Skip to main content

Plasmodium Proteases as Therapeutic Targets Against Malaria

  • Chapter
  • First Online:

Abstract

Malaria is a major global parasitic disease responsible for tremendous health burden and mortality in tropical and subtropical regions of the world. Plasmodium falciparum is the causative agent of severe malaria, which accounts for most of the global malaria-related deaths, mainly in sub-Saharan Africa. Despite the enormous global efforts to curb the spread of the disease and significant decline in malaria-related deaths in the last decade, development of parasite resistance to currently used drugs is widespread, which necessitates the development of novel antimalarial targeting crucial parasite molecules. Parasite proteases are a group of molecules crucial for the development and propagation of the parasite inside the host cell. The major parasite-specific processes dependent on protease activity for their completion are hemoglobin degradation, merozoite egress from the host cell, and invasion of the host cells. A number of proteases of various classes are found in P. falciparum, many of which have the potential to be used as antimalarial drug targets. I this chapter, I have described the role of the proteases, which have the potential to be targeted for antimalarial drug development and the progresses made in the direction of drug development against these targets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. World Malaria Report (2015) World Health Organization

    Google Scholar 

  2. Trape JF, Legros F, Ndiaye P, Konate L et al (1989) Chloroquine-resistant Plasmodium falciparum malaria in Senegal. Trans R Soc Trop Med Hyg 83:761

    Article  CAS  PubMed  Google Scholar 

  3. Zucker JR, Ruebush TK, Obonyo C et al (2003) The mortality consequences of the continued use of chloroquine in Africa: experience in Siaya, western Kenya. Am J Trop Med Hyg 68:386–390

    CAS  PubMed  Google Scholar 

  4. Sibley CH, Hyde JE, Sims PF et al (2001) Pyrimethamine-sulfadoxine resistance in Plasmodium falciparum: what next? Trends Parasitol 17:582–588

    Article  CAS  PubMed  Google Scholar 

  5. Wongsrichanalai C, Pickard AL, Wernsdorfer WH et al (2002) Epidemiology of drug-resistant malaria. Lancet Infect Dis 2:209–218

    Article  CAS  PubMed  Google Scholar 

  6. TerKuile F, White NJ, Holloway P et al (1993) Plasmodium falciparum: in vitro studies of the pharmacodynamic properties of drugs used for the treatment of severe malaria. Exp Parasitol 76:85–95

    Article  CAS  Google Scholar 

  7. White NJ (2008) Qinghaosu (artemisinin): the price of success. Science 320:330–334

    Article  CAS  PubMed  Google Scholar 

  8. Ittarat W, Pickard AL, Rattanasinganchan P et al (2003) Recrudescence in artesunate treated patients with falciparum malaria is dependent on parasite burden not on parasite factors. Am J Trop Med Hyg 68:147–152

    CAS  PubMed  Google Scholar 

  9. Travassos MA, Laufer MK (2009) Resistance to antimalarial drugs: molecular, pharmacologic, and clinical considerations. Pediatr Res 65:64R–70R

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dondorp AM, Nosten F, Yi P et al (2009) Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 361:455–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Anderson TJ, Nair S, Nkhoma S et al (2010) High heritability of malaria parasite clearance rate indicates a genetic basis for artemisinin resistance in Western Cambodia. J Infect Dis 201:1326–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McKerrow JH, Caffrey C, Kelly B et al (2006) Proteases in parasitic diseases. Annu Rev Pathol 1:497–536

    Article  CAS  PubMed  Google Scholar 

  13. Flexner C, Bate G, Kirkpatrick P (2005) Tipranavir. Nat Rev Drug Discov 4:955–956

    Article  CAS  PubMed  Google Scholar 

  14. Melnikova I (2008) Hepatitis C therapies. Nat Rev Drug Discov 7:799–800

    Article  CAS  Google Scholar 

  15. Smith CG, Vane JR (2003) The discovery of captopril. FASEB J 17:788–789

    Article  CAS  PubMed  Google Scholar 

  16. Melnikova I (2009) The anticoagulants market. Nat Rev Drug Discov 8:353–354

    Article  CAS  PubMed  Google Scholar 

  17. Turk B (2006) Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 5:785–799

    Article  CAS  PubMed  Google Scholar 

  18. Neurath H (1989) in The diversity of proteolytic enzymes.In: Beynon RJ, Bond JS (eds) Proteolytic enzymes: a practical approach. IRL Press, Oxford, pp 1–13

    Google Scholar 

  19. Rosenthal PJ (2002) Hydrolysis of erythrocyte proteins by proteases of malaria parasites. Curr Opin Hematol 9:140–145

    Article  PubMed  Google Scholar 

  20. Gardner MJ, Hall N, Fung E et al (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511

    Article  CAS  PubMed  Google Scholar 

  21. Mazier D, Rénia L, Snounou G (2013) A pre-emptive strike against malaria’s stealthy hepatic forms. Nat Rev Drug Discovery 8:854–864

    Article  CAS  Google Scholar 

  22. Suarez C, Volkmann K, Gomes AR et al (2013) The malarial serine protease SUB1 plays an essential role in parasite liver stage development. PLoS Pathog 9:e1003811

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Tawk L, Lacroix C, Gueirard P et al (2013) A key role for Plasmodium subtilisin-like SUB1 protease in egress of malaria parasites from host hepatocytes. J Biol Chem 288:33336–33346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu Y, Wang X, Liu X et al (2003) Data-mining approaches reveal hidden families of proteases in the genome of malaria parasite. Genome Res 13:601–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lilburn TG, Hong C, Zhan Zhou Z et al (2011) Protease-associated cellular networks in malaria parasite Plasmodium falciparum. BMC Genom 12(Suppl 5):S9

    Article  CAS  Google Scholar 

  26. Sherman IW (1977) Amino acid metabolism and protein synthesis in malarial parasites. Bull World Health Organ 55:265–276

    CAS  PubMed  PubMed Central  Google Scholar 

  27. McKerrow JH, Sun E, Rosenthal PJ et al (1993) The proteases and pathogenicity of parasitic protozoa. Annu Rev Microbiol 47:821–853

    Article  CAS  PubMed  Google Scholar 

  28. Rosenthal PJ, Meshnick SR (1996) Hemoglobin catabolism and iron utilization by malaria parasites. Mol Biochem Parasitol 83:131–139

    Article  PubMed  Google Scholar 

  29. Wood PA, Eaton JW (1993) Hemoglobin catabolism and host-parasite heme balance in chloroquine-sensitive and chloroquine-resistant Plasmodium berghei infections. Am J Trop Med Hyg 48:465–472

    Article  CAS  PubMed  Google Scholar 

  30. Scheibel LW, Sherman IW (1988). In: Wernsdorfer WH, McGregor I (eds) Malaria. Churchill Livingstone, Edinburgh, vol 1, pp 219–252

    Google Scholar 

  31. Yayon A, Cabantchik ZI, Ginsburg H (1984) Identification of the acidic compartment of Plasmodium falciparum-infected human erythrocytes as the target of the antimalarial drug chloroquine. EMBO J 3:2695–2700

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Krogstad DJ, Schlesinger PH, Gluzman IY (1985) Antimalarials increase vesicle pH in Plasmodium falciparum. J Cell Biol 101:2302–2309

    Article  CAS  PubMed  Google Scholar 

  33. Goldberg DE, Slater AF, Cerami A et al (1990) Hemoglobin degradation in the malaria parasite Plasmodium falciparum: an ordered process in a unique organelle. Proc Natl Acad Sci USA 87:2931–2935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Francis SE, Gluzman IY, Oksman A et al (1994) Molecular characterization and inhibition of a Plasmodium falciparum aspartic hemoglobinase. EMBO J 13:306–317

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hill J, Tyas L, Phylip LH et al (1994) High level expression and characterisation of Plasmepsin II, an aspartic proteinase from Plasmodium falciparum. FEBS Lett 352:155–158

    Article  CAS  PubMed  Google Scholar 

  36. Rosenthal PJ, McKerrow JH, Aikawa M et al (1988) A malarial cysteine proteinase is necessary for hemoglobin degradation by Plasmodium falciparum. J Clin Invest 82:1560–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Banerjee R, Liu J, Beatty W et al (2002) Four plasmepsins are active in the Plasmodium falciparum food vacuole, including a protease with an active-site histidine. Proc Natl Acad Sci USA 99:990–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Goldberg DE (2005) Hemoglobin degradation. Curr Top Microbiol Immunol 295:275–291

    CAS  PubMed  Google Scholar 

  39. Gluzman IY, Francis SE, Oksman A et al (1994) Order and specificity of the Plasmodium falciparum hemoglobin degradation pathway. J Clin Invest 93:1602–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shenai BR, Sijwali PS, Singh A (2000) Characterization of native and recombinant falcipain-2, a principal trophozoite cysteine protease and essential hemoglobinase of Plasmodium falciparum. J Biol Chem 275:29000–29010

    Article  CAS  PubMed  Google Scholar 

  41. Eggleson KK, Duffin KL, Goldberg DE (1999) Identification and characterization of falcilysin, a metallopeptidase involved in hemoglobin catabolism within the malaria parasite Plasmodium falciparum. J Biol Chem 274:32411–32417

    Article  CAS  PubMed  Google Scholar 

  42. Gavigan CS, Dalton JP, Bell A (2001) The role of aminopeptidases in haemoglobin degradation in Plasmodium falciparum-infected erythrocytes. Mol Biochem Parasitol 117:37–48

    Google Scholar 

  43. Liu J, Istvan ES, Gluzman IY et al (2006) Plasmodium falciparum ensures its amino acid supply with multiple acquisition pathways and redundant proteolytic enzyme systems. Proc Natl Acad Sci USA 103:8840–8845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu K, Shi H, Xiao H et al (2009) Functional profiling, identification, and inhibition of Plasmepsins in intraerythrocytic malaria parasites. Angew Chem Int Ed 48:8293–8297

    Article  CAS  Google Scholar 

  45. Omara-Opyene AL, Moura PA, Sulsona CR (2004) Genetic disruption of the Plasmodium falciparum digestive vacuole plasmepsins demonstrates their functional redundancy. J Biol Chem 279:54088–54096

    Article  CAS  PubMed  Google Scholar 

  46. Liu J, Gluzman IY, Drew ME (2005) The role of Plasmodium falciparum food vacuole plasmepsins. J Biol Chem 280:1432–1437

    Article  CAS  PubMed  Google Scholar 

  47. Moon RP, Bur D, Loetscher H et al (1998) Studies on plasmepsins I and II from the malarial parasite Plasmodium falciparum and their exploitation as drug targets. Adv Exp Med Biol 436:397–406

    Article  CAS  PubMed  Google Scholar 

  48. Ersmark K, Feierberg I, Bjelic S et al (2004) Potent inhibitors of the Plasmodium falciparum enzymes plasmepsin I and II devoid of cathepsin D inhibitory activity. J Med Chem 47:110–122

    Article  CAS  PubMed  Google Scholar 

  49. Johansson PO, Lindberg J, Blackman MJ et al (2005) Design and synthesis of potent inhibitors of plasmepsin I and II: X-ray crystal of inhibitor in complex with plasmepsin II. J Med Chem 48:4400–4409

    Article  CAS  PubMed  Google Scholar 

  50. Muthas D, Nöteberg D, Sabnis YA et al (2005) Synthesis, biological evaluation, and modeling studies of inhibitors aimed at the malarial proteases plasmepsins I and II. Bioorg Med Chem 13:5371–5390

    Article  CAS  PubMed  Google Scholar 

  51. Mohapatra SC, Tiwari HK, Single M (2010) Antimalarial evaluation of copper(II) nanohybrid solids: inhibition of plasmepsin II, a hemoglobin-degrading malarial aspartic protease from Plasmodium falciparum. J Biol Inorg Chem 15:373–385

    Article  CAS  PubMed  Google Scholar 

  52. Gupta D, Yedidi RS, Varghese S et al (2010) Mechanism-based inhibitors of the aspartyl protease plasmepsin II as potential antimalarial agents. J Med Chem 53:4234–4247

    Article  CAS  PubMed  Google Scholar 

  53. Dali B, Keita M, Megnassan E et al (2012) Insight into selectivity of peptidomimetic inhibitors with modified statine core for plasmepsin II of Plasmodium falciparum over human cathepsin D. Chem Biol Drug Des 79:411–430

    Article  CAS  PubMed  Google Scholar 

  54. Rasina D, Otikovs M, Leitans J et al (2016) Fragment-based discovery of 2-aminoquinazolin-4(3H)-ones as novel class nopeptidomimetic inhibitors of the plasmepsins I, II, and IV. J Med Chem 59:374–387

    Article  CAS  PubMed  Google Scholar 

  55. Ersmark K, Samuelsson B, Hallberg A (2006) Plasmepsins as potential targets for new antimalarial therapy. Med Res Rev 26:626–666

    Article  CAS  PubMed  Google Scholar 

  56. Nezami A, Kimura T, Hidaka K et al (2003) High-affinity inhibition of a family of Plasmodium falciparum proteases by a designed adaptive inhibitor. Biochemistry 42:8459–8464

    Article  CAS  PubMed  Google Scholar 

  57. Sijwali PS, Shenai BR, Gut J et al (2001) Expression and characterization of the Plasmodium falciparum haemoglobinase falcipain-3. Biochem J 360:481–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sijwali PS, Rosenthal PJ (2004) Gene disruption confirms a critical role for the cysteine protease falcipain-2in hemoglobin hydrolysis by Plasmodium falciparum. Proc Natl Acad Sci USA 101:4384–4389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sijwali PS, Koo J, Singh N et al (2006) Gene disruptions demonstrate independent roles for the four falcipain cysteine proteases of Plasmodium falciparum. Mol Biochem Parasitol 150:96–106

    Article  CAS  PubMed  Google Scholar 

  60. Singh N, Sijwali PS, Pandey KC et al (2006) Plasmodium falciparum: biochemical characterization of the cysteineprotease falcipain-2. Exp Parasitol 112:187–192

    Article  CAS  PubMed  Google Scholar 

  61. Goh LL, Sim TS (2005) Characterization of amino acid variation at strategic positions in parasite and human proteases for selective inhibition of falcipains in Plasmodium falciparum. Biochem Biophys Res Commun 335:762–770

    Article  CAS  PubMed  Google Scholar 

  62. Jeong JJ, Kumar A, Hanada T et al (2006) Cloning and characterization of Plasmodium falciparum cysteine protease, falcipain-2B. Blood Cells Mol Dis 36:429–435

    Article  CAS  PubMed  Google Scholar 

  63. Rosenthal PJ (2004) Cysteine proteases of malaria parasites. Int J Parasitol l34:1489–1499

    Google Scholar 

  64. Rosenthal PJ, Wollish WS, Palmer JT (1991) Antimalarial effects of peptide inhibitors of a Plasmodium falciparum cysteine proteinase. J Clin Invest 88:1467–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Singh A, Rosenthal PJ (2001) Comparison of efficacies of cysteine protease inhibitors against five strains of Plasmodium falciparum. Antimicrob Agents Chemother 45:949–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Batra S, Sabnis YA, Rosenthal PJ et al (2003) Structure-based approach to falcipain-2 inhibitors: synthesis and biological evaluation of 1,6,7-trisubstituted dihydroisoquinolines and isoquinolines. Bioorg Med Chem 11:2293–2299

    Article  CAS  PubMed  Google Scholar 

  67. Rosenthal PJ, Lee GK, Smith RE (1993) Inhibition of a Plasmodium vinckei cysteine proteinase cures murine malaria. J Clin Invest 91:1052–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Murata CE, Goldberg DE (2003) Plasmodium falciparum falcilysin: a metalloprotease with dual specificity. J Biol Chem 278:38022–38028

    Article  CAS  PubMed  Google Scholar 

  69. Ponpuak M, Klemba M, Park M et al (2007) A role for falcilysin in transit peptide degradation in the Plasmodium falciparum apicoplast. Mol Microbiol 63:314–334

    Article  CAS  PubMed  Google Scholar 

  70. Curley GP, O’Donovan SM, McNally J et al (1994) Aminopeptidases from Plasmodium falciparum, Plasmodium chabaudi chabaudi and Plasmodium berghei. J Eukaryot Microbiol 41:119–123

    Article  CAS  PubMed  Google Scholar 

  71. Mistry SN, Drinkwater N, Ruggeri C et al (2014) Two-pronged attack: dual inhibition of Plasmodium falciparum M1 and M17 metalloaminopeptidases by a novel series of hydroxamic acid-based inhibitors. J Med Chem 57:9168–9183

    Article  CAS  PubMed  Google Scholar 

  72. Winograd E, Clavijo CA, Bustamante LY et al (1999) Release of merozoites from Plasmodium falciparum-infected erythrocytes could be mediated by a non-explosive event. Parasitol Res 85:621–624

    Article  CAS  PubMed  Google Scholar 

  73. Glushakova S, Yin D, Li T et al (2005) Membrane transformation during malaria parasite release from human red blood cells. Curr Biol 15:1645–1650

    Article  CAS  PubMed  Google Scholar 

  74. Wickham ME, Culvenor JG, Cowman AF (2003) Selective inhibition of a two-step egress of malaria parasites from the host erythrocyte. J Biol Chem 278:37658–37663

    Article  CAS  PubMed  Google Scholar 

  75. Salmon BL, Oksman A, Goldberg DE (2001) Malaria parasite exit from the host erythrocyte: a two-step process requiring extraerythrocytic proteolysis. Proc Natl Acad Sci USA 98:271–276

    Article  CAS  PubMed  Google Scholar 

  76. Soni S, Dhawan S, Rosen KM et al (2005) Characterization of events preceding the release of malaria parasite from the host red blood cell. Blood Cells Mol Dis 35:201–211

    Article  CAS  PubMed  Google Scholar 

  77. Langreth SG, Jensen JB, Reese RT et al (1978) Fine structure of human malaria in vitro. J Protozool 25:443–452

    Article  CAS  PubMed  Google Scholar 

  78. Aikawa M (1971) Parasitological review. Plasmodium: the fine structure of malarial parasites. Exp Parasitol 30:284–320

    Article  CAS  PubMed  Google Scholar 

  79. Banyal HS, Misra GC, Gupta CM et al (1981) Involvement of malarial proteases in the interaction between the parasite and host erythrocyte in Plasmodium knowlesi infections. J Parasitol 67:623–626

    Article  CAS  PubMed  Google Scholar 

  80. Dutta GP, Banyal HS (1981) In vitro susceptibility of erythrocytes of Presbytis entellus (Indian Langur) to Plasmodium knowlesi & blocking of merozoite invasion process by certain protease inhibitors. Ind J Exp Biol 19:9–11

    CAS  Google Scholar 

  81. Hadley T, Aikawa M, Miller LH (1983) Plasmodium knowlesi: studies on invasion of rhesus erythrocytes by merozoites in the presence of protease inhibitors. Exp Parasitol 55:306–311

    Article  CAS  PubMed  Google Scholar 

  82. Lyon JA, Haynes JD (1986) Plasmodium falciparum antigens synthesized by schizonts and stabilized at the merozoite surface when schizonts mature in the presence of protease inhibitors. J Immunol 136:2245–2251

    CAS  PubMed  Google Scholar 

  83. Delplace P, Bhatia A, Cagnard M et al (1988) Protein p126: a parasitophorous vacuole antigen associated with the release of Plasmodium falciparum merozoites. Biol Cell 64:215–221

    Article  CAS  PubMed  Google Scholar 

  84. Le Bonniec S, Deregnaucourt C, Redeker V et al (1999) Plasmepsin II, an acidic hemoglobinase from the Plasmodium falciparum food vacuole, is active at neutral pH on the host erythrocyte membrane skeleton. J Biol Chem 274:14218–14223

    Article  PubMed  Google Scholar 

  85. Dua M, Raphael P, Sijwali PS et al (2001) Recombinant falcipain-2 cleaves erythrocyte membrane ankyrin and protein 4.1. Mol Biochem Parasitol 116:95–99

    Article  CAS  PubMed  Google Scholar 

  86. Hanspal M, Dua M, Takakuwa Y et al (2002) Plasmodium falciparum cysteine protease falcipain-2 cleaves erythrocyte membrane skeletal proteins at late stages of parasite development. Blood 100:1048–1054

    Article  CAS  PubMed  Google Scholar 

  87. Dhawan S, Dua M, Chishti AH et al (2003) Ankyrin peptide blocks falcipain-2-mediated malaria parasite release from red blood cells. J Biol Chem 278:30180–30186

    Article  CAS  PubMed  Google Scholar 

  88. Blackman MJ (2008) Malarial proteases and host cell egress: an ‘emerging’ cascade. Cell Microbiol 10:1925–1934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Aly AS, Matuschewski K (2005) A malarial cysteine protease is necessary for Plasmodium sporozoite egress from oocysts. J Exp Med 202:225–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Miller SK, Good RT, Drew DR et al (2002) A subset of Plasmodium falciparum SERA genes are expressed and appear to play an important role in the erythrocytic cycle. J Biol Chem 277:47524–47532

    Article  CAS  PubMed  Google Scholar 

  91. Bzik DJ, Li WB, Horii T et al (1988) Amino acid sequence of the serine-repeat antigen (SERA) of Plasmodium falciparum determined from cloned cDNA. Mol Biochem Parasitol 30:279–288

    Article  CAS  PubMed  Google Scholar 

  92. Gor DO, Li AC, Rosenthal PJ (1998) Protective immune responses against protease-like antigens of the murine malaria parasite Plasmodium vinckei. Vaccine 16:1193–1202

    Article  CAS  PubMed  Google Scholar 

  93. Kiefer MC, Crawford KA, Boley LJ et al (1996) Identification and cloning of a locus of serine repeat antigen (sera)-related genes from Plasmodium vivax. Mol Biochem Parasitol 78:55–65

    Article  CAS  PubMed  Google Scholar 

  94. Hodder AN, Drew DR, Epa VC et al (2003) Enzymic, phylogenetic, and structural characterization of the unusual papain-like protease domain of Plasmodium falciparum SERA5. J Biol Chem 278:48169–48177

    Article  CAS  PubMed  Google Scholar 

  95. McCoubrie JE, Miller SK, Sargeant T et al (2007) Evidence for a common role for the serine-type Plasmodium falciparum serine repeat antigen proteases: implications for vaccine and drug design. Infect Immun 75:5565–5574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Delplace P, Dubremetz JF, Fortier B et al (1985) A 50 kilodalton exoantigen specific to the merozoite release-reinvasion stage of Plasmodium falciparum. Mol Biochem Parasitol 17:239–251

    Article  CAS  PubMed  Google Scholar 

  97. Debrabant A, Maes P, Delplace P, Dubremetz JF, Tartar A, Camus D (1992) Intramolecular mapping of Plasmodium falciparum P126 proteolytic fragments by N-terminal amino acid sequencing. Mol Biochem Parasitol 53:89–95

    Article  CAS  PubMed  Google Scholar 

  98. Pang XL, Mitamura T, Horii T (1999) Antibodies reactive with the N-terminal domain of Plasmodium falciparum serine repeat antigen inhibit cell proliferation by agglutinating merozoites and schizonts. Infect Immun 67:1821–1827

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Li J, Matsuoka H, Mitamura T et al (2002) Characterization of proteases involved in the processing of Plasmodium falciparum serine repeat antigen (SERA). Mol Biochem Parasitol 120:177–186

    Article  CAS  PubMed  Google Scholar 

  100. Yeoh S, O’Donnell RA, Koussis A et al (2007) Subcellular discharge of a serine protease mediates release of invasive malaria parasites from host erythrocytes. Cell 131:1072–1083

    Article  CAS  PubMed  Google Scholar 

  101. Arastu-Kapur S, Ponder EL, Fonovic UP et al (2008) Identification of proteases that regulate erythrocyte rupture by the malaria parasite Plasmodium falciparum. Nat Chem Biol 4:203–213

    Article  CAS  PubMed  Google Scholar 

  102. Fairlie WD, Spurck TP, McCoubrie JE et al (2008) Inhibition of malaria parasite development by a cyclic peptide that targets the vital parasite protein SERA5. Infect Immun 76:4332–4344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Alam A, Chauhan VS (2012) Inhibitory potential of prodomain of Plasmodium falciparum protease serine repeat antigen 5 for asexual blood stages of parasite. PLoS ONE, e30452

    Google Scholar 

  104. Ruecker A, Shea M, Hackett F et al (2012) Proteolytic activation of the essential parasitophorous vacuole cysteine protease SERA6 accompanies malaria parasite egress from its host erythrocyte. J Biol Chem 287:37949–37963

    Google Scholar 

  105. Withers-Martinez C, Suarez C, Fulle S et al (2012) Plasmodium subtilisin-like protease 1 (SUB1): insights into the active-site structure, specificity and function of a pan-malaria drug target. Int J Parasitol 42:597–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gemma S, Giovani S, Brindisi M et al (2012) Quinolylhydrazones as novel inhibitors of Plasmodium falciparum serine protease PfSUB1. Bioorg Med Chem Lett 22:5317–5321

    Article  CAS  PubMed  Google Scholar 

  107. Cowman AF, Crabb BS (2006) Invasion of red blood cells by malaria parasites. Cell 124:755–766

    Article  CAS  PubMed  Google Scholar 

  108. Dejkriengkraikhul P, Wilairat P (1983) Requirement of malarial protease in the invasion of human red cells by merozoites of Plasmodium falciparum. Z Parasitenkd 69:313–317

    Article  CAS  PubMed  Google Scholar 

  109. Breton CB, Blisnick T, Jouin H et al (1992) Plasmodium chabaudi p68 serine protease activity required for merozoite entry into mouse erythrocytes. Proc Natl Acad Sci USA 89:9647–9651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Dluzewski AR, Rangachari K, Wilson RJ et al (1986) Protease inhibitors and inhibition of erythrocyte invasion. Exp Parasitol 62:416–422

    Article  CAS  PubMed  Google Scholar 

  111. McPherson RA, Donald DR, Sawyer WH et al (1993) Proteolytic digestion of band 3 at an external site alters the erythrocyte membrane organisation and may facilitate malarial invasion. Mol Biochem Parasitol 62:233–242

    Article  CAS  PubMed  Google Scholar 

  112. Blackman MJ, Holder AA (1992) Secondary processing of the Plasmodium falciparum merozoite surface protein-1 (MSP1) by a calcium-dependent membrane-bound serine protease: shedding of MSP133 as a noncovalently associated complex with other fragments of the MSP1. Mol Biochem Parasitol 50:307–315

    Article  CAS  PubMed  Google Scholar 

  113. Bannister LH, Dluzewski AR (1990) The ultrastructure of red cell invasion in malaria infections: a review. Blood Cells 16:257–292

    CAS  PubMed  Google Scholar 

  114. Keeley A, Soldati D (2004) The glideosome: a molecular machinepowering motility and host-cell invasion by Apicomplexa. TrendsCell Biol 14:528–532

    Article  CAS  Google Scholar 

  115. Harris PK, Yeoh S, Dluzewski AR et al (2005) Molecular identification of a malaria merozoite surface sheddase. PLoS Pathog 1(e29):0241–0251

    CAS  Google Scholar 

  116. Brossier F, Jewett TJ, Sibley LD et al (2005) A spatiallylocalized rhomboid protease cleaves cell surface adhesins essentialfor invasion by Toxoplasma. Proc Natl Acad Sci USA 102:4146–4151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Dowse TJ, Pascall JC, Brown KD et al (2005) Apicomplexan rhomboids have a potential role in microneme protein cleavage during host cell invasion. Int J Parasitol 35:747–756

    Article  CAS  PubMed  Google Scholar 

  118. Alexander DL, Mital J, Ward GE et al (2005) Identification of the moving junction complex of Toxoplasma gondii: A collaboration between distinct secretory organelles. PLoS Pathog 1:e17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Singh S, Alam MM, Pal-Bhowick I et al (2010) Distinct external signals trigger sequential release of apical organelles during erythrocyte invasion by malaria parasites. PLoS Pathog 6:e1000746

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Blackman MJ, Heidrich H-G, Donachie S et al (1990) A single fragment of a malaria merozoite surface protein remains on the parasite during red cell invasion and is the target of invasion-inhibiting antibodies. J Exp Med 172:379–382

    Article  CAS  PubMed  Google Scholar 

  121. Goel VK, Li X, Chen H et al (2003) Band 3 is a host receptor bindingmerozoite surface protein 1 during the Plasmodium falciparum invasion of erythrocytes. Proc Natl Acad Sc USA 100:5164–5169

    Article  CAS  Google Scholar 

  122. Li X, Chen H, Oo TH et al (2004) A co-ligand complex anchors Plasmodium falciparum merozoites to the erythrocyte invasion receptor band 3. J Biol Chem 279:5765–5771

    Article  CAS  PubMed  Google Scholar 

  123. Child MA, Epp C, Bujard H et al (2010) Regulated maturation of malaria merozoite surface protein-1 is essential for parasite growth. Mol Microbiol 78:187–202

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Barale J-C, Blisnick T, Fujioka H et al (1999) Plasmodium falciparum subtilisin-like protease 2, a merozoite candidate for the merozoite surface protein 1-42 maturase. Proc Natl Acad Sc USA 96:6445–6450

    Google Scholar 

  125. Howell SA, Hackett F, Jongco AM et al (2005) Distinct mechanisms govern proteolytic shedding of a key invasion protein in apicomplexan pathogens. Mol Microbiol 57:1342–1356

    Article  CAS  PubMed  Google Scholar 

  126. Uzureau P, Barale JC, Janse CJ et al (2004) Gene targeting demonstrates that the Plasmodium berghei subtilisin PbSUB2 is essential for red cell invasion and reveals spontaneous genetic recombination events. Cell Microbiol 6:65–78

    Article  CAS  PubMed  Google Scholar 

  127. Moneriz C, Mestres J, Bautista JM et al (2011) Multi-targeted activity of maslinic acid as an antimalarial natural compound. FEBS J 278:2951–2961

    Article  CAS  PubMed  Google Scholar 

  128. He Y, Chen Y, Oganesyan N et al (2012) Solution NMR structure of a sheddase inhibitor prodomain from the malarial parasite Plasmodium falciparum. Proteins 80:2810–2817

    Article  CAS  PubMed  Google Scholar 

  129. Urban S (2006) Rhomboid proteins: conserved membrane proteases with divergent biological functions. Genes Dev 20:3054–3068

    Article  CAS  PubMed  Google Scholar 

  130. Baker RP, Wijetilaka R, Urban S (2006) Two Plasmodium rhomboid proteases preferentially cleave different adhesins implicated in all invasive stages of malaria. PLoS Pathog 2:e113

    Article  PubMed  PubMed Central  Google Scholar 

  131. O’Donnell RA, Hackett S, Howell SA et al (2006) Intramembrane proteolysis mediates shedding of a key adhesin during erythrocyte invasion by the malaria parasite. J Cell Biol 174:1023–1033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Dowse TJ, Koussis K, Blackman MJ, Soldati-Favre D (2008) Roles of proteases during invasion and egress by Plasmodium and Toxoplasma. In: Burleigh BA, Soldati-Favre D (eds) Molecular mechanism of parasite invasion. Landes Biosciences and Springer Science+Business Media

    Google Scholar 

  133. Waller RF, McFadden GI (2005) The apicoplast: a review of the derived plastid of apicomplexan parasites. Curr Issues Mol Biol 7:57–79

    PubMed  Google Scholar 

  134. Goodman CD, Su V, McFAdden GI (2007) The effects of anti-bacterials on the malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 152:181–191

    Article  CAS  PubMed  Google Scholar 

  135. Schlitzer M (2007) Malaria chemotherapeutics part I: History of antimalarial drug development, currently used therapeutics, and drugs in clinical development. ChemMedChem 2:944–986

    Article  CAS  PubMed  Google Scholar 

  136. Schlitzer M (2006) Selective enzyme inhibitor instead of an “iron-triggered cluster bomb”. Pharm Unserer Zeit 35:8–9

    Article  PubMed  Google Scholar 

  137. Dahl EL, Rosenthal PJ (2008) Apicoplast translation, transcription and genome replication: targets for antimalarial antibiotics. Trends Parasitol 24:279–284

    Article  CAS  PubMed  Google Scholar 

  138. Vaidya AB, Mather MW (2009) Mitochondrial evolution and functions in malaria parasites. Annu Rev Microbiol 63:249–267

    Article  CAS  PubMed  Google Scholar 

  139. Painter HJ, Morrisey JM, Mather MW, Vaidya AB (2007) Specific role of mitochondrial electron transport in blood-stage Plasmodium falciparum. Nature 446:88–91

    Article  CAS  PubMed  Google Scholar 

  140. Tschan S, Kreidenweiss A, Stierhof YD et al (2010) Mitochondrial localization of the threonine peptidase PfHslV, a ClpQ ortholog in Plasmodium falciparum. Int J Parasitol 40:1517–1523

    Article  CAS  PubMed  Google Scholar 

  141. Ramasamy G, Gupta D, Mohmmed A et al (2007) Characterization and localization of Plasmodium falciparum homolog of prokaryotic ClpQ/HslV protease. Mol Biochem Parasitol 152:139–148

    Article  CAS  PubMed  Google Scholar 

  142. Sousa MC, Trame CB, Tsuruta H et al (2000) Crystal and solution structures of an HslUV protease-chaperone complex. Cell 103:633–643

    Article  CAS  PubMed  Google Scholar 

  143. Rathore S, Jain S, Sinha D et al (2011) Disruption of a mitochondrial protease machinery in Plasmodium falciparum is an intrinsic signal for parasite cell death. Cell Death Dis 2:e231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ralph SA, van Dooren GG, Waller RF et al (2004) Tropical infectious diseases: metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat Rev Microbiol 2:203–216

    Article  CAS  PubMed  Google Scholar 

  145. Yeh E, DeRisi JL (2011) Chemical rescue of malaria parasites lacking an apicoplast defines organelle function in blood-stage Plasmodium falciparum. PLoS Biol 9:e1001138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. van Dooren GG, Su V, D’Ombrain MC et al (2002) Processing of an apicoplast leader sequence in Plasmodium falciparum and the identification of a putative leader cleavage enzyme. J Biol Chem 277:23612–23619

    Article  PubMed  CAS  Google Scholar 

  147. Rathore S, Sinha D, Asad M et al (2010) A cyanobacterial serine protease of Plasmodium falciparum is targeted to the apicoplast and plays an important role in its growth and development. Mol Microbiol 77:873–890

    CAS  PubMed  Google Scholar 

  148. Sharma S, Pradhan A, Chauhan VS et al (2005) Isolation and characterization of type I signal peptidase of different malaria parasites. J Biomed Biotechnol 2005:301–309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Tuteja R, Pradhan A, Sharma S (2008) Plasmodium falciparum signal peptidase is regulated by phosphorylation and required for intra-erythrocytic growth. Mol Biochem Parasitol 157:137–147

    Article  CAS  PubMed  Google Scholar 

  150. Li X, Chen H, Bahamontes-Rosa N et al (2009) Plasmodium falciparum signal peptide peptidase is a promising drug target against blood stage malaria. Biochem Biophys Res Commun 380:454–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Parvanova I, Epiphanio S, Fauq A et al (2009) A small molecule inhibitor of signal peptide peptidase inhibits Plasmodium development in the liver and decreases malaria severity. PLoS ONE 4:e5078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Harbut MB, Velmourougane G, Dalal S et al (2011) Bestatin-based chemical biology strategy reveals distinct roles for malaria M1- and M17-family aminopeptidases. Proc Natl Acad Sci USA 108:E526–E534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Chang HH, Falick AM, Carlton PM et al (2008) N-terminal processing of proteins exportedby malaria parasites. Mol Biochem Parasitol 160:107–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Boddey JA, Moritz RL, Simpson RJ et al (2009) Role of the Plasmodium export element intraffi cking parasite proteins to the infected erythrocyte. Traffi c 10:285–299

    Article  CAS  Google Scholar 

  155. Boddey JA, Hodder AN, Gunther S et al (2010) An aspartyl protease directs malaria effectorproteins to the host cell. Nature 463:627–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the scientists who contributed in the field of malarial protease research. The author would also like to thank the Japan Society for the Promotion of Science for financial support and Prof. Shigeto Yoshida for providing encouragement to write the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asrar Alam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Alam, A. (2017). Plasmodium Proteases as Therapeutic Targets Against Malaria. In: Chakraborti, S., Chakraborti, T., Dhalla, N. (eds) Proteases in Human Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-10-3162-5_4

Download citation

Publish with us

Policies and ethics