Skip to main content

Complex Mechanisms of Matrix Metalloproteinases Involvement in Endometrial Physiology and Pathology—An Update

  • Chapter
  • First Online:
Proteases in Human Diseases

Abstract

Matrix metalloproteinases (MMPs) belong to a multigenic family of proteolytic enzymes with great structural variability which provide a complex intervention in pathophysiological conditions. Our review is focused on both MMPs key role in physiological reproductive events, such as embryo implantation, uterine involution, normal endometrial cycle, and on their role in the main endometrial pathologies. MMPs activity is closely regulated by tissue inhibitors of MMPs (TIMPs). MMP: TIMP imbalance has been incriminated in various pathological conditions, including endometrial cancer and endometriosis. Accumulated data support the involvement of a large spectrum of MMPs and TIMPs in endometrial carcinogenesis. Strong MMP-2 and weak TIMP-2 tissue immunoexpressions have a powerful prognosis value, while MMP-9 high expression suggests its important involvement in endometrial tumor invasiveness. Endometriosis development implies an accumulation of events showing partial overlap with endometrial carcinogenesis and invasion, requiring MMPs involvement. Therefore, increased levels of several MMPs have been detected in peritoneal fluid and/or endometrial tissue of patients diagnosed with endometriosis. Endometriotic mesenchymal stem cells (MSCs) may be involved in the pathogenesis of endometriosis due to their upregulated expression for markers of migration and angiogenesis, such as MMP-2, MMP-3, MMP-9, and VEGF. The hypothesis of therapeutic benefits of synthetic MMPs inhibitors, added to the progesterone or progestins action, has been based on the complex MMPs involvement in endometrial pathology. Future research is necessary to elucidate the complex interactions between molecules involved in proliferation, angiogenesis and apoptosis, opening new perspectives in the early diagnosis and treatment of endometrial neoplasia and endometriosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function and biochemistry. Circ Res 92:827–839

    Article  CAS  PubMed  Google Scholar 

  2. Ii M, Yamamoto H, Adachi Y et al (2006) Role of matrix metalloproteinase-7 (matrilysin) in human cancer invasion, apoptosis, growth, and angiogenesis. Exp Biol Med 231:20–27

    CAS  Google Scholar 

  3. Brummer O, Bohmer G, Hollwitz B et al (2002) MMP-1 and MMP-2 in the cervix uteri in different steps of malignant transformation-an immunohistochemical study. Gynecol Oncol 84:222–227

    Article  CAS  PubMed  Google Scholar 

  4. Overall CM (2002) Molecular determinants of metalloproteinase substrate specificity: matrix metalloproteinase substrate binding domains, modules, and exosites. Mol Biotechnol 22:51–86

    Article  CAS  PubMed  Google Scholar 

  5. Johansson N, Ala-Aho R, Uitto V et al (2000) Expression of collagenase-3 (MMP-13) and collagenase-1 (MMP-1) by transformed keratinocytes is dependent on the activity of p38 mitogen-activated protein kinase. J Cell Sci 113:227–235

    CAS  PubMed  Google Scholar 

  6. Curry TE Jr, Osteen KG (2003) The matrix metalloproteinase system: changes, regulation, and impact throughout the ovarian and uterine reproductive cycle. Endocr Rev 24:428–465

    Article  CAS  PubMed  Google Scholar 

  7. Folgueras AR, Pendas AM, Sanchez LM, Lopez-Otin C (2004) Matrix metalloproteinases in cancer: from new functions to improved inhibition strategies. Int J Dev Biol 48:411–424

    Article  CAS  PubMed  Google Scholar 

  8. Hashizume K (2007) Analysis of utero-placental-specific molecules and their functions during implantation and placentation in the bovine. J Reprod Dev 53:1–11

    Article  CAS  PubMed  Google Scholar 

  9. Osteen KG, Igarashi TM, Bruner-Tran KL (2003) Progesterone action in the human endometrium: induction of a unique tissue environment which limits matrix metalloproteinase (MMP) expression. Front Biosci 8:78–86

    Article  Google Scholar 

  10. Yadav L, Puri N, Rastogi V et al (2014) Matrix metalloproteinases and cancer—roles in threat and therapy. Asian Pac J Cancer Prev 15:1085–1091

    Article  PubMed  Google Scholar 

  11. Shiomi T, Okada Y (2003) MT1-MMP and MMP-7 in invasion and metastasis of human cancers. Cancer Metastasis Rev 22:145–152

    Article  CAS  PubMed  Google Scholar 

  12. Amalinei C, Caruntu ID, Balan R (2007) Biology of metalloproteinases. Rom J Morphol Embryol 48:316–320

    Google Scholar 

  13. Wiseman BS, Sternlicht MD, Lund LR et al (2003) Site-specific inductive and inhibitory activities of MMP-2 and MMP-3 orchestrate mammary gland branching morphogenesis. J Cell Biol 162:1123–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bouloumie A, Sengenes C, Portolan G et al (2001) Adipocyte produces matrix metalloproteinases 2 and 9: involvement in adipose differentiation. Diabetes 50:2080–2086

    Article  CAS  PubMed  Google Scholar 

  15. Lambert V, Wielockx B, Munaut C et al (2003) MMP-2 and MMP-9 synergize in promoting choroidal neovascularization. FASEB J 17:2290–2292

    CAS  PubMed  Google Scholar 

  16. Solberg H, Rinkenberger J, Danø K et al (2003) A functional overlap of plasminogen and MMPs regulates vascularization during placental development. Development 130:4439–4450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. English JL, Kassiri Z, Koskivirta I et al (2006) Individual TIMP deficiencies differentially impact pro-MMP-2 activation. J Biol Chem 281:10337–10346

    Article  CAS  PubMed  Google Scholar 

  18. Lee MH, Murphy G (2004) Matrix metalloproteinases at a glance. J Cell Science 117:4015–4016

    Article  CAS  PubMed  Google Scholar 

  19. Mannello F, Gazzanelli G (2001) Tissue inhibitors of metalloproteinases and programmed cell death: Conundrums, controversies and potential implications. Apoptosis 6:479–482

    Article  CAS  PubMed  Google Scholar 

  20. Collette T, Bellehumeur C, Kats R et al (2004) Evidence for an increased release of proteolytic activity by the eutopic endometrial tissue in women with endometriosis and for involvement of matrix metalloproteinase-9. Hum Reprod 19:1257–1264

    Article  CAS  PubMed  Google Scholar 

  21. Seo DW, Li H, Guedez L et al (2003) TIMP-2 mediated inhibition of angiogenesis: an MMP-independent mechanism. Cell 114:171–180

    Article  CAS  PubMed  Google Scholar 

  22. Wang WM, Ge G, Lim NH et al (2006) TIMP-3 inhibits the procollagen N-proteinase ADAMTS-2. Biochem J 398:515–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis. Genes Dev 14:163–176

    PubMed  PubMed Central  Google Scholar 

  24. Qi JH, Ebrahem Q, Moore N et al (2003) A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat Med 9:407–415

    Article  CAS  PubMed  Google Scholar 

  25. Liu K, Wahlberg P, Hagglund AC, Ny T (2003) Expression pattern and functional studies of matrix degrading proteases and their inhibitors in the mouse corpus luteum. Mol Cell Endocrinol 31:131–140

    Article  CAS  Google Scholar 

  26. Oh J, Seo DW, Diaz T et al (2004) Tissue inhibitors of metalloproteinase 2 inhibits endothelial cell migration through increased expression of RECK. Cancer Res 64:9062–9069

    Article  CAS  PubMed  Google Scholar 

  27. Baker AH, Edwards DR, Murphy G (2002) Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J Cell Sci 115:3719–3727

    Article  CAS  PubMed  Google Scholar 

  28. Jiang Y, Goldberg ID, Shi YE (2002) Complex roles of tissue inhibitors of metalloproteinases in cancer. Oncogene 28:2245–2252

    Article  Google Scholar 

  29. Velasco G, Pendás AM, Fueyo A et al (1999) Cloning and characterization of human MMP-23, a new matrix metalloproteinase predominantly expressed in reproductive tissues and lacking conserved domains in other family members. J Biol Chem 274:4570–4576

    Article  CAS  PubMed  Google Scholar 

  30. Freitas S, Meduri G, Le Nestour E et al (1999) Expression of metalloproteinases and their inhibitors in blood vessels in human endometrium. Biol Reprod 61:1070–1082

    Article  CAS  PubMed  Google Scholar 

  31. D’Ippolito S, Marana R, Di Nicuolo F et al (2012) Effect of low molecular weight heparins (LMWHs) on antiphospholipid antibodies (aPL)-mediated inhibition of endometrial angiogenesis. PLoS ONE 7(1):e29660. doi:10.1371/journal.pone.0029660

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Lockwood CJ (2011) Mechanisms of normal and abnormal endometrial bleeding. Menopause 18:408–411

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cornet PB, Galant C, Eeckhout Y et al (2005) Regulation of matrix metalloproteinase-9/gelatinase B expression and activation by ovarian steroids and LEFTY-A/endometrial bleeding-associated factor in the human endometrium. J Clin Endocrinol Metab 90:1001–1011

    Article  CAS  PubMed  Google Scholar 

  34. Nissi R, Talvensaari-Mattila A, Kotila V et al (2013) Circulating matrix metalloproteinase MMP-9 and MMP-2/TIMP-2 complex are associated with spontaneous early pregnancy failure. Reprod Biol Endocrinol 11:2. doi:10.1186/1477-7827-11-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Moindjie H, Santos ED, Loeuillet L et al (2014) Preimplantation factor (PIF) promotes human trophoblast invasion. Biol Reprod 91:118. doi:10.1095/biolreprod.114.119156

    Article  PubMed  CAS  Google Scholar 

  36. Zhuang Y, Qian Z, Huang L (2014) Elevated expression levels of matrix metalloproteinase-9 in placental villi and tissue inhibitor of metalloproteinase-2 in decidua are associated with prolonged bleeding after mifepristone-misoprostol medical abortion. Fertil Steril 101:166–171

    Article  CAS  PubMed  Google Scholar 

  37. Lockwood CJ, Basar M, Kayisli UA et al (2014) Interferon-γ protects first-trimester decidual cells against aberrant matrix metalloproteinases 1, 3, and 9 expression in preeclampsia. Am J Pathol 184:2549–2559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ishikawa T, Harada T, Kubota T, Aso T (2007) Testosterone inhibits matrix metalloproteinase-1 production in human endometrial stromal cells in vitro. Reproduction 133:1233–1239

    Article  CAS  PubMed  Google Scholar 

  39. Graesslin O, Cortez A, Fauvet M et al (2006) Metalloproteinase-2, -7 and -9 and tissue inhibitor of metalloproteinase-1 and -2 expression in normal, hyperplastic and neoplastic endometrium: a clinical-pathological correlation study. Ann Oncol 17:637–645

    Article  CAS  PubMed  Google Scholar 

  40. Galant C, Berliere M, Dubois D et al (2004) Focal expression and final activity of matrix metalloproteinases may explain irregular dysfunctional endometrial bleeding. Am J Pathol 165:83–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69:562–573

    Article  CAS  PubMed  Google Scholar 

  42. Yi YC, Chou PT, Chen LY et al (2010) Matrix metalloproteinase-7 (MMP-7) polymorphism is a risk factor for endometrial cancer susceptibility. Clin Chem Lab Med 48:337–344

    Article  CAS  PubMed  Google Scholar 

  43. Ueno H, Yamashita K, Azumano I et al (1999) Enhanced production and activation of matrix metalloproteinase-7 (matrilysin) in human endometrial carcinomas. Int J Cancer 84:470–477

    Article  CAS  PubMed  Google Scholar 

  44. Määtä M, Soini Y, Liakka A, Autio-Harmainen H (2000) Localisation of MT1-MMP, TIMP-1, TIMP-2, and TIMP-3 messenger RNA in normal, hyperplastic, and neoplastic endometrium. Enhanced expression by endometrial adenocarcinomas is associated with low differentiation. Am J Clin Pathol 114:402–411

    Article  Google Scholar 

  45. Hojilla CV, Mohammed FF, Khokha R (2003) Matrix metalloproteinases and their tissue inhibitors direct cell fate during cancer development. Br J Cancer 10:1817–1821

    Article  CAS  Google Scholar 

  46. Amalinei C, Caruntu ID, Balan R et al (2008) Contribution of immunohistochemistry and flow-cytometry in the study of endometrial pathology. Rev Med Chir Soc Med Nat Iasi 112:437–448

    PubMed  Google Scholar 

  47. Amalinei C, Caruntu ID, Giusca SE, Balan RA (2010) Matrix metalloproteinases involvement in pathologic conditions. Rom J Morphol Embryol 51:215–228

    PubMed  Google Scholar 

  48. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174

    Article  CAS  PubMed  Google Scholar 

  49. Amalinei C, Cianga C, Balan R et al (2011) Immunohistochemical analysis of steroid receptors, proliferation markers, apoptosis related molecules, and gelatinases in non-neoplastic and neoplastic endometrium. Ann Anat 193:43–55

    Article  CAS  PubMed  Google Scholar 

  50. Park DW, Ryu HS, Choi DS et al (2001) Localization of matrix metalloproteinases on endometrial cancer cell invasion in vitro. Gynecol Oncol 82:442–449

    Article  CAS  PubMed  Google Scholar 

  51. Honkavuori M, Talvensaari-Mattila A, Soini Y et al (2007) MMP-2 expression associates with CA 125 and clinical course in endometrial carcinoma. Gynecol Oncol 104:217–221

    Article  CAS  PubMed  Google Scholar 

  52. McLaughlin B, Weiss JB (1996) Endothelial-cell-stimulating angiogenesis factor (ESAF) activates progelatinase A (72 kDa type IV collagenase), prostromelysin 1 and procollagenase and reactivates their complexes with tissue inhibitors of metalloproteinases: a role for ESAF in non-inflammatory angiogenesis. Biochem J 317:739–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Aglund K, Rauvala M, Puistola U et al (2004) Gelatinases A and B (MMP-2 and MMP-9) in endometrial cancer—MMP-9 correlates to the grade and the stage. Gynecol Oncol 94:699–704

    Article  CAS  PubMed  Google Scholar 

  54. Honkavuori-Toivola M, Talvensaari-Mattila A, Soini Y et al (2012) Immunoreactivity for TIMP-2 is associated with a favorable prognosis in endometrial carcinoma. Tumor Biol 33:935–941

    Article  CAS  Google Scholar 

  55. Honkavuori-Toivola M, Santala M, Soini Y et al (2013) Combination of strong MMP-2 and weak TIMP-2 immunostainings is a significant prognostic factor in endometrial carcinoma. Dis Markers 35:261–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Talvensaari-Mattila A, Santala M, Soini Y, Turpeenniemi-Hujanen T (2005) Prognostic value of matrix metalloproteinase-2 (MMP-2) expression in endometrial endometrioid adenocarcinoma. Anticancer Res 25:4101–4105

    CAS  PubMed  Google Scholar 

  57. Laas E, Ballester M, Cortez A et al (2014) Supervised clustering of immunohistochemical markers to distinguish atypical endometrial hyperplasia from grade 1 endometrial cancer. Gynecol Oncol 133:205–210

    Article  CAS  PubMed  Google Scholar 

  58. Grybos A, Bar J (2014) The relationships between the immunoexpression of KAI1, MMP-2, MMP-9 and steroid receptors expression in endometrial cancer. Folia Histochem Cytobiol 52:187–194

    Article  CAS  PubMed  Google Scholar 

  59. Jedryka M, Chrobak A, Chelmonska-Soyta A et al (2012) Matrix metalloproteinase (MMP)-2 and MMP-9 expression in tumor infiltrating CD3 lymphocytes from women with endometrial cancer. Int J Gynecol Cancer 22:1303–1309

    Article  PubMed  Google Scholar 

  60. Srdelić Mihalj S, Kuzmić-Prusac I, Zekić-Tomaš S et al (2014) Lipocalin-2 and matrix metalloproteinase-9 expression in high-grade endometrial cancer and their prognostic value. Histopathology 17. doi:10.1111/his.12633

  61. Mannelqvist M, Stefansson IM, Wik E et al (2012) Lipocalin 2 expression is associated with aggressive features of endometrial cancer. BMC Cancer 12:169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nishi H, Kuroda M, Isaka K (2013) Estrogen and estrogen receptor induce matrix metalloproteinase-26 expression in endometrial carcinoma cells. Oncol Rep 30:751–756

    CAS  PubMed  Google Scholar 

  63. Nabeshima K, Iwasaki H, Nishio J et al (2006) Expression of emmprin and matrix metalloproteinases (MMPs) in peripheral nerve sheath tumors: emmprin and membrane-type (MT)1-MMP expressions are associated with malignant potential. Anticancer Res 26:1359–1367

    CAS  PubMed  Google Scholar 

  64. Yan L, Zucker S, Toole BP (2005) Roles of the multifunctional glycoprotein, emmprin (basigin; CD147), in tumour progression. Thromb Haemost 93:199–204

    CAS  PubMed  Google Scholar 

  65. Muramatsu T, Miyauchi T (2003) Basigin (CD147): a multifunctional transmembrane protein involved in reproduction, neural function, inflammation and tumor invasion. Histol Histopathol 18:981–987

    CAS  PubMed  Google Scholar 

  66. Tang Y, Nakada MT, Kesavan P et al (2005) Extracellular matrix metalloproteinase inducer stimulates tumor angiogenesis by elevating vascular endothelial cell growth factor and matrix metalloproteinases. Cancer Res 65:3193–3199

    CAS  PubMed  Google Scholar 

  67. Ueda K, Yamada K, Urashima M et al (2007) Association of extracellular matrix metalloproteinase inducer in endometrial carcinoma with patient outcomes and clinicopathogenesis using monoclonal antibody 12C3. Oncol Rep 17:731–735

    CAS  PubMed  Google Scholar 

  68. Nakamura K, Kodama J, Hogo A, Hiramatsu Y (2012) Role of emmprin in endometrial cancer. BMC Cancer 12:191–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yang J, Weinberg RA (2008) Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14:818–829

    Article  CAS  PubMed  Google Scholar 

  70. Yang J, Mani SA, Donaher JL et al (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117:927–939

    Article  CAS  PubMed  Google Scholar 

  71. Khoufache K, Bazin S, Girard K et al (2012) Macrophage migration inhibitory factor antagonist blocks the development of endometriosis in vivo. PLoS ONE 7:e37264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Londero AP, Calcagno A, Grassi T et al (2012) Survivin, MMP-2, MT1-MMP, and TIMP-2: their impact on survival, implantation, and proliferation of endometriotic tissues. Virchows Arch 461:589–599

    Article  CAS  PubMed  Google Scholar 

  73. Suzumori N, Ozaki Y, Ogasawara M, Suzumori K (2001) Increased concentrations of cathepsin D in peritoneal fluid from women with endometriosis. Mol Hum Reprod 7:459–462

    Article  CAS  PubMed  Google Scholar 

  74. Mizumoto H, Saito T, Ashihara K et al (2002) Expression of matrix metalloproteinases in ovarian endometriomas: immunohistochemical study and enzyme immunoassay. Life Sci 71:259–273

    Article  CAS  PubMed  Google Scholar 

  75. Scotti S, Regidor PA, Schindler AE, Winterhager E (2000) Reduced proliferation and cell adhesion in endometriosis. Mol Hum Reprod 6:610–617

    Article  CAS  PubMed  Google Scholar 

  76. Chen GT, Tai CT, Yeh LS et al (2002) Identification of the cadherin subtypes present in the human peritoneum and endometriotic lesions: potential role for P-cadherin in the development of endometriosis. Mol Reprod Dev 62:289–294

    Article  CAS  PubMed  Google Scholar 

  77. Ueda M, Yamashita Y, Takehara M et al (2002) Gene expression of adhesion molecules and matrix metalloproteinases in endometriosis. Gynecol Endocrinol 16:391–402

    Article  CAS  PubMed  Google Scholar 

  78. Moreno-Bueno G, Gamallo C, Pérez-Gallego L et al (2001) beta-Catenin expression pattern, beta-catenin gene mutations, and microsatellite instability in endometrioid ovarian carcinomas and synchronous endometrial carcinomas. Diagn Mol Pathol 10:116–122

    Article  CAS  PubMed  Google Scholar 

  79. Jana SK, Banerjee P, Mukherjee R et al (2013) HOXA-11 mediated dysregulation of matrix remodeling during implantation window in women with endometriosis. J Assist Reprod Genet 30:1505–1512

    Article  PubMed  PubMed Central  Google Scholar 

  80. Malvezzi H, Aguiar VG, Paz CC et al (2013) Increased circulating MMP-2 levels in infertile patients with moderate and severe pelvic endometriosis. Reprod Sci 20:557–562

    Article  CAS  PubMed  Google Scholar 

  81. Antsiferova Y, Sotnikova N (2012) The local immune mechanisms involved in the formation of endometriotic lesions. In: Chaudhury K, Chakravarty B (eds) Endometriosis—basic concepts and current research trends. ISBN 978-953-51-0524-4, 11: 211-244. doi:10.5772/29965

  82. Yeaman GR, Collins JE, Lang GA (2002) Autoantibody responses to carbohydrate epitopes in endometriosis. Ann N Y Acad Sci 955:174–182

    Article  CAS  PubMed  Google Scholar 

  83. Cominelli A, Gaide Chevronnay HP, Lemoine P et al (2014) Matrix metalloproteinase-27 is expressed in CD163+/CD206+ M2 macrophages in the cycling human endometrium and in superficial endometriotic lesions. Mol Hum Reprod 20:767–775

    Article  CAS  PubMed  Google Scholar 

  84. Trovó de Marqui AB (2012) Genetic polymorphisms and endometriosis: contribution of genes that regulate vascular function and tissue remodeling. Rev Assoc Med Bras 58:620–632

    Article  PubMed  Google Scholar 

  85. Iarmolinskaia MI, Molotkov AS, Bezhenar VF et al (2014) Association of matrix metalloproteinases’ polymorphisms of MMP3 and MMP9 with development of genital endometriosis. Genetika 50:230–235

    Google Scholar 

  86. Yuan C, Zhang L, Gao Y et al (2014) DNA demethylation at the promoter region enhances the expression of MMP-9 in ectopic endometrial stromal cells of endometriosis. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 30:1258–1261

    CAS  PubMed  Google Scholar 

  87. Koippallil Gopalakrishnan Nair AR, Pandit H, Warty N, Madan T (2015) Endometriotic mesenchymal stem cells exhibit a distinct immune phenotype. Int Immunol 27:195–204

    Article  PubMed  CAS  Google Scholar 

  88. Fierro IM, Colgan SP, Bernasconi G et al (2003) Lipoxin A4 and aspirin-triggered 15-epi-LipoxinA4 inhibit human neutrophil nigration: comparisons between synthetic 15 epimers in chemotaxis and transmigration with microvessel endothelial cells and epithelial cells. J Immunol 170:2688–2694

    Article  CAS  PubMed  Google Scholar 

  89. Kumar R, Clerc AC, Gori I et al (2014) Lipoxin A4 prevents the progression of de novo and established endometriosis in a mouse model by attenuating prostaglandin E2 production and estrogen signaling. PLoS ONE 24:e89742

    Article  CAS  Google Scholar 

  90. Wu R, Zhou W, Chen S et al (2014) Lipoxin A4 suppresses the development of endometriosis in an ALX receptor-dependent manner via the p38 MAPK pathway. Br J Pharmacol 171:4927–4940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bayoglu Tekin Y, Guven S, Kirbas A et al (2015) Is resveratrol a potential substitute for leuprolide acetate in experimental endometriosis? Eur J Obstet Gynecol Reprod Biol 184:1–6

    Article  CAS  PubMed  Google Scholar 

  92. Tamaki K, Tanzawa K, Kurihara S et al (1995) Synthesis and structure-activity relationships of gelatinase inhibitors derived from matlystatins. Chem Pharm Bull 43:1883–1893

    Article  CAS  PubMed  Google Scholar 

  93. Conway JG, Trexler SJ, Wakefield JA et al (1996) Effect of matrix metalloproteinase inhibitors on tumor growth and spontaneous metastatsis. Clin Exp Metastasis 14:115–124

    Article  CAS  PubMed  Google Scholar 

  94. Brown PD (1998) Matrix metalloproteinase inhibitors. Angiogenesis 1:142–154

    Article  CAS  PubMed  Google Scholar 

  95. Bottomley KM Borkakoti N, Bradshaw D et al (1997) Inhibition of bovine nasal cartilage degradation by selective matrix metalloproteinase inhibitors. Biochem J 323:483–488

    Google Scholar 

  96. Rigot V, Marbaix E, Lemoine P et al (2001) In vivo perimenstrual activation of progelatinase B (proMMP-9) in the human endometrium and its dependence on stromelysin 1 (MMP-3) ex vivo. Biochem J 358:275–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Salamonsen LA, Butt AR, Hammond FR et al (1997) Production of endometrial matrix metalloproteinases, but not their tissue inhibitors, is modulated by progesterone withdrawal in an in vitro model for menstruation. J Clin Endocrinol Metab 82:1409–1415

    CAS  PubMed  Google Scholar 

  98. Prifti S, Lelle I, Zhong G et al (2004) Matrix metalloproteinase 2 and tissue inhibitor of metalloproteinase 2 expression is not regulated by norgestimate or norelgestromin. Gynecol Endocrinol 18:23–27

    Article  CAS  PubMed  Google Scholar 

  99. Hampton AL, Nie G, Salamonsen LA (1999) Progesterone analogues similarly modulate endometrial matrix metalloproteinase-1 and matrixmetalloproteinase-3 and their inhibitor in a model for long-term contraceptive effects. Mol Hum Reprod 5:365–371

    Article  CAS  PubMed  Google Scholar 

  100. Rawdanowicz TJ, Hampton AL, Nagase H et al (1994) Matrix metalloproteinase production by cultured human endometrial stromal cells: identification of interstitial collagenase, gelatinase-A, gelatinase-B, and stromelysin-1 and their differential regulation by interleukin-1 alpha and tumor necrosis factor-alpha. J Clin Endocrinol Metab 79:530–536

    CAS  PubMed  Google Scholar 

  101. Singer CF, Marbaix E, Lemoine P et al (1999) Local cytokines induce differential expression of matrix metalloproteinases but not their tissue inhibitors in human endometrial fibroblasts. Eur J Biochem 259:40–45

    Article  CAS  PubMed  Google Scholar 

  102. Bruner KL, Rodgers WH, Gold LI et al (1995) Transforming growth factor beta mediates the progesterone suppression of an epithelial metalloproteinase by adjacent stroma in the human endometrium. Proc Natl Acad Sci USA 92:7362–7366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang Y, McCluskey K, Fujii K, Wahl LM (1998) Differential regulation of monocyte matrix metalloproteinase and TIMP-1 production by TNF-alpha, granulocyte-macrophage CSF, and IL-1 beta through prostaglandin-dependent and -independent mechanisms. J Immunol 161:3071–3076

    CAS  PubMed  Google Scholar 

  104. Lau TM, Witjaksono J, Affandi B, Rogers PA (1996) Expression of progesterone receptor mRNA in the endometrium during the normal menstrual cycle and in Norplant users. Hum Reprod 11:2629–2634

    Article  CAS  PubMed  Google Scholar 

  105. Mertens HJ, Heineman MJ, Koudstaal J et al (1996) Androgen receptor content in human endometrium. Eur J Obstet Gynecol Reprod Biol 70:11–13

    Article  CAS  PubMed  Google Scholar 

  106. Wilson CM, McPhaul MJ (1996) A and B forms of the androgen receptor are expressed in a variety of human tissues. Mol Cell Endocrinol 120:51–57

    Article  CAS  PubMed  Google Scholar 

  107. Schneikert J, Peterziel H, Defossez PA et al (1996) Androgen receptor-Ets protein interaction is a novel mechanism for steroid hormone-mediated down-modulation of matrix metalloproteinase expression. J Biol Chem 271:23907–23913

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia Amalinei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Amalinei, C., Căruntu, ID., Giuşcă, S.E., Balan, R.A. (2017). Complex Mechanisms of Matrix Metalloproteinases Involvement in Endometrial Physiology and Pathology—An Update. In: Chakraborti, S., Chakraborti, T., Dhalla, N. (eds) Proteases in Human Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-10-3162-5_3

Download citation

Publish with us

Policies and ethics