Advertisement

Signal Model for Synthetic Aperture Radar Images

  • Andrei AnghelEmail author
  • Gabriel Vasile
  • Remus Cacoveanu
Chapter
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)

Abstract

This chapter introduces the SAR fundamental ideas and analysis methods employed in the subsequent chapters of the book. First, the geometrical configuration of the sensor relative to the imaged scene is described, followed by a brief overview of the time–frequency interpretation of the acquired signals. Afterwards, the principle of SAR image formation and the SAR tomography framework are introduced as the main classical processing tools.

Keywords

Slow Time Synthetic Aperture Radar Synthetic Aperture Radar Image Gaussian Window Antenna Phase Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J.P. Ovarlez, Temps-fréquence - cours ENST (1998)Google Scholar
  2. 2.
    L. Stankovic, M. Dakovic, T. Thayaparan, Time-Frequency Signal Analysis with Applications (Artech House, Boston, 2013)Google Scholar
  3. 3.
    M. Albuquerque, P. Prats, R. Scheiber, Applications of time-domain back-projection SAR processing in the airborne case, in Proceedings of the European Conference on Synthetic Aperture Radar (EuSAR), Friedrichshafen, Germany (2008), pp. 1–4Google Scholar
  4. 4.
    M. Desai, W. Jenkins, Convolution backprojection image reconstruction for spotlight mode synthetic aperture radar. IEEE Trans. Image Process. 1(4), 505–517 (1992). doi: 10.1109/83.199920 CrossRefGoogle Scholar
  5. 5.
    G. Fornaro, D. Reale, F. Serafino, Four-dimensional SAR imaging for height estimation and monitoring of single and double scatterers. IEEE Trans. Geosci. Remote Sens. 47(1), 224–237 (2009). doi: 10.1109/TGRS.2008.2000837 CrossRefGoogle Scholar
  6. 6.
    A. Reigber, A. Moreira, First demonstration of airborne sar tomography using multibaseline l-band data. IEEE Trans. Geosci. Remote Sens. 38(5), 2142–2152 (2000). doi: 10.1109/36.868873 CrossRefGoogle Scholar
  7. 7.
    G. Fornaro, F. Serafino, F. Soldovieri, Three-dimensional focusing with multipass sar data. IEEE Trans. Geosci. Remote Sens. 41(3), 507–517 (2003). doi: 10.1109/TGRS.2003.809934 CrossRefGoogle Scholar
  8. 8.
    J. Capon, High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE 57(8), 1408–1418 (1969). doi: 10.1109/PROC.1969.7278 CrossRefGoogle Scholar
  9. 9.
    F. Lombardini, M. Pardini, Superresolution differential tomography: experiments on identification of multiple scatterers in spaceborne SAR data. IEEE Trans. Geosci. Remote Sens. 50(4), 1117–1129 (2012). doi: 10.1109/TGRS.2011.2164925 CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Andrei Anghel
    • 1
    Email author
  • Gabriel Vasile
    • 2
  • Remus Cacoveanu
    • 1
  1. 1.University Politehnica of BucharestBucharestRomania
  2. 2.Grenoble Image Speech Signal Automatics Laboratory (GIPSA-Lab)Centre National de la Recherche Scientifique (CNRS)Saint Martin d’HèresFrance

Personalised recommendations