gene family. Gene, 303, 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Dayyani, F., Wang, J., Yeh, J. R., Ahn, E. Y., Tobey, E., Zhang, D. E., et al. (2008). Loss of TLE1 and TLE4 from the del(9q) commonly deleted region in AML cooperates with AML1-ETO to affect myeloid cell proliferation and survival. Blood, 111, 4338–4347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Leeuw, D. C., Denkers, F., Olthof, M. C., Rutten, A. P., Pouwels, W., Schuurhuis, G. J., et al. (2014). Attenuation of microRNA-126 expression that drives CD34+38- stem/progenitor cells in acute myeloid leukemia leads to tumor eradication. Cancer Research, 74, 2094–2105.

    Article  CAS  PubMed  Google Scholar 

  • Dorrance, A. M., Neviani, P., Ferenchak, G. J., Huang, X., Nicolet, D., Maharry, K. S., et al. (2015). Targeting leukemia stem cells in vivo with antagomiR-126 nanoparticles in acute myeloid leukemia. Leukemia, 29, 2143–2153.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elias, S., Yamin, R., Golomb, L., Tsukerman, P., Stanietsky-Kaynan, N., Ben-Yehuda, D., & Mandelboim, O. (2014). Immune evasion by oncogenic proteins of acute myeloid leukemia. Blood, 123, 1535–1543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elsasser, A., Franzen, M., Kohlmann, A., Weisser, M., Schnittger, S., Schoch, C., et al. (2003). The fusion protein AML1-ETO in acute myeloid leukemia with translocation t(8;21) induces c-jun protein expression via the proximal AP-1 site of the c-jun promoter in an indirect, JNK-dependent manner. Oncogene, 22, 5646–5657.

    Article  PubMed  CAS  Google Scholar 

  • Emmrich, S., Katsman-Kuipers, J. E., Henke, K., Khatib, M. E., Jammal, R., Engeland, F., et al. (2014). miR-9 is a tumor suppressor in pediatric AML with t(8;21). Leukemia, 28, 1022–1032.

    Article  CAS  PubMed  Google Scholar 

  • Erickson, P., Gao, J., Chang, K. S., Look, T., Whisenant, E., Raimondi, S., et al. (1992). Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt. Blood, 80, 1825–1831.

    CAS  PubMed  Google Scholar 

  • Erickson, P. F., Dessev, G., Lasher, R. S., Philips, G., Robinson, M., & Drabkin, H. A. (1996). ETO and AML1 phosphoproteins are expressed in CD34+ hematopoietic progenitors: Implications for t(8;21) leukemogenesis and monitoring residual disease. Blood, 88, 1813–1823.

    CAS  PubMed  Google Scholar 

  • Esposito, M. T., Zhao, L., Fung, T. K., Rane, J. K., Wilson, A., Martin, N., et al. (2015). Synthetic lethal targeting of oncogenic transcription factors in acute leukemia by PARP inhibitors. Nature Medicine, 21, 1481–1490.

    Article  CAS  PubMed  Google Scholar 

  • Farmer, H., Mccabe, N., Lord, C. J., Tutt, A. N., Johnson, D. A., Richardson, T. B., et al. (2005). Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature, 434, 917–921.

    Article  CAS  PubMed  Google Scholar 

  • Fazi, F., Racanicchi, S., Zardo, G., Starnes, L. M., Mancini, M., Travaglini, L., et al. (2007). Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell, 12, 457–466.

    Article  CAS  PubMed  Google Scholar 

  • Forster, V. J., Nahari, M. H., Martinez-Soria, N., Bradburn, A. K., Ptasinska, A., Assi, S. A., et al. (2016). The leukemia-associated RUNX1/ETO oncoprotein confers a mutator phenotype. Leukemia, 30, 251–254.

    Article  CAS  Google Scholar 

  • Gao, F. H., Wang, Q., Wu, Y. L., Li, X., Zhao, K. W., & Chen, G. Q. (2007). c-Jun N-terminal kinase mediates AML1-ETO protein-induced connexin-43 expression. Biochemical and Biophysical Research Communications, 356, 505–511.

    Article  CAS  PubMed  Google Scholar 

  • Gao, X. N., Yan, F., Lin, J., Gao, L., Lu, X. L., Wei, S. C., et al. (2015). AML1/ETO cooperates with HIF1alpha to promote leukemogenesis through DNMT3a transactivation. Leukemia, 29, 1730–1740.

    Article  CAS  PubMed  Google Scholar 

  • Gardini, A., Cesaroni, M., Luzi, L., Okumura, A. J., Biggs, J. R., Minardi, S. P., et al. (2008). AML1/ETO oncoprotein is directed to AML1 binding regions and co-localizes with AML1 and HEB on its targets. PLoS Genetics, 4, e1000275.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gelmetti, V., Zhang, J., Fanelli, M., Minucci, S., Pelicci, P. G., & Lazar, M. A. (1998). Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Molecular and Cellular Biology, 18, 7185–7191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilliland, D. G., Jordan, C. T. & Felix, C. A. (2004). The molecular basis of leukemia. Hematology. American Society Hematology Education Program, 80–97.

    Google Scholar 

  • Gorczynski, M. J., Grembecka, J., Zhou, Y., Kong, Y., Roudaia, L., Douvas, M. G., et al. (2007). Allosteric inhibition of the protein-protein interaction between the leukemia-associated proteins Runx1 and CBFbeta. Chemistry & Biology, 14, 1186–1197.

    Article  CAS  Google Scholar 

  • Gottlicher, M., Minucci, S., Zhu, P., Kramer, O. H., Schimpf, A., Giavara, S., et al. (2001). Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. The EMBO Journal, 20, 6969–6978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goyama, S., & Mulloy, J. C. (2011). Molecular pathogenesis of core binding factor leukemia: Current knowledge and future prospects. International Journal of Hematology, 94, 126–133.

    Article  CAS  PubMed  Google Scholar 

  • Goyama, S., Schibler, J., Cunningham, L., Zhang, Y., Rao, Y., Nishimoto, N., et al. (2013). Transcription factor RUNX1 promotes survival of acute myeloid leukemia cells. The Journal of Clinical Investigation, 123, 3876–3888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goyama, S., Huang, G., Kurokawa, M., & Mulloy, J. C. (2015a). Posttranslational modifications of RUNX1 as potential anticancer targets. Oncogene, 34, 3483–3492.

    Article  CAS  PubMed  Google Scholar 

  • Goyama, S., Schibler, J., Gasilina, A., Shrestha, M., Lin, S., Link, K. A., et al. (2015b). UBASH3B/Sts-1-CBL axis regulates myeloid proliferation in human preleukemia induced by AML1-ETO. Leukemia, 30(3), 728–739.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goyama, S., Wunderlich, M., & Mulloy, J. C. (2015c). Xenograft models for normal and malignant stem cells. Blood, 125, 2630–2640.

    Article  CAS  PubMed  Google Scholar 

  • Hatlen, M. A., Arora, K., Vacic, V., Grabowska, E. A., Liao, W., Riley-Gillis, B., et al. (2016). Integrative genetic analysis of mouse and human AML identifies cooperating disease alleles. The Journal of Experimental Medicine, 213, 25–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiebert, S. W., Lutterbach, B., & Amann, J. (2001). Role of co-repressors in transcriptional repression mediated by the t(8;21), t(16;21), t(12;21), and inv(16) fusion proteins. Current Opinion in Hematology, 8, 197–200.

    Article  CAS  PubMed  Google Scholar 

  • Higuchi, M., O’brien, D., Kumaravelu, P., Lenny, N., Yeoh, E. J., & Downing, J. R. (2002). Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell, 1, 63–74.

    Article  CAS  PubMed  Google Scholar 

  • Hildebrand, D., Tiefenbach, J., Heinzel, T., Grez, M., & Maurer, A. B. (2001). Multiple regions of ETO cooperate in transcriptional repression. The Journal of Biological Chemistry, 276, 9889–9895.

    Article  CAS  PubMed  Google Scholar 

  • Hoogenkamp, M., Lichtinger, M., Krysinska, H., Lancrin, C., Clarke, D., Williamson, A., et al. (2009). Early chromatin unfolding by RUNX1: A molecular explanation for differential requirements during specification versus maintenance of the hematopoietic gene expression program. Blood, 114, 299–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hospital, M. A., Prebet, T., Bertoli, S., Thomas, X., Tavernier, E., Braun, T., et al. (2014). Core-binding factor acute myeloid leukemia in first relapse: A retrospective study from the French AML Intergroup. Blood, 124, 1312–1319.

    Article  CAS  PubMed  Google Scholar 

  • Insinga, A., Monestiroli, S., Ronzoni, S., Gelmetti, V., Marchesi, F., Viale, A., et al. (2005). Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nature Medicine, 11, 71–76.

    Article  CAS  PubMed  Google Scholar 

  • Jongen-Lavrencic, M., Sun, S. M., Dijkstra, M. K., Valk, P. J., & Lowenberg, B. (2008). MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia. Blood, 111, 5078–5085.

    Article  CAS  PubMed  Google Scholar 

  • Kayser, S., Schlenk, R. F., Grimwade, D., Yosuico, V. E., & Walter, R. B. (2015). Minimal residual disease-directed therapy in acute myeloid leukemia. Blood, 125, 2331–2335.

    Article  CAS  PubMed  Google Scholar 

  • Klampfer, L., Zhang, J., Zelenetz, A. O., Uchida, H., & Nimer, S. D. (1996). The AML1/ETO fusion protein activates transcription of BCL-2. Proceedings of the National Academy of Sciences of the United States of America, 93, 14059–14064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozu, T., Fukuyama, T., Yamami, T., Akagi, K., & Kaneko, Y. (2005). MYND-less splice variants of AML1-MTG8 (RUNX1-CBFA2T1) are expressed in leukemia with t(8;21). Genes, Chromosomes & Cancer, 43, 45–53.

    Article  CAS  Google Scholar 

  • Kramer, O. H., Muller, S., Buchwald, M., Reichardt, S., & Heinzel, T. (2008). Mechanism for ubiquitylation of the leukemia fusion proteins AML1-ETO and PML-RARalpha. The FASEB Journal, 22, 1369–1379.

    Article  PubMed  CAS  Google Scholar 

  • Krauth, M. T., Eder, C., Alpermann, T., Bacher, U., Nadarajah, N., Kern, W., et al. (2014). High number of additional genetic lesions in acute myeloid leukemia with t(8;21)/RUNX1-RUNX1T1: Frequency and impact on clinical outcome. Leukemia, 28, 1449–1458.

    Article  CAS  PubMed  Google Scholar 

  • Krejci, O., Wunderlich, M., Geiger, H., Chou, F. S., Schleimer, D., Jansen, M., et al. (2008). p53 signaling in response to increased DNA damage sensitizes AML1-ETO cells to stress-induced death. Blood, 111, 2190–2199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwok, C., Zeisig, B. B., Qiu, J., Dong, S., & So, C. W. (2009). Transforming activity of AML1-ETO is independent of CBFbeta and ETO interaction but requires formation of homo-oligomeric complexes. Proceedings of the National Academy of Sciences of the United States of America, 106, 2853–2858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwok, C., Zeisig, B. B., Dong, S., & So, C. W. (2010). The role of CBFbeta in AML1-ETO’s activity. Blood, 115, 3176–3177.

    Article  CAS  PubMed  Google Scholar 

  • Laszlo, G. S., Estey, E. H., & Walter, R. B. (2014). The past and future of CD33 as therapeutic target in acute myeloid leukemia. Blood Reviews, 28, 143–153.

    Article  CAS  PubMed  Google Scholar 

  • Lechman, E. R., Gentner, B., Van Galen, P., Giustacchini, A., Saini, M., Boccalatte, F. E., et al. (2012). Attenuation of miR-126 activity expands HSC in vivo without exhaustion. Cell Stem Cell, 11, 799–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lechman, E. R., Gentner, B., Ng, S. W., Schoof, E. M., Van Galen, P., Kennedy, J. A., et al. (2016). miR-126 regulates distinct self-renewal outcomes in normal and malignant hematopoietic stem cells. Cancer Cell, 29, 214–228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lennartsson, J., & Ronnstrand, L. (2012). Stem cell factor receptor/c-Kit: From basic science to clinical implications. Physiological Reviews, 92, 1619–1649.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z., Lu, J., Sun, M., Mi, S., Zhang, H., Luo, R. T., et al. (2008). Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proceedings of the National Academy of Sciences of the United States of America, 105, 15535–15540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y., Gao, L., Luo, X., Wang, L., Gao, X., Wang, W., et al. (2013). Epigenetic silencing of microRNA-193a contributes to leukemogenesis in t(8;21) acute myeloid leukemia by activating the PTEN/PI3K signal pathway. Blood, 121, 499–509.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z., Chen, P., Su, R., Li, Y., Hu, C., Wang, Y., et al. (2015). Overexpression and knockout of miR-126 both promote leukemogenesis. Blood, 126, 2005–2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y., Wang, H., Wang, X., Jin, W., Tan, Y., Fang, H., et al. (2016). Genome-wide studies identify a novel interplay between AML1 and AML1/ETO in t(8;21) acute myeloid leukemia. Blood, 127, 233–242.

    Article  CAS  PubMed  Google Scholar 

  • Linggi, B., Muller-Tidow, C., van de Locht, L., Hu, M., Nip, J., Serve, H., et al. (2002). The t(8;21) fusion protein, AML1 ETO, specifically represses the transcription of the p14(ARF) tumor suppressor in acute myeloid leukemia. Nature Medicine, 8, 743–750.

    Article  CAS  PubMed  Google Scholar 

  • Liu, S., Shen, T., Huynh, L., Klisovic, M. I., Rush, L. J., Ford, J. L., et al. (2005). Interplay of RUNX1/MTG8 and DNA methyltransferase 1 in acute myeloid leukemia. Cancer Research, 65, 1277–1284.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Cheney, M. D., Gaudet, J. J., Chruszcz, M., Lukasik, S. M., Sugiyama, D., et al. (2006). The tetramer structure of the Nervy homology two domain, NHR2, is critical for AML1/ETO’s activity. Cancer Cell, 9, 249–260.

    Article  PubMed  CAS  Google Scholar 

  • Liu, S., Klisoviec, R. B., Vukosavljevic, T., Yu, J., Paschka, P., Huynh, L., et al. (2007). Targeting AML1/ETO-histone deacetylase repressor complex: A novel mechanism for valproic acid-mediated gene expression and cellular differentiation in AML1/ETO-positive acute myeloid leukemia cells. The Journal of Pharmacology and Experimental Therapeutics, 321, 953–960.

    Article  CAS  PubMed  Google Scholar 

  • Lo, M. C., Peterson, L. F., Yan, M., Cong, X., Jin, F., Shia, W. J., et al. (2012). Combined gene expression and DNA occupancy profiling identifies potential therapeutic targets of t(8;21) AML. Blood, 120, 1473–1484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo, M. C., Peterson, L. F., Yan, M., Cong, X., Hickman, J. H., Dekelver, R. C., et al. (2013). JAK inhibitors suppress t(8;21) fusion protein-induced leukemia. Leukemia, 27, 2272–2279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutterbach, B., Sun, D., Schuetz, J., & Hiebert, S. W. (1998a). The MYND motif is required for repression of basal transcription from the multidrug resistance 1 promoter by the t(8;21) fusion protein. Molecular and Cellular Biology, 18, 3604–3611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutterbach, B., Westendorf, J. J., Linggi, B., Patten, A., Moniwa, M., Davie, J. R., et al. (1998b). ETO, a target of t(8;21) in acute leukemia, interacts with the N-CoR and mSin3 corepressors. Molecular and Cellular Biology, 18, 7176–7184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maiques-Diaz, A., Chou, F. S., Wunderlich, M., Gomez-Lopez, G., Jacinto, F. V., Rodriguez-Perales, S., et al. (2012). Chromatin modifications induced by the AML1-ETO fusion protein reversibly silence its genomic targets through AML1 and Sp1 binding motifs. Leukemia, 26, 1329–1337.

    Article  CAS  PubMed  Google Scholar 

  • Marcucci, G., Mrozek, K., Ruppert, A. S., Maharry, K., Kolitz, J. E., Moore, J. O., et al. (2005). Prognostic factors and outcome of core binding factor acute myeloid leukemia patients with t(8;21) differ from those of patients with inv(16): A cancer and leukemia group B study. Journal of Clinical Oncology, 23, 5705–5717.

    Article  PubMed  Google Scholar 

  • Martens, J. H., Mandoli, A., Simmer, F., Wierenga, B. J., Saeed, S., Singh, A. A., et al. (2012). ERG and FLI1 binding sites demarcate targets for aberrant epigenetic regulation by AML1-ETO in acute myeloid leukemia. Blood, 120, 4038–4048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maseki, N., Miyoshi, H., Shimizu, K., Homma, C., Ohki, M., Sakurai, M., & Kaneko, Y. (1993). The 8;21 chromosome translocation in acute myeloid leukemia is always detectable by molecular analysis using AML1. Blood, 81, 1573–1579.

    CAS  PubMed  Google Scholar 

  • Matsuura, S., Yan, M., Lo, M. C., Ahn, E. Y., Weng, S., Dangoor, D., et al. (2012). Negative effects of GM-CSF signaling in a murine model of t(8;21)-induced leukemia. Blood, 119, 3155–3163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mcgrath, J. P., Williamson, K. E., Balasubramanian, S., Odate, S., ARORA, S., Hatton, C., et al. (2016). Pharmacological inhibition of the histone lysine demethylase KDM1A suppresses the growth of multiple acute myeloid leukemia subtypes. Cancer Research, 76, 1975–1988.

    Article  CAS  PubMed  Google Scholar 

  • Micol, J. B., Duployez, N., Boissel, N., Petit, A., Geffroy, S., Nibourel, O., et al. (2014). Frequent ASXL2 mutations in acute myeloid leukemia patients with t(8;21)/RUNX1-RUNX1T1 chromosomal translocations. Blood, 124, 1445–1449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyoshi, H., Shimizu, K., Kozu, T., Maseki, N., Kaneko, Y., & Ohki, M. (1991). t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proceedings of the National Academy of Sciences of the United States of America, 88, 10431–10434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyoshi, H., Kozu, T., Shimizu, K., Enomoto, K., Maseki, N., Kaneko, Y., et al. (1993). The t(8;21) translocation in acute myeloid leukemia results in production of an AML1-MTG8 fusion transcript. The EMBO Journal, 12, 2715–2721.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mrozek, K., Marcucci, G., Paschka, P., & Bloomfield, C. D. (2008). Advances in molecular genetics and treatment of core-binding factor acute myeloid leukemia. Current Opinion in Oncology, 20, 711–718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller-Tidow, C., Steffen, B., Cauvet, T., Tickenbrock, L., Ji, P., Diederichs, S., et al. (2004). Translocation products in acute myeloid leukemia activate the Wnt signaling pathway in hematopoietic cells. Molecular and Cellular Biology, 24, 2890–2904.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mulloy, J. C., Cammenga, J., Mackenzie, K. L., Berguido, F. J., Moore, M. A., & Nimer, S. D. (2002). The AML1-ETO fusion protein promotes the expansion of human hematopoietic stem cells. Blood, 99, 15–23.

    Article  CAS  PubMed  Google Scholar 

  • Mulloy, J. C., Cammenga, J., Berguido, F. J., Wu, K., Zhou, P., Comenzo, R. L., et al. (2003). Maintaining the self-renewal and differentiation potential of human CD34+ hematopoietic cells using a single genetic element. Blood, 102, 4369–4376.

    Article  CAS  PubMed  Google Scholar 

  • Mulloy, J. C., Jankovic, V., Wunderlich, M., Delwel, R., Cammenga, J., Krejci, O., et al. (2005). AML1-ETO fusion protein up-regulates TRKA mRNA expression in human CD34+ cells, allowing nerve growth factor-induced expansion. Proceedings of the National Academy of Sciences of the United States of America, 102, 4016–4021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa, M., Shimabe, M., Watanabe-Okochi, N., Arai, S., Yoshimi, A., Shinohara, A., et al. (2011). AML1/RUNX1 functions as a cytoplasmic attenuator of NF-kappaB signaling in the repression of myeloid tumors. Blood, 118, 6626–6637.

    Article  CAS  PubMed  Google Scholar 

  • Nick, H. J., Kim, H. G., Chang, C. W., Harris, K. W., Reddy, V., & Klug, C. A. (2012). Distinct classes of c-Kit-activating mutations differ in their ability to promote RUNX1-ETO-associated acute myeloid leukemia. Blood, 119, 1522–1531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nisson, P. E., Watkins, P. C., & Sacchi, N. (1992). Transcriptionally active chimeric gene derived from the fusion of the AML1 gene and a novel gene on chromosome 8 in t(8;21) leukemic cells. Cancer Genetics and Cytogenetics, 63, 81–88.

    Article  CAS  PubMed  Google Scholar 

  • Nucifora, G., Birn, D. J., Erickson, P., Gao, J., Lebeau, M. M., Drabkin, H. A., & Rowley, J. D. (1993). Detection of DNA rearrangements in the AML1 and ETO loci and of an AML1/ETO fusion mRNA in patients with t(8;21) acute myeloid leukemia. Blood, 81, 883–888.

    CAS  PubMed  Google Scholar 

  • Odaka, Y., Mally, A., Elliott, L. T., & Meyers, S. (2000). Nuclear import and subnuclear localization of the proto-oncoprotein ETO (MTG8). Oncogene, 19, 3584–3597.

    Article  CAS  PubMed  Google Scholar 

  • Okuda, T., Cai, Z., Yang, S., Lenny, N., Lyu, C. J., Van Deursen, J. M., et al. (1998). Expression of a knocked-in AML1-ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and directly generates dysplastic hematopoietic progenitors. Blood, 91, 3134–3143.

    CAS  PubMed  Google Scholar 

  • Okumura, A. J., Peterson, L. F., Okumura, F., Boyapati, A., & Zhang, D. E. (2008). t(8;21)(q22;q22) Fusion proteins preferentially bind to duplicated AML1/RUNX1 DNA-binding sequences to differentially regulate gene expression. Blood, 112, 1392–1401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pabst, T., Mueller, B. U., Harakawa, N., Schoch, C., Haferlach, T., Behre, G., et al. (2001). AML1-ETO downregulates the granulocytic differentiation factor C/EBPalpha in t(8;21) myeloid leukemia. Nature Medicine, 7, 444–451.

    Article  CAS  PubMed  Google Scholar 

  • Park, S., Speck, N. A., & Bushweller, J. H. (2009). The role of CBFbeta in AML1-ETO’s activity. Blood, 114, 2849–2850.

    Article  CAS  PubMed  Google Scholar 

  • Paschka, P., & Dohner, K. (2013). Core-binding factor acute myeloid leukemia: Can we improve on HiDAC consolidation? Hematology. American Society of Hematology. Education Program, 2013, 209–219.

    PubMed  Google Scholar 

  • Peterson, L. F., Yan, M., & Zhang, D. E. (2007). The p21Waf1 pathway is involved in blocking leukemogenesis by the t(8;21) fusion protein AML1-ETO. Blood, 109, 4392–4398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ptasinska, A., Assi, S. A., Mannari, D., James, S. R., Williamson, D., Dunne, J., et al. (2012). Depletion of RUNX1/ETO in t(8;21) AML cells leads to genome-wide changes in chromatin structure and transcription factor binding. Leukemia, 26, 1829–1841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ptasinska, A., Assi, S. A., Martinez-Soria, N., Imperato, M. R., Piper, J., Cauchy, P., et al. (2014). Identification of a dynamic core transcriptional network in t(8;21) AML that regulates differentiation block and self-renewal. Cell Reports, 8, 1974–1988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pulikkan, J. A., Madera, D., Xue, L., Bradley, P., Landrette, S. F., Kuo, Y. H., et al. (2012). Thrombopoietin/MPL participates in initiating and maintaining RUNX1-ETO acute myeloid leukemia via PI3K/AKT signaling. Blood, 120, 868–879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin, Y. Z., Zhu, H. H., Jiang, Q., Jiang, H., Zhang, L. P., Xu, L. P., et al. (2014). Prevalence and prognostic significance of c-KIT mutations in core binding factor acute myeloid leukemia: A comprehensive large-scale study from a single Chinese center. Leukemia Research, 38, 1435–1440.

    Article  CAS  PubMed  Google Scholar 

  • Regha, K., Assi, S. A., Tsoulaki, O., Gilmour, J., Lacaud, G., & Bonifer, C. (2015). Developmental-stage-dependent transcriptional response to leukaemic oncogene expression. Nature Communications, 6, 7203.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ross, M. E., Mahfouz, R., Onciu, M., Liu, H. C., Zhou, X., Song, G., et al. (2004). Gene expression profiling of pediatric acute myelogenous leukemia. Blood, 104, 3679–3687.

    Article  CAS  PubMed  Google Scholar 

  • Roudaia, L., Cheney, M. D., Manuylova, E., Chen, W., Morrow, M., Park, S., et al. (2009). CBFbeta is critical for AML1-ETO and TEL-AML1 activity. Blood, 113, 3070–3079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowley, J. D. (1984). Biological implications of consistent chromosome rearrangements in leukemia and lymphoma. Cancer Research, 44, 3159–3168.

    CAS  PubMed  Google Scholar 

  • Saeed, S., Logie, C., Francoijs, K. J., Frige, G., Romanenghi, M., Nielsen, F. G., et al. (2012). Chromatin accessibility, p300, and histone acetylation define PML-RARalpha and AML1-ETO binding sites in acute myeloid leukemia. Blood, 120, 3058–3068.

    Article  CAS  PubMed  Google Scholar 

  • Schessl, C., Rawat, V. P., Cusan, M., Deshpande, A., Kohl, T. M., Rosten, P. M., et al. (2005). The AML1-ETO fusion gene and the FLT3 length mutation collaborate in inducing acute leukemia in mice. The Journal of Clinical Investigation, 115, 2159–2168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlenk, R. F., Benner, A., Krauter, J., Buchner, T., Sauerland, C., Ehninger, G., et al. (2004). Individual patient data-based meta-analysis of patients aged 16 to 60 years with core binding factor acute myeloid leukemia: A survey of the German Acute Myeloid Leukemia Intergroup. Journal of Clinical Oncology, 22, 3741–3750.

    Article  CAS  PubMed  Google Scholar 

  • Shia, W. J., Okumura, A. J., Yan, M., Sarkeshik, A., Lo, M. C., Matsuura, S., et al. (2012). PRMT1 interacts with AML1-ETO to promote its transcriptional activation and progenitor cell proliferative potential. Blood, 119, 4953–4962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shih, L. Y., Liang, D. C., Huang, C. F., Chang, Y. T., Lai, C. L., Lin, T. H., et al. (2008). Cooperating mutations of receptor tyrosine kinases and Ras genes in childhood core-binding factor acute myeloid leukemia and a comparative analysis on paired diagnosis and relapse samples. Leukemia, 22, 303–307.

    Article  CAS  PubMed  Google Scholar 

  • Sinenko, S. A., Hung, T., Moroz, T., Tran, Q. M., Sidhu, S., Cheney, M. D., et al. (2010). Genetic manipulation of AML1-ETO-induced expansion of hematopoietic precursors in a Drosophila model. Blood, 116, 4612–4620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sood, R., Hansen, N. F., Donovan, F. X., Carrington, B., Bucci, D., Maskeri, B., et al. (2016). Somatic mutational landscape of AML with inv(16) or t(8;21) identifies patterns of clonal evolution in relapse leukemia. Leukemia, 30, 501–504.

    Article  CAS  PubMed  Google Scholar 

  • Steffen, B., Knop, M., Bergholz, U., Vakhrusheva, O., Rode, M., Kohler, G., et al. (2011). AML1/ETO induces self-renewal in hematopoietic progenitor cells via the Groucho-related amino-terminal AES protein. Blood, 117, 4328–4337.

    Article  CAS  PubMed  Google Scholar 

  • Sun, X. J., Wang, Z., Wang, L., Jiang, Y., Kost, N., Soong, T. D., et al. (2013). A stable transcription factor complex nucleated by oligomeric AML1-ETO controls leukaemogenesis. Nature, 500, 93–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokumasu, M., Murata, C., Shimada, A., Ohki, K., Hayashi, Y., Saito, A. M., et al. (2015). Adverse prognostic impact of KIT mutations in childhood CBF-AML: The results of the Japanese Pediatric Leukemia/Lymphoma Study Group AML-05 trial. Leukemia, 29, 2438–2441.

    Article  CAS  PubMed  Google Scholar 

  • Trombly, D. J., Whitfield, T. W., Padmanabhan, S., Gordon, J. A., Lian, J. B., van Wijnen, A. J., et al. (2015). Genome-wide co-occupancy of AML1-ETO and N-CoR defines the t(8;21) AML signature in leukemic cells. BMC Genomics, 16, 309.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ugarte, G. D., Vargas, M. F., Medina, M. A., Leon, P., Necunir, D., Elorza, A. A., et al. (2015). Wnt signaling induces transcription, spatial proximity, and translocation of fusion gene partners in human hematopoietic cells. Blood, 126, 1785–1789.

    Article  CAS  PubMed  Google Scholar 

  • Valk, P. J., Verhaak, R. G., Beijen, M. A., Erpelinck, C. A., Barjesteh Van Waalwijk Van Doorn-Khosrovani, S., Boer, J. M., et al. (2004). Prognostically useful gene-expression profiles in acute myeloid leukemia. The New England Journal of Medicine, 350, 1617–1628.

    Article  CAS  PubMed  Google Scholar 

  • Vangala, R. K., Heiss-Neumann, M. S., Rangatia, J. S., Singh, S. M., Schoch, C., Tenen, D. G., et al. (2003). The myeloid master regulator transcription factor PU.1 is inactivated by AML1-ETO in t(8;21) myeloid leukemia. Blood, 101, 270–277.

    Article  CAS  PubMed  Google Scholar 

  • Viale, A., De Franco, F., Orleth, A., Cambiaghi, V., Giuliani, V., Bossi, D., et al. (2009). Cell-cycle restriction limits DNA damage and maintains self-renewal of leukaemia stem cells. Nature, 457, 51–56.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Hoshino, T., Redner, R. L., Kajigaya, S., & Liu, J. M. (1998). ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex. Proceedings of the National Academy of Sciences of the United States of America, 95, 10860–10865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L., Gural, A., Sun, X. J., Zhao, X., Perna, F., Huang, G., et al. (2011a). The leukemogenicity of AML1-ETO is dependent on site-specific lysine acetylation. Science, 333, 765–769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y. Y., Zhao, L. J., Wu, C. F., Liu, P., Shi, L., Liang, Y., et al. (2011b). C-KIT mutation cooperates with full-length AML1-ETO to induce acute myeloid leukemia in mice. Proceedings of the National Academy of Sciences of the United States of America, 108, 2450–2455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L., Man, N., Sun, X. J., Tan, Y., Cao, M. G., Liu, F., et al. (2015). Regulation of AKT signaling by Id1 controls t(8;21) leukemia initiation and progression. Blood, 126, 640–650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei, H., Liu, X., Xiong, X., Wang, Y., Rao, Q., Wang, M., & Wang, J. (2008). AML1-ETO interacts with Sp1 and antagonizes Sp1 transactivity through RUNT domain. FEBS Letters, 582, 2167–2172.

    Article  CAS  PubMed  Google Scholar 

  • Wichmann, C., Quagliano-Lo Coco, I., Yildiz, O., Chen-Wichmann, L., Weber, H., Syzonenko, T., et al. (2015). Activating c-KIT mutations confer oncogenic cooperativity and rescue RUNX1/ETO-induced DNA damage and apoptosis in human primary CD34+ hematopoietic progenitors. Leukemia, 29, 279–289.

    Article  CAS  PubMed  Google Scholar 

  • Wolford, J. K., & Prochazka, M. (1998). Structure and expression of the human MTG8/ETO gene. Gene, 212, 103–109.

    Article  CAS  PubMed  Google Scholar 

  • Yan, M., Kanbe, E., Peterson, L. F., Boyapati, A., Miao, Y., Wang, Y., et al. (2006). A previously unidentified alternatively spliced isoform of t(8;21) transcript promotes leukemogenesis. Nature Medicine, 12, 945–949.

    Article  CAS  PubMed  Google Scholar 

  • Yan, M., Ahn, E. Y., Hiebert, S. W., & Zhang, D. E. (2009). RUNX1/AML1 DNA-binding domain and ETO/MTG8 NHR2-dimerization domain are critical to AML1-ETO9a leukemogenesis. Blood, 113, 883–886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, G., Khalaf, W., Van De Locht, L., Jansen, J. H., Gao, M., Thompson, M. A., et al. (2005). Transcriptional repression of the Neurofibromatosis-1 tumor suppressor by the t(8;21) fusion protein. Molecular and Cellular Biology, 25, 5869–5879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, G., Thompson, M. A., Brandt, S. J., & Hiebert, S. W. (2007). Histone deacetylase inhibitors induce the degradation of the t(8;21) fusion oncoprotein. Oncogene, 26, 91–101.

    Article  PubMed  CAS  Google Scholar 

  • Yeh, J. R., Munson, K. M., Elagib, K. E., Goldfarb, A. N., Sweetser, D. A., & Peterson, R. T. (2009). Discovering chemical modifiers of oncogene-regulated hematopoietic differentiation. Nature Chemical Biology, 5, 236–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yergeau, D. A., Hetherington, C. J., Wang, Q., Zhang, P., Sharpe, A. H., Binder, M., et al. (1997). Embryonic lethality and impairment of haematopoiesis in mice heterozygous for an AML1-ETO fusion gene. Nature Genetics, 15, 303–306.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, Y., Zhou, L., Miyamoto, T., Iwasaki, H., Harakawa, N., Hetherington, C. J., et al. (2001). AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proceedings of the National Academy of Sciences of the United States of America, 98, 10398–10403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaidi, S. K., Dowdy, C. R., Van Wijnen, A. J., Lian, J. B., Raza, A., Stein, J. L., et al. (2009). Altered Runx1 subnuclear targeting enhances myeloid cell proliferation and blocks differentiation by activating a miR-24/MKP-7/MAPK network. Cancer Research, 69, 8249–8255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, J., Hug, B. A., Huang, E. Y., Chen, C. W., Gelmetti, V., Maccarana, M., et al. (2001). Oligomerization of ETO is obligatory for corepressor interaction. Molecular and Cellular Biology, 21, 156–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, J., Kalkum, M., Yamamura, S., Chait, B. T., & Roeder, R. G. (2004). E protein silencing by the leukemogenic AML1-ETO fusion protein. Science, 305, 1286–1289.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Wang, J., Wheat, J., chen, X., Jin, S., Sadrzadeh, H., et al. (2013). AML1-ETO mediates hematopoietic self-renewal and leukemogenesis through a COX/beta-catenin signaling pathway. Blood, 121, 4906–4916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, S., Zhang, Y., Sha, K., Tang, Q., Yang, X., Yu, C., et al. (2014). KRAS (G12D) cooperates with AML1/ETO to initiate a mouse model mimicking human acute myeloid leukemia. Cellular Physiology and Biochemistry, 33, 78–87.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, X., Beissert, T., Kukoc-Zivojnov, N., Puccetti, E., Altschmied, J., Strolz, C., et al. (2004). Gamma-catenin contributes to leukemogenesis induced by AML-associated translocation products by increasing the self-renewal of very primitive progenitor cells. Blood, 103, 3535–3543.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susumu Goyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Lin, S., Mulloy, J.C., Goyama, S. (2017). RUNX1-ETO Leukemia. In: Groner, Y., Ito, Y., Liu, P., Neil, J., Speck, N., van Wijnen, A. (eds) RUNX Proteins in Development and Cancer. Advances in Experimental Medicine and Biology, vol 962. Springer, Singapore. https://doi.org/10.1007/978-981-10-3233-2_11

Download citation

Publish with us

Policies and ethics