Advertisement

Scattering Centers Monitoring in SAR Images

  • Andrei AnghelEmail author
  • Gabriel Vasile
  • Remus Cacoveanu
Chapter
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)

Abstract

The chapter begins with an overview on SAR scattering centers’ detection and tracking in the context of infrastructure monitoring. Onwards, a SAR signal processing methodology for infrastructure monitoring, which exploits a digital elevation model or a point cloud of the envisaged structure is described. It is the main contribution of the book in the field of spaceborne SAR image processing. First, an azimuth defocusing method for SAR images is introduced. The defocusing gives access to the phase history and is compatible with various imaging modes (stripmap, spotlight, and sliding spotlight). Next, a back projection of the defocused signal on the available 3D model is presented, followed by a scattering centers detection method based on 4D (range-azimuth-elevation velocity) tomographic reconstruction. The performances and limitations of the developed processing chain are emphasized through extensive simulation results in the last part of the chapter.

Keywords

Point Cloud Detection Probability False Alarm Probability Generalize Likelihood Ratio Test Slant Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Eineder, N. Adam, R. Bamler, N. Yague-Martinez, H. Breit, Spaceborne spotlight SAR interferometry with TerraSAR-X. IEEE Trans. Geosci. Remote Sens. 47(5), 1524 (2009). doi: 10.1109/TGRS.2008.2004714 CrossRefGoogle Scholar
  2. 2.
    T. Fritz, C. Rossi, N. Yague-Martinez, F. Rodriguez-Gonzalez, M. Lachaise, H. Breit, Interferometric processing of TanDEM-X data, in Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (Vancouver, Canada, 2011), pp. 2428–2431. doi: 10.1109/IGARSS.2011.6049701
  3. 3.
    G. Vasile, A. Anghel, D. Boldo, R. Boudon, G. d’Urso, R. Muja, Potential of multi-pass high-resolution SAR interferometry for dam monitoring. MTA Review (ISSN 1843–3391), special issue of the COMM’12 Conference. Romanian Military Technical Academy Publishing House 22(4), 235 (2012)Google Scholar
  4. 4.
    A. Anghel, G. Vasile, R. Cacoveanu, C. Ioana, S. Ciochina, J.P. Ovarlez, Scattering centers detection and tracking in refocused spaceborne SAR images for infrastructure monitoring. IEEE Trans. Geosci. Remote Sens. 53(8), 4379 (2015). doi: 10.1109/TGRS.2015.2396773 CrossRefGoogle Scholar
  5. 5.
    A. Anghel, G. Vasile, C. Ioana, R. Cacoveanu, S. Ciochina, J.P. Ovarlez, R. Boudon, G. d’Urso, SAR images refocusing and scattering center detection for infrastructure monitoring, in Proceedings of the IEEE Radar Conference (RadarCon) (Cincinnati, Ohio, USA, 2014), pp. 334–339Google Scholar
  6. 6.
    A. Anghel, G. Vasile, C. Ioana, R. Cacoveanu, S. Ciochina, J.P. Ovarlez, R. Boudon, G. d’Urso, I. Hajnsek, Scattering centers monitoring in refocused SAR images on a high-resolution DEM, in Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (Quebec City, QC, Canada, 2014), pp. 1883–1886Google Scholar
  7. 7.
    A. Anghel, G. Vasile, R. Boudon, G. d’Urso, A. Girard, D. Boldo, Combining spaceborne SAR images with 3D point clouds for infrastructure monitoring applications. ISPRS J. Photogramm. Remote Sens. 111, 45 (2016). doi: 10.1016/j.isprsjprs.2015.11.008 CrossRefGoogle Scholar
  8. 8.
    F. Lombardini, Differential tomography: a new framework for SAR interferometry. IEEE Trans. Geosci. Remote Sens. 43(1), 37 (2005). doi: 10.1109/TGRS.2004.838371 CrossRefGoogle Scholar
  9. 9.
    G. Fornaro, D. Reale, F. Serafino, Four-dimensional SAR imaging for height estimation and monitoring of single and double scatterers. IEEE Trans. Geosci. Remote Sens. 47(1), 224 (2009). doi: 10.1109/TGRS.2008.2000837 CrossRefGoogle Scholar
  10. 10.
    F. Lombardini, M. Pardini, Superresolution differential tomography: experiments on identification of multiple scatterers in spaceborne SAR data. IEEE Trans. Geosci. Remote Sens. 50(4), 1117 (2012). doi: 10.1109/TGRS.2011.2164925 CrossRefGoogle Scholar
  11. 11.
    S. Ugur, O. Arikan, A. Gurbuz, Off-grid sparse SAR image reconstruction by EMMP algorithm, in Proceedings of the IEEE Radar Conference (RadarCon) (Ottawa, ON, Canada, 2013), pp. 1–4. doi: 10.1109/RADAR.2013.6586034
  12. 12.
    A. De Maio, G. Fornaro, A. Pauciullo, Detection of single scatterers in multidimensional SAR imaging. IEEE Trans. Geosci. Remote Sens. 47(7), 2284 (2009). doi: 10.1109/TGRS.2008.2011632 CrossRefGoogle Scholar
  13. 13.
    A. Pauciullo, D. Reale, A. De Maio, G. Fornaro, Detection of double scatterers in SAR tomography. IEEE Trans. Geosci. Remote Sens. 50(9), 3567 (2012). doi: 10.1109/TGRS.2012.2183002 CrossRefGoogle Scholar
  14. 14.
    D. Reale, G. Fornaro, A. Pauciullo, Extension of 4-D SAR imaging to the monitoring of thermally dilating scatterers. IEEE Trans. Geosci. Remote Sens. 51(12), 5296 (2013). doi: 10.1109/TGRS.2012.2233205 CrossRefGoogle Scholar
  15. 15.
    A. Moreira, J. Mittermayer, R. Scheiber, Extended chirp scaling algorithm for air- and spaceborne SAR data processing in stripmap and ScanSAR imaging modes. IEEE Trans. Geosci. Remote Sens. 34(5), 1123 (1996). doi: 10.1109/36.536528 CrossRefGoogle Scholar
  16. 16.
    J. Mittermayer, A. Moreira, O. Loffeld, Spotlight SAR data processing using the frequency scaling algorithm. IEEE Trans. Geosci. Remote Sens. 37(5), 2198 (1999). doi: 10.1109/36.789617 CrossRefGoogle Scholar
  17. 17.
    A. Moreira, Real-time synthetic aperture radar (SAR) processing with a new subaperture approach. IEEE Trans. Geosci. Remote Sens. 30(4), 714 (1992). doi: 10.1109/36.158865 CrossRefGoogle Scholar
  18. 18.
    J. Mittermayer, R. Lord, E. Borner, Sliding spotlight SAR processing for TerraSAR-X using a new formulation of the extended chirp scaling algorithm, in Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), vol. 3 (Toulouse, France, 2003), vol. 3, pp. 1462–1464. doi: 10.1109/IGARSS.2003.1294144
  19. 19.
    P. Prats, R. Scheiber, J. Mittermayer, A. Meta, A. Moreira, Processing of sliding spotlight and TOPS SAR data using baseband Azimuth scaling. IEEE Trans. Geosci. Remote Sens. 48(2), 770 (2010). doi: 10.1109/TGRS.2009.2027701 CrossRefGoogle Scholar
  20. 20.
    M. Sack, M. Ito, I. Cumming, Application of efficient linear FM matched filtering algorithms to synthetic aperture radar processing. IEE Proc. F Commun. Radar Signal Process. 132(1), 45 (1985). doi: 10.1049/ip-f-1.1985.0006 CrossRefGoogle Scholar
  21. 21.
    W.G. Carrara, R.S. Goodman, R.M. Majewski, Spotlight Synthetic Aperture Radar: Signal Processing Algorithms (Artech House, Boston, 1995)zbMATHGoogle Scholar
  22. 22.
    M. Born, E. Wolf, Principles of Optics, Chap. Appendix 3 (Cambridge University Press, Cambridge, 1999)Google Scholar
  23. 23.
    R. Raney, A new and fundamental fourier transform pair, in Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), vol. 1 (Houston, TX, USA, 1992), pp. 106–107. doi: 10.1109/IGARSS.1992.576640
  24. 24.
    T. Fritz, M.J., B. Schättler, B.W., S. Buckreuß, R. Werninghaus, TerraSAR-X ground segment level 1b product format specification, (DLR, 2007). http://terrasar-x.dlr.de/
  25. 25.
    P. Prats-Iraola, R. Scheiber, M. Rodriguez-Cassola, S. Wollstadt, J. Mittermayer, B. Brautigam, M. Schwerdt, A. Reigber, A. Moreira, High precision SAR focusing of TerraSAR-X experimental staring spotlight data, in Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (2012), pp. 3576–3579. doi: 10.1109/IGARSS.2012.6350644
  26. 26.
    D.C. Munson, Jr, J.D. O’Brien, W. Jenkins, A tomographic formulation of spotlight-mode synthetic aperture radar. Proc. IEEE 71(8), 917 (1983). doi: 10.1109/PROC.1983.12698
  27. 27.
    M. Desai, W. Jenkins, Convolution backprojection image reconstruction for spotlight mode synthetic aperture radar. IEEE Trans. Image Process. 1(4), 505 (1992). doi: 10.1109/83.199920 CrossRefGoogle Scholar
  28. 28.
    L.A. Gorham, L.J. Moore, SAR image formation toolbox for MATLAB. Proc. SPIE 7699, pp. 769, 906–13 (2010). doi: 10.1117/12.855375, http://dx.doi.org/10.1117/12.855375
  29. 29.
    M. Albuquerque, P. Prats, R. Scheiber, Applications of time-domain back-projection SAR processing in the airborne case, in Proceedings of the European Conference on Synthetic Aperture Radar (EuSAR) (Friedrichshafen, Germany, 2008), pp. 1–4Google Scholar
  30. 30.
    H. Van Trees, Detection, Estimation, and Modulation Theory: Optimum Array Processing (Wiley-Interscience, New York, 2002)Google Scholar
  31. 31.
    A. Ferretti, C. Prati, F. Rocca, Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 39(1), 8 (2001). doi: 10.1109/36.898661 CrossRefGoogle Scholar
  32. 32.
    C. Colesanti, A. Ferretti, F. Novali, C. Prati, F. Rocca, SAR monitoring of progressive and seasonal ground deformation using the permanent scatterers technique. IEEE Trans. Geosci. Remote Sens. 41(7), 1685 (2003). doi: 10.1109/TGRS.2003.813278 CrossRefGoogle Scholar
  33. 33.
    A. Anghel, G. Vasile, J.P. Ovarlez, G. D’Urso, D. Boldo, Stable scatterers detection and tracking in heterogeneous clutter by repeat-pass SAR interferometry, in Proceedings of the European Conference on Synthetic Aperture Radar (EuSAR) (Nuremberg, Germany, 2012), pp. 477–480Google Scholar
  34. 34.
    G. Vasile, J. Ovarlez, F. Pascal, M. Gay, G. D’Urso, D. Boldo, Stable scatterers detection and tracking in heterogeneous clutter by repeat-pass SAR interferometry, in Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers (ASILOMAR) (Pacific Grove, CA, USA, 2010), pp. 1343–1347. doi: 10.1109/ACSSC.2010.5757751
  35. 35.
    F. Serafino, SAR image coregistration based on isolated point scatterers. IEEE Geosci. Remote Sens. Lett. 3(3), 354 (2006). doi: 10.1109/LGRS.2006.872399 CrossRefGoogle Scholar
  36. 36.
    R. Scheiber, A. Moreira, Coregistration of interferometric SAR images using spectral diversity. IEEE Trans. Geosci. Remote Sens. 38(5), 2179 (2000). doi: 10.1109/36.868876 CrossRefGoogle Scholar
  37. 37.
    T. Fritz, H. Breit, M. Eineder, TerraSAR-X products—tips and tricks, in TerraSAR-X Science Meeting 2008 (DLR, Oberpfaffenhofen, Germany, 2008)Google Scholar
  38. 38.
    S. Sauer, L. Ferro-Famil, A. Reigber, E. Pottier, Three-dimensional imaging and scattering mechanism estimation over urban scenes using dual-baseline polarimetric InSAR observations at L-band. IEEE Trans. Geosci. Remote Sens. 49(11), 4616 (2011). doi: 10.1109/TGRS.2011.2147321 CrossRefGoogle Scholar
  39. 39.
    M. Nannini, R. Scheiber, A. Moreira, Estimation of the minimum number of tracks for SAR tomography. IEEE Trans. Geosci. Remote Sens. 47(2), 531 (2009). doi: 10.1109/TGRS.2008.2007846 CrossRefGoogle Scholar
  40. 40.
    X.X. Zhu, R. Bamler, Tomographic SAR inversion by \(L_1\)-norm regularization-the compressive sensing approach. IEEE Trans. Geosci. Remote Sens. 48(10), 3839 (2010). doi: 10.1109/TGRS.2010.2048117 CrossRefGoogle Scholar
  41. 41.
    S. Montazeri, X.X. Zhu, M. Eineder, R. Bamler, Three-dimensional deformation monitoring of urban infrastructure by tomographic SAR using multitrack TerraSAR-X data stacks. IEEE Trans. Geosci. Remote Sens. 54(12), 6868 (2016). doi: 10.1109/TGRS.2016.2585741 CrossRefGoogle Scholar
  42. 42.
    Y. Wang, X.X. Zhu, B. Zeisl, M. Pollefeys, Fusing meter-resolution 4-D InSAR point clouds and optical images for semantic urban infrastructure monitoring. IEEE Trans. Geosci. Remote Sens. PP(99), 1 (2016). doi: 10.1109/TGRS.2016.2554563
  43. 43.
    X.X. Zhu, R. Bamler, Let’s do the time warp: multicomponent nonlinear motion estimation in differential SAR tomography. IEEE Trans. Geosci. Remote Sens. 8(4), 735 (2011). doi: 10.1109/LGRS.2010.2103298 CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Andrei Anghel
    • 1
    Email author
  • Gabriel Vasile
    • 2
  • Remus Cacoveanu
    • 1
  1. 1.University Politehnica of BucharestBucharestRomania
  2. 2.Grenoble Image Speech Signal Automatics Laboratory (GIPSA-Lab)Centre National de la Recherche Scientifique (CNRS)Saint Martin d’HèresFrance

Personalised recommendations