Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Transition metal-catalyzed decarboxylative cross-coupling reactions have recently emerged as a new and important category of organic transformations that find versatile applications in the construction of carbon–carbon and carbon–heteroatom bonds. The use of relatively cheap and stable carboxylic acids to replace organometallic reagents enables the decarboxylative cross-coupling reactions to proceed with good selectivities and functional group tolerance. In the present review, we summarize the various types of decarboxylative cross-coupling reactions catalyzed by different transition metal complexes. The scope and applications of these reactions are described. The challenges and opportunities in the field are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De Meijere, A., Diederich, F. (2nd Ed.). (2004). Metal-catalyzed Cross-Coupling Reactions: Wiley- VCH, Weinheim.

    Google Scholar 

  2. Myers, A. G., Tanaka D., & Mannion, M. R. (2002). Journal of the American Chemical Society, 124, 11250–11251.

    Google Scholar 

  3. 1) Gooßen, L. J., Deng, G. J., & Levy, L. M. (2006). Science, 313, 662–664. 2) Baudoin O. (2007). Angewandte Chemie International Edition, 46, 1373–1375.

    Google Scholar 

  4. Nilsson, M. (1966). Acta Chemica Scandinavica, 20, 423–426.

    Google Scholar 

  5. Cohen, T., & Schambach, R. A. (1970). Journal of the American Chemical Society, 92, 3189–3190.

    Google Scholar 

  6. Cairncross, A., Roland, J. R., Henderson, R. M., & Sheppard, W. A. (1970). Journal of the American Chemical Society, 92, 3187–3189.

    Google Scholar 

  7. Gooßen, L. J., Thiel, W. R., Rodríguez, N., Linder, C., & Melzer, B. (2007). Advanced Synthesis & Catalysis, 349, 2241–2246.

    Google Scholar 

  8. Goossen, L. J., Manjolinho, F., Khan, B-A., & Rodríguez, N. (2009). The Journal of Organic Chemistry, 74, 2620–2623.

    Google Scholar 

  9. Kolarovič, A., & Fáberová, Z. (2009). The Journal of Organic Chemistry, 74, 7199–7202.

    Google Scholar 

  10. Gooßen, L. J., Linder, C., Rodríguez, N., Lange, P. P., & Fromm, A. (2009). Chemical Communications, 7173–7175.

    Google Scholar 

  11. Lu, P., Sanchez, C., Cornella, J., & Larrosa, I. (2009). Organic Letters, 11, 5710–5713. 2) Cornella, J., Sanchez, C., Banawa, D., & Larrosa, I. (2009). Chemical Communication, 7176–7178.

    Google Scholar 

  12. Gooßen, L. J., Rodríguez, N., Linder, C., Lange, P. P., & Fromm, A. (2010). ChemCatChem, 2, 430–442.

    Google Scholar 

  13. Dupuy, S., Lazreg, F., Slawin, A. M. Z., Cazin, C. S. J., & Nolan S. P. (2011). Chemical Communications, 47, 5455–5457.

    Google Scholar 

  14. Cornella, J., Rosillo-Lopez, M., & Larrosa, I. (2011). Advanced Synthesis & Catalysis, 353, 1359–1366.

    Google Scholar 

  15. Dickstein, J. S., Mulrooney, C. A., O’Brien, E. M., Morgan, B. J., & Kozlowski, M. C. (2007). Organic Letters, 9, 2441–2444.

    Google Scholar 

  16. Tanaka, D., Romeril, S. P., & Myers, A. G. (2005). Journal of the American Chemical Society, 127, 10323–10333.

    Google Scholar 

  17. Sun, Z. M., Zhang, J., & Zhao, P. (2010). Organic Letters, 12, 992–995.

    Google Scholar 

  18. Rodriguez, N. & Goossen L. J., (2011). Chemical Society Reviews, 40, 5030–5048.

    Google Scholar 

  19. Goossen, L. J., Zimmermann, B., & Knauber, T. (2008). Angewandte Chemie International Edition, 47, 7103–7106.

    Google Scholar 

  20. Goossen, L. J., Rodríguez, N., & Linder, C. (2008). Journal of the American Chemical Society, 130, 15248–15249.

    Google Scholar 

  21. Goossen, L. J., Rodríguez, N., Lange, P. P., & Linder, C. (2010). Angewandte Chemie International Edition, 49, 1111–1114.

    Google Scholar 

  22. Goossen, L. J., Rodríguez, N., Melzer, B., Linder, C., Deng, G. J., & Levy, L. M. (2007). Journal of the American Chemical Society, 129, 4824–4833.

    Google Scholar 

  23. Becht, J. M., Catala, C., Drian, C. L., & Wagner, A. (2007). Organic Letters, 9, 1781–1783.

    Google Scholar 

  24. Becht, J. M., & Drian, C. L. (2008). Organic Letters, 10, 3161–3164.

    Google Scholar 

  25. Wang, Z.-Y., Ding, Q.-P., He, X.-D., & Wu, J. (2009). Tetrahedron Letters, 65, 4635–4638.

    Google Scholar 

  26. Zhang, F., & Greaney, M. F. (2010). Organic Letters, 12, 4745–4747.

    Google Scholar 

  27. Goossen, L. J., Lange, P. P., Rodríguez, N., & Linder, C. (2010). Chemistry - A European Journal, 16, 3906–3909.

    Google Scholar 

  28. Peschko, C., Winklhofer, C., & Steglich, W. (2000). Chemistry - A European Journal, 6, 1147–1152.

    Google Scholar 

  29. Forgione, P., Brochu, M. C., St-Onge, M., & Thesen, K. H. (2006). Journal of the American Chemical Society, 128, 11350–11351.

    Google Scholar 

  30. Shang, R., Xu, Q., Jiang, Y.-Y., Wang, Y., & Liu, L. (2010). Organic Letters, 12, 1000–1003.

    Google Scholar 

  31. Miyasaka, M., Fukushima, A., Satoh, T., Hirano, K., & Miura, M. (2009). Chemistry - A European Journal, 15, 3674–3677.

    Google Scholar 

  32. Arroyave, F. A., & Reynolds, J. R. (2010). Organic Letters, 12, 1328–1331.

    Google Scholar 

  33. Shang, R., Fu, Y., Wang, Y., Xu, Q., Yu, H.-Z., & Liu, L. (2009). Angewandte Chemie International Edition, 48, 9350–9354.

    Google Scholar 

  34. Moon, J., Jeong, M., Nam, H., Ju, J., Moon, J. H., Jung, H. M., & Lee, S. (2008). Organic Letters, 10, 945–948.

    Google Scholar 

  35. Zhang, W. W., Zhang, X.-G., & Li, J.-H. (2010). The Journal of Organic Chemistry, 75, 5259–5264.

    Google Scholar 

  36. Zhao, D.-B., Gao, C., Su, X.-Y., He, Y.-Q., You, J.-S., & Xue, Y. (2010). Chemical Communications, 46, 9049–9051.

    Google Scholar 

  37. Goossen, L. J., Rudolphi, F., Oppel, C., & Rodríguez, N. (2008). Angewandte Chemie International Edition, 47, 3043–3045.

    Google Scholar 

  38. Shang, R., Fu, Y., Li, J.-B., Zhang, S.-L., Guo, Q.-X., & Liu, L. (2009). Journal of the American Chemical Society, 131, 5738–5739.

    Google Scholar 

  39. Shang, R., Yang, Z.-W., Wang, Y., Zhang, S.-L., & Liu, L. (2010). Journal of the American Chemical Society, 132, 14391–14393.

    Google Scholar 

  40. Shang, R., Ji, D.-S., Chu, L., Fu, Y., & Liu, L. (2011). Angewandte Chemie International Edition, 50, 4470–4474.

    Google Scholar 

  41. Yamashita, M., Hirano, K., Satoh, T., & Miura, M. (2010). Organic Letters, 12, 592–595.

    Google Scholar 

  42. Wang, J.-T., Cui, Z.-L., Zhang, Y.-X., Li, H.-J., Wu, L.-M., & Liu, Z.-Q. Organic & Biomolecular Chemistry, 9, 663–666.

    Google Scholar 

  43. Nref 2 and Tanaka, D., & Myers, A. G. (2004). Organic Letters, 6, 433–436.

    Google Scholar 

  44. Tanaka, D., Romeril, S. P., & Myers, A. G. (2005). Journal of the American Chemical Society, 127, 10323–10333.

    Google Scholar 

  45. Hu, P., Kan, J., Su, W., & Hong, M. (2009). Organic Letters, 11, 2341–2344.

    Google Scholar 

  46. Fu, Z., Huang, S., Su, W., & Hong, M. (2010). Organic Letters, 12, 4992–4995.

    Google Scholar 

  47. Zhang, S.-L., Fu, Y., Shan, R., Guo, Q.-X., & Liu, L. (2010). Journal of the American Chemical Society, 132, 638–646.

    Google Scholar 

  48. Voutchkova, A., Coplin, A., Leadbeater, N-E., & Crabtree, R-H. (2008). Chemical Communications, 6312–6314.

    Google Scholar 

  49. Wang, C. Y., Piel, I., & Glorius, F. (2009). Journal of the American Chemical Society, 131, 4194–4195.

    Google Scholar 

  50. Yu, W. Y., Sit, W. N., Zhou, Z., & Chan, A. S-C. (2009). Organic Letters, 11, 3174–3177.

    Google Scholar 

  51. Zhou, J., Hu, P., Zhang, M., Huang, S.-J., Wang, M., & Su, W.-P. (2010). Chemistry - A European Journal, 16, 5876–5881.

    Google Scholar 

  52. Cornella, J., Lu, P., & Larrosa, I. (2009). Organic Letters, 11, 5506–5509.

    Google Scholar 

  53. Fang, P., Li, M.-Z., & Ge, H.-B. (2010). Journal of the American Chemical Society, 132, 11898–11899.

    Google Scholar 

  54. Li, M.-Z., & Ge H.-B. (2010). Organic Letters, 12, 3464–3467.

    Google Scholar 

  55. Xie, K., Yang, Z., Zhou, X., Li, X., Wang, S., Tan, Z., An, X., & Guo, C.-C. (2010). Organic Letters, 12, 1564–1567.

    Google Scholar 

  56. Zhao, H.-Q., Wei, Y., Xu, J., Kan, J., Su, W.-P., & Hong, M.-C. (2011). The Journal of Organic Chemistry, 76, 882–893.

    Google Scholar 

  57. Wang, C. Y., Rakshit, S., & Glorius, F. (2010). Journal of the American Chemical Society, 132, 14006–14008.

    Google Scholar 

  58. Yamashita, M., Hirano, K., Satoh, T., & Miura, M. (2009). Organic Letters, 11, 2337–2340.

    Google Scholar 

  59. Zhang, M., Zhou, J., Kan, J., Wang, M., Su, W.-P., & Hong, M.-C. (2010). Chemical Communications, 46, 5455–5457.

    Google Scholar 

  60. Yu, M., Pan, D.-L., Jia, W., Chen, W., & Jiao, N. (2010). Tetrahedron Letters, 51, 1287–1290.

    Google Scholar 

  61. Bi, H.-P., Zhao, L., Liang, Y.-M., & Li, C.-J. (2009). Angewandte Chemie International Edition, 48, 792–795.

    Google Scholar 

  62. Bi, H.-P., Teng, Q.-F., Guan, M., Chen, W.-W., Liang, Y.-M., Yao, X.-J., & Li, C.-J. (2010). The Journal of Organic Chemistry, 75, 783–788.

    Google Scholar 

  63. Bi, H.-P., Chen, W.-W., Liang, Y.-M., & Li, C.-J. (2009). Organic Letters, 11, 3246–3249.

    Google Scholar 

  64. Dai, J.-J., Liu, J.-H., Luo, D.-F., & Liu, L. (2011). Chemical Communications, 47, 677–679.

    Google Scholar 

  65. Feng, C., & Loh, T-P. (2010). Chemical Communications, 46, 4779–4781.

    Google Scholar 

  66. Li, M.-Z., Wang, C., & Ge, H.-B. (2011). Organic Letters, 13, 2062–2064.

    Google Scholar 

  67. Li M.-Z., Wang, C., Fang, P., & Ge H.-B. (2011). Chemical Communications, 47, 6587–6589.

    Google Scholar 

  68. Cornella, J., Lahlali, H., & Larrosa, I. (2010). Chemical Communications, 46, 8276–8278.

    Google Scholar 

  69. Park, J., Park, E., Kim, A., Park, S-A., Lee, Y., Chi, K-W., Jung, Y. H., & Kim, I. S. (2011). The Journal of Organic Chemistry, 76, 2214–2219.

    Google Scholar 

  70. Jia, W., & Jiao, N. (2010). Organic Letters, 12, 2000–2003.

    Google Scholar 

  71. Duan, Z.-Y., Ranjit, S., Zhang, P.-F., & Liu, X.-G. (2009). Chemistry - A European Journal, 15, 3666–3669.

    Google Scholar 

  72. Ranjit, S., Duan, Z., Zhang, P., & Liu, X. (2010). Organic Letters, 12, 4134–4136.

    Google Scholar 

  73. Hu, J., Zhao, N., Yang, B., Wang, G., Guo, L.-N., Liang, Y.-M., & Yang, S.-D. (2011). Chemistry - A European Journal, 17, 5516–5521.

    Google Scholar 

  74. Luo, Y., Pan, X.-L., & Wu, J. (2010). Tetrahedron Letters, 51, 6646–6648.

    Google Scholar 

  75. Cornella, J., Rosillo-Lopez, M., & Larrosa, I. (2011). Advanced Synthesis & Catalysis, 353, 1359–1366.

    Google Scholar 

  76. Luo, Y., & Wu, J. (2010). Chemical Communications, 46, 3785–3787.

    Google Scholar 

  77. Lalic, G., Aloise, A. D., & Shair, M. D. (2003). Journal of the American Chemical Society, 125, 2852–2853.

    Google Scholar 

  78. Magdziak, D., Lalic, G., Lee, H. M., Fortner, K. C., Aloise, A. D., & Shair, M. D. (2005). Journal of the American Chemical Society, 127, 7284–7285.

    Google Scholar 

  79. Yin, L., Kanai, M., & Shibasaki, M. (2009). Journal of the American Chemical Society, 131, 9610–9611.

    Google Scholar 

  80. Yamashita, M., Hirano, K., Satoh, T., & Miura, M. (2011). Advanced Synthesis & Catalysis, 353, 631–636.

    Google Scholar 

  81. Lindh, J., Sjöberg, P. J. R., & Larhed, M. (2010). Angewandte Chemie International Edition, 49, 7733–7737.

    Google Scholar 

  82. Sun, Z.-M., & Zhao, P.-J. (2009). Angewandte Chemie International Edition, 48, 6726–6730.

    Google Scholar 

  83. Weaver, J. D., Recio, III A., Grenning, A. J., & Tunge, J. A. (2011). Chemical Reviews, 111, 1846–1913.

    Google Scholar 

  84. Torregrosa, R. R. P., Ariyarathna, Y., Chattopadhyay, K., Tunge, J. A. (2010). Journal of the American Chemical Society, 132, 9280–9282.

    Google Scholar 

  85. Shintani, R., Park, S., Shirozu, F., Murakami, M., & Hayashi, T. (2008). Journal of the American Chemical Society, 130, 16174–16175.

    Google Scholar 

  86. Goossen, L. J., & Melzer, B. (2007). The Journal of Organic Chemistry, 72, 7473–7476.

    Google Scholar 

  87. Goossen, L. J., & Knauber, T. (2008). The Journal of Organic Chemistry, 73, 8631–8634.

    Google Scholar 

  88. Shang, R., Ji, D.-S., Chu, L., Fu, Y., & Liu, L. (2011). Angewandte Chemie International Edition, 50, 4470–4474.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Shang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Shang, R. (2017). Transition Metal-Catalyzed Decarboxylation and Decarboxylative Cross-Couplings. In: New Carbon–Carbon Coupling Reactions Based on Decarboxylation and Iron-Catalyzed C–H Activation. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-3193-9_1

Download citation

Publish with us

Policies and ethics