Skip to main content

Volcanic Plumes Detection from GNSS SNR

  • Chapter
  • First Online:
Book cover GNSS Atmospheric Seismology
  • 481 Accesses

Abstract

The erupting volcano will eject a large amount of rock mass, volcanic ash, volcanic gas, and other substances, which can seriously affect the integrity of buildings, damage the safety of land or air traffic, endanger the growth of plants, and affect the healthy life and safety of human beings. Therefore, it is important to monitor and forecast volcanic ash. A variety of ground or air sensors are used to monitor volcanic eruptions around the world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 09 October 2019

    In the original version of the book, the following belated corrections are to be incorporated.

References

  • Aranzulla, M., Cannavo, F., Scollo, S., et al. (2013). Volcanic ash detection by GPS signal. GPS Solutions, 17(4), 485–497.

    Article  Google Scholar 

  • Fee, D., Steffke, A., & Garces, M. (2010). Characterization of the 2008 Kasatochi and Okmok eruptions using remote infrasound arrays. Journal of Geophysical Research Atmospheres, 115(D2).

    Google Scholar 

  • Fournier, N., & Jolly, A. D. (2014). Detecting complex eruption sequence and directionality from high-rate geodetic observations: The August 6, 2012 Te Maari eruption, Tongariro, New Zealand. Journal of Volcanology and Geothermal Research, 286, 387–396.

    Article  Google Scholar 

  • Gouhier, M., Harris, A., Calvari, S., et al. (2012). Erratum to: Lava discharge during Etna’s January 2011 fire fountain tracked using MSG-SEVIRI. Bulletin of Volcanology, 74(5), 1261–1261.

    Article  Google Scholar 

  • Grapenthin, R., Freymueller, J. T., & Kaufman, A. M. (2013). Geodetic observations during the 2009 eruption of Redoubt Volcano, Alaska. Journal of Volcanology and Geothermal Research, 259(6), 115–132.

    Article  Google Scholar 

  • Houlie, N., Briole, P., Nercessian, A., et al. (2005). Sounding the plume of the 18 August 2000 eruption of Miyakejima volcano (Japan) using GPS. Nature, 414(5), 583–583.

    Google Scholar 

  • Jin, S. G., & Komjathy, A. (2010). GNSS reflectometry and remote sensing: New objectives and results. Advances in Space Research, 46(2), 111–117. https://doi.org/10.1016/j.asr.2010.01.014.

    Article  Google Scholar 

  • Jin, S. G., & Najibi, N. (2014). Sensing snow height and surface temperature variations in Greenland from GPS reflected signals. Advances in Space Research, 53(11), 1623–1633.

    Article  Google Scholar 

  • Jin, S. G., Cardellach, E., & Xie, F. (2014). GNSS remote sensing: Theory, methods and applications (pp. 276). Springer, Netherlands, ISBN: 978-94-007-7481-0.

    Google Scholar 

  • Jin, S. G., Qian, X. D., & Kutoglu, H. (2016). Snow depth variations estimated from GPS-reflectometry: A case study in Alaska from L2P SNR data. Remote Sensing, 8(1), 63.

    Article  Google Scholar 

  • Jin, S. G., Qian, X. D., & Wu, X. (2017). Sea level change from BeiDou navigation satellite system-reflectometry (BDS-R): First results and evaluation, global planet. Change, 149, 20–25. https://doi.org/10.1016/j.gloplacha.2016.12.010.

    Article  Google Scholar 

  • Jin, S. G., Feng, G. P., & Gleason, S. (2011). Remote sensing using GNSS signals: Current status and future directions. Advances in Space Research, 47(10), 1645–1653. https://doi.org/10.1016/j.asr.2011.01.036.

    Article  Google Scholar 

  • Larson, K. M., Braun, J. J., Small, E. E., et al. (2010). GPS multipath and its relation to near-surface soil moisture content. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 3(1), 91–99.

    Article  Google Scholar 

  • Larson, K. M. (2013). A new way to detect volcanic plumes. Geophysical Research Letters, 40(11), 2657–2660.

    Article  Google Scholar 

  • Ohta, Y., & Iguchi, M. (2015). Advective diffusion of volcanic plume captured by dense GNSS network around Sakurajima volcano: A case study of the vulcanian eruption on July 24, 2012. Earth, Planets and Space, 67(1), 157.

    Article  Google Scholar 

  • Scollo, S., Prestifilippo, M., Spata, G., et al. (2009). Monitoring and forecasting Etna volcanic plumes. Natural Hazards & Earth System Sciences, 9(5), 11993.

    Article  Google Scholar 

  • Scollo, S., Prestifilippo, M., Pecora, E., et al. (2014). Height estimation of the 2011–2013 Etna lava fountains. Annals of geophysics = Annali di geofisica, 57(2), 1–25.

    Google Scholar 

  • Zhang, Q. Y. (2018). Detection of volcano plume using GNSS signal-to-noise ratio (SNR) and radio occultation data, Master Thesis, Shanghai University.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuanggen Jin .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jin, S., Jin, R., Liu, X. (2019). Volcanic Plumes Detection from GNSS SNR. In: GNSS Atmospheric Seismology. Springer, Singapore. https://doi.org/10.1007/978-981-10-3178-6_14

Download citation

Publish with us

Policies and ethics