Skip to main content

Seismo-ionospheric Rayleigh Waves

  • Chapter
  • First Online:
  • 453 Accesses

Abstract

Monitoring and understanding of seismic ionospheric disturbances can provide insights on earthquake rupture, solid Earth and ionospheric coupling and ionospheric variations’ behaviors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Afraimovich, E. L., Perevalova, N. P., Plotnikov, A. V., & Uralov, A. M. (2001). The shock-acoustic waves generated by the earthquakes. Annales Geophysicae, 19(4), 395–409.

    Article  Google Scholar 

  • Afraimovich, E. L., Ding, F., Kiryushkin, V., et al. (2010). TEC response to the 2008 Wenchuan Earthquake in comparison with other strong earthquakes. International Journal of Remote Sensing, 31(13), 3601–3613.

    Article  Google Scholar 

  • Afraimovich, E. L., Astafyeva, E., Demyanov, V., et al. (2013). A review of GPS/GLONASS studies of the ionospheric response to natural and anthropogenic processes and phenomena. Journal of Space Weather and Space Climate, 3, A27.

    Article  Google Scholar 

  • Artru, J., Farges, T., & Lognonne, P. (2004). Acoustic waves generated from seismic surface waves: Propagation properties determined from Doppler sounding observations and normal-mode modeling. Geophysical Journal International, 158(3), 1067–1077.

    Article  Google Scholar 

  • Astafyeva, E. I., Lognonne, P., & Rolland, L. (2011). First ionospheric images of the seismic fault slip on the example of the Tohoku-oki earthquake. Geophysical Reseach Letters, 38, L22104. https://doi.org/10.1029/2011GL049623.

    Article  Google Scholar 

  • Astafyeva, E., Rolland, L., Lognonne, P., Khelfi, K., & Yahagi, T. (2013). Parameters of seismic source as deduced from 1 Hz ionospheric GPS data: Case-study of the 2011 Tohoku-oki event. Journal Geophysical Research, 118(9), 5942–5950. https://doi.org/10.1002/jgra50556.

    Article  Google Scholar 

  • Astafyeva, E., Rolland, L., & Sladen, A. (2014). Strike-slip earthquakes can also be detected in the ionosphere. Earth and Planetary Science Letters, 405, 180–193. https://doi.org/10.1016/j.epsl.2014.08.024.

    Article  Google Scholar 

  • Bilitza, D., Altadil, D., Zhang, Y., et al. (2014). The International Reference Ionosphere 2012—A model of international collaboration. Journal of Space Weather and Space Climate, 4, A07.

    Article  Google Scholar 

  • Calais, E., & Minster, J. (1995). GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake. Geophysical Research Letters, 22(9), 1045–1048.

    Article  Google Scholar 

  • Calais, E., Minster, J., Hofton, M., & Hedlin, M. (1998). Ionospheric signature of surface mine blasts from Global Positioning System measurements. Geophysical Journal International, 132(1), 191–202.

    Article  Google Scholar 

  • Cahyadi, M. N., & Heki, K. (2015). Coseismic ionospheric disturbance of the large strike-slip earthquakes in North Sumatra in 2012: Mw dependence of the disturbance amplitudes. Geophysical Journal International, 200, 116–129. https://doi.org/10.1093/gji/ggu343.

    Article  Google Scholar 

  • Dautermann T, Calais, E., Lognonne, P., et al. (2009). Lithosphere–atmosphere–ionosphere coupling after the 2003 explosive eruption of the Soufriere Hills Volcano, Montserrat. Geophysical Journal International, 179(3), 1537–1546.

    Google Scholar 

  • Davies, K., & Baker, D. M. (1965). Ionospheric effects observed around the time of the Alaskan earthquake of March 28, 1964. Journal of Geophysical Research Atmospheres, 70(9), 2251–2253.

    Article  Google Scholar 

  • de Groot-Hedlin, C. (2007). Finite difference modeling of infrasound propagation to local and regional distances. In Proceedings of the 29th Monitoring Research Review, Denver, CO (pp. 836–844).

    Google Scholar 

  • de Groot-Hedlin, C., Hedlin, M., & Walker, K. (2011). Finite difference synthesis of infrasound propagation through a windy, viscous atmosphere: Application to a bolide explosion detected by seismic networks. Geophysical Journal International, 185(1), 305–320.

    Article  Google Scholar 

  • Drob, D. P., Emmert, J., Crowley, G., et al. (2008). An empirical model of the Earth’s horizontal wind fields: HWM07. Journal of Geophysical Research Atmospheres, 113(A12304), A12304.

    Google Scholar 

  • Ducic, V., Artru, J., & Lognonne, P. (2003). Ionospheric remote sensing of the Denali Earthquake Rayleigh surface waves. Geophysical Research Letters, 30(18), 223–250.

    Article  Google Scholar 

  • Garcés, M. A., Hansen, R., & Lindquist, K. (1998). Travel times for infrasonic waves propagating in a stratified atmosphere. Geophysical Journal International, 135(1), 255–263.

    Article  Google Scholar 

  • Garrison, J. L., Lee, S., Haase, J., & Calais, E. (2007). A method for detecting ionospheric disturbances and estimating their propagation speed and direction using a large GPS network. Radio Science, 42(6), 553–566.

    Article  Google Scholar 

  • Grawe, M. A., & Makela, J. J. (2015). The ionospheric responses to the 2011 Tohoku, 2012 Haida Gwaii, and 2010 Chile tsunamis: Effects of tsunami orientation and observation geometry. Earth and Space Science, 2, 472–483. https://doi.org/10.1002/2015EA000132.

    Article  Google Scholar 

  • Heki, K., Otsuka, Y., Choosakul, N., Hemmakorn, N., Komolmis, T., & Maruyama, T. (2006). Detection of ruptures of Andaman fault segments in the 2004 great Sumatra earthquake with coseismic ionospheric disturbances. Journal of Geophysical Research Solid Earth, 111(B9), 535–540.

    Google Scholar 

  • Heki, K., & Ping, J. (2005). Directivity and apparent velocity of the co-seismic ionospheric disturbances observed with a dense GPS array. Earth and Planetary Science Letters, 236, 845–855.

    Article  Google Scholar 

  • Jin, S. G., & Park, P. (2006). Strain accumulation in South Korea inferred from GPS measurements. Earth, Planets and Space, 58(5), 529–534.

    Article  Google Scholar 

  • Jin, S. G., Luo, O., & Park, P. (2008). GPS observations of the ionospheric F2-layer behavior during the 20th November 2003 geomagnetic storm over South Korea. Journal of Geodesy, 82(12), 883–892.

    Article  Google Scholar 

  • Jin, R., Jin, S. G., & Feng, G. (2012). M_DCB: Matlab code for estimating GNSS satellite and receiver differential code biases. GPS Solutions, 16(4), 541–548.

    Article  Google Scholar 

  • Jin, S., Jin, R., & Li, J. H. (2014). Pattern and evolution of seismo-ionospheric disturbances following the 2011 Tohoku earthquakes from GPS observations. Journal of Geophysical Research Space Physics, 119(9), 7914–7927.

    Article  Google Scholar 

  • Jin, S. G., Occhipinti, G., & Jin, R. (2015). GNSS ionospheric seismology: Recent observation evidences and characteristics. Earth-Science Reviews, 147, 54–64.

    Article  Google Scholar 

  • Jin, S. G., Jin, R., & Li, D. (2016). Assessment of BeiDou differential code bias variations from multi-GNSS network observations. Annales Geophysicae, 34(2), 259–269. https://doi.org/10.5194/angeo-34-259-2016.

    Article  Google Scholar 

  • Jin, S. G., Jin, R., & Li, D. (2017). GPS detection of ionospheric Rayleigh wave and its source following the 2012 Haida Gwaii earthquake. Journal of Geophysical Research: Space Physics, 122(1), 1360–1372. https://doi.org/10.1002/2016JA023727.

    Article  Google Scholar 

  • Kelley, M. C. (2009). The Earth’s ionosphere: Plasma physics and electrodynamics (2nd ed.). San Diego, CA USA: Academic Press (Elsevier). ISBN 978-0-12-088425-4.

    Google Scholar 

  • Kiryushkin, V. V., & Afraimovich, E. L. (2007). Determining the parameters of ionospheric perturbation caused by earthquakes using the quasi-optimum algorithm of spatiotemporal processing of TEC measurements. Earth, Planets and Space, 59(4), 267–278.

    Article  Google Scholar 

  • Lay, T., Ye, L., Kanamori, H., et al. (2013). The October 28, 2012 Mw7.8 Haida Gwaii under thrusting earthquake and tsunami: Slip partitioning along the queen charlotte fault transpressional plate boundary. Earth and Planetary Science Letters, 375(8), 57–70.

    Article  Google Scholar 

  • Leonard, R. S., & Barnes, R. A. (1965). Observation of ionospheric disturbances following the Alaska earthquake. Journal of Geophysical Research, 70(5), 1250–1253.

    Article  Google Scholar 

  • Leonard, L. J., & Bednarski, J. M. (2014). Field survey following the 28 October 2012 Haida Gwaii tsunami. Pure and Applied Geophysics, 171(12), 3467–3482.

    Article  Google Scholar 

  • Liu, J. Y., Tsai, H., Lin, C., et al. (2010). Co-seismic ionospheric disturbances triggered by the Chi-Chi earthquake. Journal Geophysical Research, 115, A08303.

    Google Scholar 

  • Liu, Y. H., & Jin, S. G. (2019). Ionospheric Rayleigh wave disturbances following the 2018 Alaska earthquake from GPS observations. Remote Sensing, 11(8), 901. https://doi.org/10.3390/rs11080901.

    Article  Google Scholar 

  • Maruyama, T., Tsugawa, T., Kato, H., Ishii, M., & Nishioka, M. (2012). Rayleigh wave signature in ionograms induced by strong earthquakes. Journal of Geophysical Research, 117(117). https://doi.org/10.1029/2012ja017952.

    Article  Google Scholar 

  • Meinig, C., Stalin, S. E., Nakamura, A. I., & Milburn, H. B. (2005). Real-time deep-ocean tsunami measuring, monitoring, and reporting system: The NOAA DART II description and disclosure rep., NOAA, Pacific Marine Environmental Laboratory.

    Google Scholar 

  • National Oceanic and Atmospheric Administration. (2005). Deep-Ocean Assessment and Reporting of Tsunamis (DART(R)), National Geophysical Data Center, NOAA. https://doi.org/10.7289/v5f18wns.

  • Occhipinti, G., Kherani, E., & Lognonne, P. (2008). Geomagnetic dependence of ionospheric disturbances induced by tsunamigenic internal gravity waves. Geophysical Journal International, 173(3), 753–765.

    Article  Google Scholar 

  • Occhipinti, G., Rolland, L., Lognonne, P., et al. (2013). From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes. Journal of Geophysical Research: Space Physics, 118(6), 3626–3636.

    Google Scholar 

  • Picone, J. M., Hedin, A. E., Drob, D. P., & Aikin, A. C. (2002). NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. Journal Geophysical Research, 107(A12), 1468. https://doi.org/10.1029/2002JA009430.

    Article  Google Scholar 

  • Reddy, C. D., & Seemala, G. K. (2015). Two-mode ionospheric response and Rayleigh wave group velocity distribution reckoned from GPS measurement following Mw7.8 Nepal earthquake on 25 April 2015. Journal of Geophysical Research: Space Physics, 120, 7049–7059. https://doi.org/10.1002/2015JA021502.

    Article  Google Scholar 

  • Rolland, L. M., Vergnolle, M., Nocquet, J.-M., Sladen, A., Dessa, J.-X., Tavakoli, F., et al. (2013). Discriminating the tectonic and non-tectonic contributions in the ionospheric signature of the 2011, Mw7.1, dip-slip Van earthquake, Eastern Turkey. Geophysical Reseach Letters, 40, 2518–2522. https://doi.org/10.1002/grl.50544.

    Article  Google Scholar 

  • Rolland, L. M., Lognonne, P., & Munekane, H. (2011). Detection and modeling of Rayleigh wave induced patterns in the ionosphere. Journal Geophysical Research, 116, A05320. https://doi.org/10.1029/2010JA016060.

    Article  Google Scholar 

  • Shinagawa, H., Iyemori, T., Saito, S., & Maruyama, T. (2007). A numerical simulation of ionospheric and atmospheric variations associated with the sumatra earthquake on December 26, 2004. Earth, Planets and Space, 59(9), 1015–1026.

    Article  Google Scholar 

  • Yang, X. R., & Chen, Y. (2007). Atmospheric acoustics. Science Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuanggen Jin .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jin, S., Jin, R., Liu, X. (2019). Seismo-ionospheric Rayleigh Waves. In: GNSS Atmospheric Seismology. Springer, Singapore. https://doi.org/10.1007/978-981-10-3178-6_10

Download citation

Publish with us

Policies and ethics