Skip to main content

Construction of C(sp3)–C(sp2) Bonds Via Palladium-Catalyzed Decarboxylative Couplings of 2-(2-Azaaryl)Acetate Salts with Aryl Halides

  • Chapter
  • First Online:
New Carbon–Carbon Coupling Reactions Based on Decarboxylation and Iron-Catalyzed C–H Activation

Part of the book series: Springer Theses ((Springer Theses))

  • 715 Accesses

Abstract

Pd-catalyzed decarboxylative cross-couplings of 2-(2-azaaryl)acetates with aryl halides and triflates have been discovered. This reaction is potentially useful for the synthesis of some functionalized pyridines, quinolines, pyrazines, benzoxazoles, and benzothiazoles. Theoretical analysis shows that the nitrogen atom at the 2-position of the heteroaromatics directly coordinates to Pd(II) in the decarboxylation transition state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. (a) Baudoin, O. (2007). Angewandte Chemie International Edition, 46, 1373–1375. (b) Goossen, L. J., Rodriguez, N., & Goossen, K. (2008). Angewandte Chemie International Edition, 47, 3100–3120.

    Google Scholar 

  2. (a) Myers, A. G., Tanaka, D., & Mannion, M. R. (2002). Journal of the American Chemical Society, 124, 11250–11251. (b) Tanaka, D., & Myers, A. G. (2004). Organic Letters, 6, 433–436. (c) Tanaka, D., Romeril, S. P., & Myers, A. G. (2005). Journal of the American Chemical Society, 127, 10323–10333.

    Google Scholar 

  3. (a) Forgione, P., Brochu, M. C., St-Onge, M., Thesen, K. H., Bailey, M. D., & Bilodeau, F. (2006). Journal of the American Chemical Society, 128, 11350–11363. (b) Bilodeau F., Brochu, M. C., Guimond N., Thesen K. H., & Forgione P. (2010). The Journal of Organic Chemistry, 75, 1550–1560.

    Google Scholar 

  4. (a) Becht, J.-M., & Le Drian, C. (2008). Organic Letters, 10, 3161–3164. (b) Becht, J.-M., Catala, C., Le Drian, C., & Wagner, A. (2007). Organic Letters, 9, 1781–1783.

    Google Scholar 

  5. (a) Maehara, A., Tsurugi, H., Satoh, T., & Miura, M. (2008). Organic Letters, 10, 1159–1162. (b) Yamashita, M., Hirano, K., Satoh, T., & Miura, M. (2009). Organic Letters, 11, 2337–2340.

    Google Scholar 

  6. (a) Moon, J., Jeong, M., Nam, H., Ju, J., Moon, J. H., Jung, H. M., & Lee, S. (2008). Organic Letters, 10, 945–948. (b) Moon, J., Jang, M., & Lee, S. (2009). The Journal of Organic Chemistry, 74, 1403–1406.

    Google Scholar 

  7. (a) Wang, Z. Y., Ding, Q. P., He, X. D., & Wu, J. (2009). Tetrahedron, 65, 4635–4638. (b) Voutchkova, A., Coplin, A., Leadbeater, N. E., & Crabtree, R. H. (2008). Chemical Communications, 6312–6314. (c) Wang, C., Piel, I., & Glorius, F. (2009). Journal of the American Chemical Society, 131, 4194–4195.

    Google Scholar 

  8. (a) Shang, R., Fu, Y., Li, J. B., Zhang, S. L., Guo, Q. X., & Liu, L. (2009). Journal of the American Chemical Society, 131, 5738–5739. (b) Shang, R., Xu, Q., Jiang, Y.-Y., Wang, Y., & Liu, L. (2010). Organic Letters, 12, 1000–1003.

    Google Scholar 

  9. (a) Goossen, L. J., Deng, G., & Levy, L. M. (2006). Science, 313, 662–664. (b) Goossen, L. J., Rodriguez, N., Melzer, B., Linder, C., Deng, G., & Levy, L. M. (2007). Journal of the American Chemical Society, 129, 4824–4833. (c) Goossen, L. J., & Melzer, B. (2007). The Journal of Organic Chemistry, 72, 7473–7476. (d) Goossen, L. J., Zimmermann, B., & Knauber, T. (2008). Angewandte Chemie International Edition, 47, 7103–7106. (e) Goossen, L. J., & Knauber, T. (2008). The Journal of Organic Chemistry, 73, 8631–8634. (f) Goossen, L. J., Rodriguez, N., & Linder, C. (2008). Journal of the American Chemical Society, 130, 15248–15249. (g) Goossen, L. J., Manojolinho, F., Khan, B. A., & Rodriguez, N. (2009). The Journal of Organic Chemistry, 74, 2620–2623. (h) Goossen, L. J., Rudolphi, F., Oppel, C., & Rodriguez, N. (2008). Angewandte Chemie International Edition, 47, 3043–3045. (i) Goossen, L. J., Rodriguez, N., Lange P., & Linder, C. (2010). Angewandte Chemie International Edition, 49, 1111–1114.

    Google Scholar 

  10. Shang, R., Fu, Y., Wang, Y., Xu, Q., Yu, H.-Z., & Liu, L. (2009). Angewandte Chemie International Edition, 48, 9350–9354.

    Google Scholar 

  11. (a) Burger, E. C., & Tunge, J. A. (2006). Journal of the American Chemical Society, 128, 10002–10003. (b) Waetzig, S. R., & Tunge, J. A. (2007). Journal of the American Chemical Society, 129, 4138–4139. (c) Trost, B. M., Xu, J., & Schmidt, T. (2009). Journal of the American Chemical Society, 131, 18343–18357. (d) Trost, B. M., Xu, J., & Schmidt, T. (2008). Journal of the American Chemical Society, 130, 11852–11853.

    Google Scholar 

  12. Decarboxylation of amino acids has been shown to generate electrophilic species: (a) Bi, H.-P., Zhao, L., Liang, Y.-M., & Li, C.-J. (2009). Angewandte Chemie International Edition, 48, 792–795. (b) Bi, H.-P., Chen, W.-W., Liang, Y.-M., & Li, C.-J. (2009). Organic Letters, 11, 3246–3249. (c) Zhang, C., & Seidel, D. (2010). Journal of the American Chemical Society, 132, 1798–1799.

    Google Scholar 

  13. (a) Niwa, T., Yorimitsu, H., & Oshima, K. (2007). Angewandte Chemie International Edition, 46, 2643–2645. (b) For a related study, see: Qian, B., Guo, S., Shao, J., Zhu, Q., Yang, L., Xia, C., & Huang, H. (2010). Journal of the American Chemical Society, 132, 3650–3651.

    Google Scholar 

  14. 2- and 4-Pyridylacetic acids decarboxylate thermally in high yield at 90 °C, while the 3-derivative is stable at that temperature; see: Stermitz, F. R., & Huang, W. H. (1971). Journal of the American Chemical Society, 93, 3427–3431.

    Google Scholar 

  15. Campeau, L. C., Schipper, D. J., & Fagnou, K. (2008). Journal of the American Chemical Society, 130, 3266–3267.

    Google Scholar 

  16. For related theoretical analysis of decarboxylation and decarboxylative coupling of C(sp2)-COOH, see: Zhang, S.-L., Fu, Y., Shang, R., Guo, Q.-X., & Liu, L. (2010). Journal of the American Chemical Society, 132, 638–646.

    Google Scholar 

  17. We isolated the CP2 complex with 4-CN-phenyl substitution according to a previous paper (Yin, J., & Buchwald, S. L. (2002). Journal of the American Chemical Society, 124, 6043–6048). We found that CP2 is catalytically active. By addition of CP2 to the reaction between bromobenzene and potassium 2-(2-pyridyl)acetate, we could obtain the desired product (2-benzylpyridine) in 99% GC yield. We also observed a small amount of crossover byproduct, namely, 4-(pyridin-2-ylmethyl)benzonitrile.

    Google Scholar 

  18. (a) Kawatsura, M., & Hartwig, J. F. (1999). Journal of the American Chemical Society, 121, 1473–1478. (b) Jorgensen, M., Lee, S., Liu, X., Wolkowski, J. P., & Hartwig, J. F. (2002). Journal of the American Chemical Society, 124, 12557–12565. (c) Hama, T., Liu, X., Culkin, D. A., & Hartwig, J. F. (2003). Journal of the American Chemical Society, 125, 11176–11177. (d) Nguyen, H. N., Huang, X., & Buchwald, S. L. (2003). Journal of the American Chemical Society, 125, 11818–11819.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Shang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Shang, R. (2017). Construction of C(sp3)–C(sp2) Bonds Via Palladium-Catalyzed Decarboxylative Couplings of 2-(2-Azaaryl)Acetate Salts with Aryl Halides. In: New Carbon–Carbon Coupling Reactions Based on Decarboxylation and Iron-Catalyzed C–H Activation. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-3193-9_5

Download citation

Publish with us

Policies and ethics