Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 756 Accesses

Abstract

Directed C(sp3)–H bond functionalization has been studied mainly by using precious metal catalysts, such as Pd, Ru, Rh, and Ir under harsh conditions. Generally, these metal-catalyzed C–H functionalization reactions are based on the formation of a C(sp3)-metallacycle. Iron-catalyzed C(sp3)–H functionalization has been studied mainly using radical processes. Functionalization of an unactivated C(sp3)–H bond via formation of a ferracycle intermediate is limited to stoichiometric reactions. We report here an iron/biphosphine-catalyzed directed arylation of a C(sp3)–H bond in an aliphatic carboxamide with an organozinc reagent in high yield under mild oxidative conditions. The choice of the directing group and of the biphosphine ligand was crucial for the success of this reaction. This reaction shows selectivity for a primary C–H over a secondary one and is sensitive to steric factors on both the amide and the Grignard reagent. Various β-arylated aliphatic carboxamides can be readily prepared by using this method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. (a) Bolm, C. (2009). Nature. Chemistry, 1, 420. (b) Nakamura, E., & Sato, K. (2011). Nature Material, 10, 158–161.

    Google Scholar 

  2. Selected reviews: (a) Bolm, C., Legros, J., Le Paih, J., & Zani, L. (2004). Chemical Reviews, 104, 6217–6254. (b) Plietker, B. Ed. (2008). Iron Catalysis in Organic Chemistry Wiley-VCH: Weinheim, Germany. (c) Enthaler, S., Junge, K., & Beller, M. (2008). Angewandte Chemie International Edition, 47, 3317–3321. (d) Sherry, B. D., & Fürstner, A. (2008). Accounts of chemical research, 41, 1500–1511. (e) Czaplik, W. M., Mayer, M., Cvengros, J. & Jacobi von Wangelin, A. (2009). Chemistry and Sustainable Chemistry, 2, 396–417.

    Google Scholar 

  3. Dyker, G. Ed. Handbook of C–H Transformations Wiley-VCH: Weinheim, Germany, (2005).

    Google Scholar 

  4. Sun, C.-L., Li, B.-J., & Shi, Z.-J. (2011). Chemical Reviews, 111, 1293–1314.

    Google Scholar 

  5. (a) Godula, K., & Sames, D. (2006). Science, 312, 67–72. (b) Chen, X., Engle, K. M., Wang, D.-H., & Yu, J.-Q. (2009). Angewandte Chemie International Edition, 48, 5094–5115. (c) Jazzar, R., Hitce, J., Renaudat, A., Sofack-Kreutzer, J., & Baudoin, O. (2010). Chemistry-A European Journal, 16, 2654–2672. (d) Baudoin, O. (2011). Chemical Society Reviews, 40, 4902–4911. (e) Li, H., Li, B.-J., & Shi, Z.-J. (2011). Catalysis Science & Technology, 1, 191–206.

    Google Scholar 

  6. Selected recent examples: (a) Ano, Y., Tobisu, M., & Chatani, N. (2011). Journal of the American Chemical Society, 133, 12984–12986. (b) Wasa, M., Chan, K. S. L., Zhang, X.-G., He, J., Miura, M., & Yu, J.-Q. (2012). Journal of the American Chemical Society, 134, 18570–18572. (c) Rousseaux, S., Liégault, B., & Fagnou, K. (2012). Chemical Science, 3, 244–248. (d) Zhang, S.-Y., He, G., Nack, W. A., Zhao, Y., Li, Q., & Chen, G. (2013). Journal of the American Chemical Society, 135, 2124–2127. (e) Shang, Y., Jie, X., Zhou, J., Hu, P., Huang, S., & Su, W. (2013). Angewandte Chemie International Edition, 52, 1299–1303.

    Google Scholar 

  7. (a) Li, Z., Cao, L., & Li, C.-J. (2007). Angewandte Chemie International Edition, 46, 6505–6507. (b) Zhang, Y., & Li, C.-J. (2007). European Journal of Organic Chemistry, 4654–4657. (c) Li, Z., Yu, R., & Li, H. (2008). Angewandte Chemie International Edition, 47, 7497–7500. (d) Li, Y.-Z., Li, B.-J., Lu, X.-Y., Lin, S., & Shi, Z.-J. (2009). Angewandte Chemie International Edition, 48, 3817–3820. (e) Volla, C. M. R., & Vogel, P. (2009). Organic Letters, 11, 1701–1704. (f) Singh, P. P., Gudup, S., Ambala, S., Singh, U., Dadhwal, S., Singh, B., Sawant, S. D., & Vishwakarma, R. A. (2011). Chemical Communications, 47, 5852–5854.

    Google Scholar 

  8. (a) Yoshikai, N., Mieczkowski, A., Matsumoto, A., Ilies, L., & Nakamura, E. (2010). Journal of the American Chemical Society, 132, 5568–5569. (b) Sekine, M., Ilies, L., & Nakamura, E. (2013). Organic Letters, 15, 714–717.

    Google Scholar 

  9. (a) Nakamura, E., & Kuwajima, I. (1977). Journal of the American Chemical Society, 99, 7360–7361. (b) Nakamura, E., & Kuwajima, I. (1984). Journal of the American Chemical Society, 106, 3368–3370. (c) Aoki, S. Fujimura, T. Nakamura, E., & Kuwajima, I. (1988). Journal of the American Chemical Society, 110, 3296–3298.

    Google Scholar 

  10. (a) Zaitsev, V. G., Shabashov, D., & Daugulis, O. (2005). Journal of the American Chemical Society, 127, 13154–13155. (b) Shabashov, D., & Daugulis, O. (2010). Journal of the American Chemical Society, 132, 3965–3972.

    Google Scholar 

  11. Li, B.-J., & Shi, Z.-J. (2012). Chemical Society Reviews, 41, 5588–5598.

    Google Scholar 

  12. Nakamura, E., & Yoshikai, N. (2010). The Journal of Organic Chemistry, 75, 6061–6067.

    Google Scholar 

  13. (a) Norinder, J., Matsumoto, A., Yoshikai, N., & Nakamura, E. (2008). Journal of the American Chemical Society, 130, 5858–5859. (b) Yoshikai, N., Matsumoto, A., Norinder, J., & Nakamura, E. (2009). Angewandte Chemie International Edition, 48, 2925–2928. (c) Ilies, L., Asako, S., & Nakamura, E. (2011). Journal of the American Chemical Society, 133, 7672–7675. (d) Matsumoto, A., Ilies, L., & Nakamura, E. (2011). Journal of the American Chemical Society, 133, 6557–6559.

    Google Scholar 

  14. (a) Cahiez, G., Chaboche, C., Mahuteau-Betzer, F., & Ahr, M., (2005).Organic Letters, 7, 1943–1946. (b) Nagano, T., & Hayashi, T. (2005). Organic Letters, 7, 491–493.

    Google Scholar 

  15. Nakamura, Y., Ilies, L., & Nakamura, E. (2011). Organic Letters, 13, 5998–6001.

    Google Scholar 

  16. Yoshikai, N., Asako, S., Yamakawa, T., Ilies, L., & Nakamura, E. (2011). Chemistry – An Asian Journal, 6, 3059–3065.

    Google Scholar 

  17. (a) Baker, M. V., & Field, L. D. (1987). Journal of the American Chemical Society, 109, 2825–2826. (b) Field, L. D., & Baker, M. V. (1999). Australian Journal of Chemistry, 52, 1005–1011. (c) Ohki, Y., Hatanaka, T., & Tatsumi, K. (2008). Journal of the American Chemical Society, 130, 17174–17186. (d) Xu, G. Q., & Sun, H., Li, X. (2009).Organometallics, 28, 6090–6095.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Shang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Shang, R. (2017). β-Arylation of Carboxamides Via Iron-Catalyzed C(sp3)–H Bond Activation. In: New Carbon–Carbon Coupling Reactions Based on Decarboxylation and Iron-Catalyzed C–H Activation. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-3193-9_10

Download citation

Publish with us

Policies and ethics