Skip to main content

Synthesis of Polyfluorobiaryls via Copper-Catalyzed Decarboxylative Couplings of Potassium Polyfluorobenzoates with Aryl Bromides and Iodides

  • Chapter
  • First Online:
New Carbon–Carbon Coupling Reactions Based on Decarboxylation and Iron-Catalyzed C–H Activation

Part of the book series: Springer Theses ((Springer Theses))

  • 718 Accesses

Abstract

In this chapter, we report a copper-catalyzed decarboxylative cross-coupling of potassium polyfluorobenzoates with aryl iodides and bromides. This reaction can be used for the preparation of polyfluoroaromatic compounds and polyfluorostilbene. The reactants used in the reaction are easily accessible nonvolatile polyfluorobenzoate salts. Mechanistic studies suggest that decarboxylation occurs at first on copper(I) to generate a polyfluorophenylcopper(I) intermediate, which then undergoes oxidative addition with aryl halides and reductive elimination to produce the coupling products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. (a) Baudoin, O. (2007). Angewandte Chemie International Edition, 46, 1373–1375. (b) Goossen, L. J., Rodriguez, N., & Goossen, K. (2008). Angewandte Chemie International Edition, 47, 3100–3120.

    Google Scholar 

  2. (a) Nilsson, M. (1966). Acta Chemica Scandinavica, 20, 423–907. (b) Björklund, C., & Nilsson, M. (1968). Acta Chemica Scandinavica, 22, 2585–2588. (c) Cairncross, A., Roland, J. R., Henderson, R. M., & Shepard, W. A. (1970). Journal of the American Chemical Society, 92, 3187–3189.

    Google Scholar 

  3. (a) Goossen, L. J., Deng, G., & Levy, L. M. (2006). Science, 313, 662–664. (b) Goossen, L., Rodriguez, J.N., Melzer, B., Linder, C., Deng, G., & Levy, L. M. (2007). Journal of the American Chemical Society, 129, 4824–4833. (c) Goossen, L. J., & Melzer, B. (2007). The Journal of Organic Chemistry, 72, 7473–7476. (d) Goossen, L. J., & Knauber, T. (2008). The Journal of Organic Chemistry, 73, 8631–8634. (e). Goossen, L. J., Zimmermann, B., & T. Knauber. (2008). Angewandte Chemie International Edition, 47, 7103–7106. (f) Goossen, L. J., Rodriguez, N., & Linder, C. (2008). Journal of the American Chemical Society, 130, 15248–15249. (g) Goossen, L. J., Rudolphi, F., Oppel, C., & Rodriguez, N. (2008). Angewandte Chemie International Edition, 47, 3043–3045.

    Google Scholar 

  4. (a) Myers, A. G., Tanaka, D., & Mannion, M. R. (2002). Journal of the American Chemical Society, 124, 11250–11251. (b) Tanaka, D., & Myers, A. G. (2004). Organic Letters, 6, 433–436. (c) Tanaka, D., Romeril, S. P., & Myers, A. G. (2005). Journal of the American Chemical Society, 127, 10323–10333.

    Google Scholar 

  5. Forgione, P., Brochu, M.-C., St-Onge, M., Thesen, K. H., Bailey, M. D., & Bilodeau, F. (2006). Journal of the American Chemical Society, 128, 11350–11351.

    Google Scholar 

  6. (a) Moon, J., Jeong, M., Nam, H., Ju, J., Moon, J. H., Jung, H. M., & Lee, S. (2008). Organic Letters, 10, 945–948. (b) Moon, J., Jang, M., & Lee, S. J. (2009). Organic Letters, 74, 1403–1408.

    Google Scholar 

  7. (a) Becht, J.-M., & Le Drian, C. (2008). Organic Letters, 10, 3161–3164. (b) Becht, J.-M., Catala, C., Le Drian, C., & Wagner, A. (2007). Organic Letters, 9, 1781–1784.

    Google Scholar 

  8. (a) Wang, Z. Y., Ding, Q. P., He, X. D., & Wu, J. (2009). Organic & Biomolecular Chemistry, 7, 863–864. (b) Wang, Z. Y., Ding, Q. P., He, X. D., & Wu, J. (2009). Tetrahedron, 65, 4635–4638. (c) Voutchkova, A., Coplin, A., Leadbeater, N. E., & Crabtree, R. H. (2008). Chemical Communications, 6312–6313.

    Google Scholar 

  9. Wang, C., Piel, I., & Glorius, F. (2009). The Journal of Organic Chemistry, 131, 4194–4200.

    Google Scholar 

  10. Shang, R., Fu, Y., Li, J. B., Zhang, S. L., Guo, Q. X., & Liu, L. (2009). The Journal of Organic Chemistry, 131, 5738–5743.

    Google Scholar 

  11. Waetzig, S. R., Rayabarupu, D. K., Weaver, J. D., & Tunge, J. A. (2006). Angewandte Chemie International Edition, 45, 4977–4985.

    Google Scholar 

  12. There are two literature examples for palladium-catalyzed decarboxylative coupling of perfluorobenzoic acid with 4-iodoanisole; see references [7b, 8c].

    Google Scholar 

  13. For a special protocol for the Suzuki–Miyaura coupling reaction of pentafluorophenylboronic acid, which is an inactive substrate under normal conditions, see: Korenaga, T., Kosaki, T., Fukumura, R., Ema, T., & Sakai, T. (2005). Organic Letters, 7, 4915–4925.

    Google Scholar 

  14. (a) Zahn, A., Brotschi, C., & Leumann, C. (2005). Chemistry—A European Journal, 11, 2125–2129. (b) Mewshaw, R. E., Edsall Jr., R. J., Yang, C., Manas, E. S., Xu, Z. B., Henderson, R. A., Keith Jr., J. C., & Harris, H. A. (2005). Journal of Medicinal Chemistry, 48, 3953–3959. (c) de Candia, M., Liantonio, F., Carotti, A., De Cristofaro, R., & Altomare, C. (2009). Journal of Medicinal Chemistry, 52, 1018–1028.

    Google Scholar 

  15. (a) Sakamoto, Y., Suzuki, T., Miura, A., Fujikawa, H., Tokito, S., & Taga, Y. (2000). Journal of the American Chemical Society, 122, 1832–1833. (b) Nitschke, J. R., & Tilley, T. D. (2001). Journal of the American Chemical Society, 123, 10183–10190. (c) Zacharias, P., Gather, M. C., Rojahn, M., Nuyken, O., & Meerholz, K. (2007). Angewandte Chemie International Edition, 46, 4388–4392.

    Google Scholar 

  16. (a) Lafrance, M., Rowley, C. N., Woo, T. K., & Fagnou, K. (2006). Journal of the American Chemical Society, 128, 8754–8756. (b) Lafrance, M.; Shore, D., & Fagnou, K. (2006). Organic Letters, 8, 5097–5100.

    Google Scholar 

  17. (a) Do, H.-Q., & Daugulis, O. (2007). Journal of the American Chemical Society, 129, 12404–12405. (b) Do, H.-Q., & Daugulis, O. (2008). Journal of the American Chemical Society, 130, 1128–1129. (c) Do, H.-Q., Kashif Khan, R. M., & Daugulis, O. (2008). Journal of the American Chemical Society, 130, 15185–15192.

    Google Scholar 

  18. Goossen, L. J., Manjolinho, F., Khan, B. A., & Rodriguez, N. J. (2009). Organic Letters, 74, 2620–2623.

    Google Scholar 

  19. Reviews for copper-catalyzed cross-couplings : (a) Ley, S. V., & Thomas, A. W. (2003). Angewandte Chemie International Edition, 42, 5400–5449. (b) Deng, W., Liu, L., & Guo, Q.-X. (2004). Chinese Journal of Organic Chemistry, 24, 150–165. (c) Monnier, F., & Taillefer, M. (2008). Angewandte Chemie International Edition, 47, 3096–3099. (d) Evano, G., Blanchard, N., & Toumi, M. (2008). Chemical Reviews, 108, 3054–3131.

    Google Scholar 

  20. For selected examples of copper-catalyzed cross-couplings, see: (a) Klapars, A., Antilla, J. C., Huang, X., & Buchwald, S. L. (2001). Journal of the American Chemical Society, 123, 7727–7729. (b) Shafir, A., & Buchwald, S. L. (2006). Journal of the American Chemical Society, 128, 8742–8743. (c) Altman, R. A., Hyde, A. M., Huang, X., & Buchwald, S. L. (2008). Journal of the American Chemical Society, 130, 9613–9620. (d) Ma, D., Zhang, Y., Yao, J., Wu, S., & Tao, F. (1998). Journal of the American Chemical Society, 120, 12459–12467. (e) Ma, D., & Liu, F. (2004). Chemical Communications, 1934–1939. (f) Ma, D., Xie, S., Xue, P., Zhang, X., Dong, J., & Jiang, Y. (2009). Angewandte Chemie International Edition, 48, 4222–4225. (g) Thathagar, M. B., Beckers, J., & Rothenberg, G. (2002). Journal of the American Chemical Society, 124, 11858–11859. (h) del Amo, V., Dubbaka, S. R., Krasovskiy, A., & Knochel, P. (2006). Angewandte Chemie International Edition, 45, 7838–7842. (i) Chen, X., Hao, X.-S., Goodhue, C. E., & Yu, J.-Q. (2006). Journal of the American Chemical Society, 128, 6790–6791. (j) Villalobos, J. M., Srogl, J., & Libeskind, L. S. (2007). Journal of the American Chemical Society, 129, 15734–15735. (k) Prokopcova, H., & Kappe, C. O. (2008). Angewandte Chemie International Edition, 47, 3674–3676. (l) Fuller, P. H., Kim, J.-W., & Chemler, S. R. (2008). Journal of the American Chemical Society, 130, 17638–17639. (m) King, A. E., Brunold, T. C., & Stahl, S. S. (2009). Journal of the American Chemical Society, 131, 5044–5045. (n) Phipps, R. J., & Gaunt, M. J. (2009). Science, 323, 1593–1601.

    Google Scholar 

  21. Goossen, L. J., Thiel, W. R., Rodriguez, N., Linder, C., & Melzer, B. (2007). Advanced Synthesis & Catalysis, 349, 2241–2252.

    Google Scholar 

  22. Some previous studies on the mechanism of copper-catalyzed cross-couplings: (a) Ouali, A., Spindler, J.-F., Jutand, A., & Taillefer, M. (2007). Advanced Synthesis & Catalysis, 349, 1906–1913. (b) Zhang, S.-L., Liu, L., Fu, Y., & Guo, Q.-X. (2007). Organometallics, 26, 4546–4551. (c) Tye, J. W., Weng, Z., Johns, A. M., Incarvito, C. D., & Hartwig, J. F. (2008). Journal of the American Chemical Society, 130, 9971–9983. (d) Huffman, L. M., & Stahl, S. S. (2008). Journal of the American Chemical Society, 130, 9196–9197. (e) Kaddouri, H., Vicente, V., Ouali, A.; Ouazzani, F., & Taillefer, M. (2009). Angewandte Chemie International Edition, 48, 333–346. (f) Strieter, E. R., Bhayana, B., & Buchwald, S. L. (2009). Journal of the American Chemical Society, 131, 78–88.

    Google Scholar 

  23. Earlier studies already showed that pentafluorophenylcopper can react with aryl iodides producing coupling products in high yield. See: (a) Cairncross, A., & Sheppard, W. A. (1968). Journal of the American Chemical Society, 90, 2186–21187. (b) Sheppard, W. A. (1970). Journal of the American Chemical Society, 92, 5419–5422.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Shang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Shang, R. (2017). Synthesis of Polyfluorobiaryls via Copper-Catalyzed Decarboxylative Couplings of Potassium Polyfluorobenzoates with Aryl Bromides and Iodides. In: New Carbon–Carbon Coupling Reactions Based on Decarboxylation and Iron-Catalyzed C–H Activation. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-3193-9_3

Download citation

Publish with us

Policies and ethics