MRA-Based Wavelet Bases and Frames

  • Aleksandr Krivoshein
  • Vladimir Protasov
  • Maria SkopinaEmail author
Part of the Industrial and Applied Mathematics book series (INAMA)


Construction of multivariate wavelet systems based on a multiresolution analysis (MRA) is presented and discussed.


  1. 1.
    Sadovnichii, V.A.: Theory of operators. Roger Cooke Publisher, New York, Consultants Bureau (1991)Google Scholar
  2. 2.
    Novikov, I.Y., Protasov, V.Y., Skopina, M.A.: Wavelet Theory, vol. 239. AMS, Providence, RI, Translations Mathematical Monographs (2011)Google Scholar
  3. 3.
    Lam, T.Y.: Serre’s conjecture, I in “Lecture Notes in Mathematics”, vol. 635. Springer-Verlag, New York (1978)Google Scholar
  4. 4.
    Suslin, A.A.: On the structure of the special linear group over polynomial rings. Math. USSR - Izvestija 11(2), 221–238 (1977)CrossRefzbMATHGoogle Scholar
  5. 5.
    Park, H., Woodburn, C.: An algorithmic proof of Suslin’s stability theorem for polynomial rings. J. Algebra 178, 277–298 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Amidou, M., Yengui, I.: An algorithm for unimodular completion over Laurent polynomial rings. Linear Algebra Appl. 429(7), 1687–1698 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2016

Authors and Affiliations

  • Aleksandr Krivoshein
    • 1
  • Vladimir Protasov
    • 2
  • Maria Skopina
    • 1
    Email author
  1. 1.Department of Applied Mathematics and Control ProcessesSaint Petersburg State UniversitySaint PetersburgRussia
  2. 2.Department of Mechanics and MathematicsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations