Skip to main content

Multifaceted Role of Matrix Metalloproteases on Human Diseases

  • Chapter
  • First Online:
Book cover Proteases in Human Diseases

Abstract

Matrix metalloproteases (MMPs) are important enzymes required in extracellular matrix (ECM) degradation for creating the cellular environments to maintain numerous physiological processes ranging from development to wound repair. However, MMP activity is strictly controlled and imbalance in the levels of MMP family members and its inhibitors has been implicated as an etiological factor in several diseases. Herein, involvement of MMPs and their natural inhibitors, tissue inhibitors of metalloproteases (TIMPs), in several disease processes have been considered for discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141:52–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gross J, Lapiere CM (1962) Collagenolytic activity in amphibian tissues: a tissue culture assay. Proc Natl Acad Sci U S A 48:1014–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bourboulia D, Stetler-Stevenson WG (2010) Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): positive and negative regulators in tumor cell adhesion. Semin Cancer Biol 20:161–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chakraborti S, Mandal M, Das S, Mandal A, Chakraborti T (2003) Regulation of matrix metalloproteinases: an overview. Mol Cell Biochem 253:269–285

    Article  CAS  PubMed  Google Scholar 

  5. Woessner JF Jr, Nagase H (2000) Functions of the TIMPs. Matrix metalloproteinases and TIMPs. Oxford University Press; Oxford, New York, NY, pp 130–135

    Google Scholar 

  6. Hynes RO (2009) The extracellular matrix: not just pretty fibrils. Science 326:1216–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Becker JW, Marcy AI, Rokosz LL, Axel MG, Burbaum JJ, Fitzgerald PM, Cameron PM, Esser CK, Hagmann WK, Hermes JD, Springer JP (1995) Stromelysin-1: three-dimensional structure of the inhibited catalytic domain and of the C-truncated proenzyme. Protein Sci 4:1966–1976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gururajan R, Grenet J, Lahti JM, Kidd VJ (1998) Isolation and characterization of two novel metalloproteinase genes linked to the Cdc2L locus on human chromosome 1p36.3. Genomics 52:101–106

    Article  CAS  PubMed  Google Scholar 

  9. Bode W, Gomis-Rüth FX, Stöckler W (1993) Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the ‘metzincins’. FEBS Lett 331:134–140

    Article  CAS  PubMed  Google Scholar 

  10. Dhanaraj V, Ye QZ, Johnson LL, Hupe DJ, Ortwine DF, Dunbar JB Jr, Rubin JR, Pavlovsky A, Humblet C, Blundell TL (1996) X-ray structure of a hydroxamate inhibitor complex of stromelysin catalytic domain and its comparison with members of the zinc metalloproteinase superfamily. Structure 4:375–386

    Article  CAS  PubMed  Google Scholar 

  11. Allan JA, Docherty AJ, Barker PJ, Huskisson NS, Reynolds JJ, Murphy G (1995) Binding of gelatinases A and B to type-I collagen and other matrix components. Biochem J 309:299–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Steffensen B, Wallon UM, Overall CM (1995) Extracellular matrix binding properties of recombinant fibronectin type II-like modules of human 72-kDa gelatinase/type IV collagenase. High affinity binding to native type I collagen but not native type IV collagen. J Biol Chem 270:11555–11566

    Article  CAS  PubMed  Google Scholar 

  13. Gomis-Rüth FX, Gohlke U, Betz M, Knäuper V, Murphy G, López-Otín C, Bode W (1996) The helping hand of collagenase-3 (MMP-13): 2.7 A crystal structure of its C-terminal haemopexin-like domain. J Mol Biol 264:556–566

    Article  PubMed  Google Scholar 

  14. Bode W (1995) A helping hand for collagenases: the haemopexin-like domain. Structure 3:527–530

    Article  CAS  PubMed  Google Scholar 

  15. Clark IM, Cawston TE (1989) Fragments of human fibroblast collagenase. Purification and characterization. Biochem J 263:201–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Srikanth V, Maczurek A, Phan T, Steele M, Westcott B, Juskiw D, Münch G (2011) Advanced glycation endproducts and their receptor RAGE in Alzheimer’s disease. Neurobiol Aging 32:763–777

    Article  CAS  PubMed  Google Scholar 

  17. Salat DH (2011) The declining infrastructure of the aging brain. Brain Connect 1:279–293

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zlokovic BV (2011) Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci 12:723–738

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Dollery CM, McEwan JR, Henney AM (1995) Matrix metalloproteinases and cardiovascular disease. Circ Res 77:863–868

    Google Scholar 

  20. Park SK, Kim K, Page GP, Allison DB, Weindruch R, Prolla TA (2009) Gene expression profiling of aging in multiple mouse strains: identification of aging biomarkers and impact of dietary antioxidants. Aging Cell 8:484–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zahn JM, Sonu R, Vogel H, Crane E, Mazan-Mamczarz K, Rabkin R, Davis RW, Becker KG, Owen AB, Kim SK (2006) Transcriptional profiling of aging in human muscle reveals a common aging signature. PLoS Genet 2:e115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Romero JR, Vasan RS, Beiser AS, Au R, Benjamin EJ, DeCarli C, Wolf PA, Seshadri S (2010) Association of matrix metalloproteinases with MRI indices of brain ischemia and aging. Neurobiol Aging 31:2128–2135

    Article  CAS  PubMed  Google Scholar 

  23. Safciuc F, Constantin A, Manea A, Nicolae M, Popov D, Raicu M, Alexandru D, Constantinescu E (2007) Advanced glycation end products, oxidative stress and metalloproteinases are altered in the cerebral microvasculature during aging. Curr Neurovasc Res 4:228–234

    Article  CAS  PubMed  Google Scholar 

  24. Liu Y, Zhang M, Hao W, Mihaljevic I, Liu X, Xie K, Walter S, Fassbender K (2013) Matrix metalloproteinase-12 contributes to neuroinflammation in the aged brain. Neurobiol Aging 34:1231–1239

    Article  PubMed  CAS  Google Scholar 

  25. Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E (2011) Alzheimer’s disease. Lancet 377(9770):1019–1031

    Article  PubMed  Google Scholar 

  26. Bjerke M, Zetterberg H, Edman Å, Blennow K, Wallin A, Andreasson U (2011) Cerebrospinal fluid matrix metalloproteinases and tissue inhibitor of metalloproteinases in combination with subcortical and cortical biomarkers in vascular dementia and Alzheimer’s disease. J Alzheimers Dis 27:665–676

    CAS  PubMed  Google Scholar 

  27. Bruno MA, Mufson EJ, Wuu J, Cuello AC (2009) Increased matrix metalloproteinase 9 activity in mild cognitive impairment. J Neuropathol Exp Neurol 68:1309–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lorenzl S, Buerger K, Hampel H, Beal MF (2008) Profiles of matrix metalloproteinases and their inhibitors in plasma of patients with dementia. Int Psychogeriatr 20:67–76

    Article  PubMed  Google Scholar 

  29. Asahina M, Yoshiyama Y, Hattori T (2001) Expression of matrix metalloproteinase-9 and urinary-type plasminogen activator in Alzheimer’s disease brain. Clin Neuropathol 20:60–63

    CAS  PubMed  Google Scholar 

  30. Deb S, Wenjun Zhang J, Gottschall PE (2003) Beta-amyloid induces the production of active, matrix-degrading proteases in cultured rat astrocytes. Brain Res 970:205–213

    Article  PubMed  CAS  Google Scholar 

  31. Backstrom JR, Lim GP, Cullen MJ, Tökés ZA (1996) Matrix metalloproteinase-9 (MMP-9) is synthesized in neurons of the human hippocampus and is capable of degrading the amyloid-beta peptide (1-40). J Neurosci 16:7910–7919

    CAS  PubMed  Google Scholar 

  32. Yan P, Hu X, Song H, Yin K, Bateman RJ, Cirrito JR, Xiao Q, Hsu FF, Turk JW, Xu J, Hsu CY, Holtzman DM, Lee JM (2006) Matrix metalloproteinase-9 degrades amyloid-beta fibrils in vitro and compact plaques in situ. J Biol Chem 281:24566–24574

    Article  CAS  PubMed  Google Scholar 

  33. Li W, Poteet E, Xie L, Liu R, Wen Y, Yang SH (2011) Regulation of matrix metalloproteinase 2 by oligomeric amyloid β protein. Brain Res 1387:141–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liao MC, Van Nostrand WE (2010) Degradation of soluble and fibrillar amyloid beta-protein by matrix metalloproteinase (MT1-MMP) in vitro. Biochemistry 49:1127–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ito S, Kimura K, Haneda M, Ishida Y, Sawada M, Isobe K (2007) Induction of matrix metalloproteinases (MMP3, MMP12 and MMP13) expression in the microglia by amyloid-beta stimulation via the PI3 K/Akt pathway. Exp Gerontol 42:532–537

    Article  CAS  PubMed  Google Scholar 

  36. Horstmann S, Budig L, Gardner H, Koziol J, Deuschle M, Schilling C, Wagner S (2010) Matrix metalloproteinases in peripheral blood and cerebrospinal fluid in patients with Alzheimer’s disease. Int Psychogeriatr 22:966–972

    Article  PubMed  Google Scholar 

  37. Mlekusch R, Humpel C (2009) Matrix metalloproteinases-2 and -3 are reduced in cerebrospinal fluid with low beta-amyloid1-42 levels. Neurosci Lett 466:135–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang XX, Tan MS, Yu JT, Tan L (2014) Matrix metalloproteinases and their multiple roles in Alzheimer’s disease. Biomed Res Int 2014:908636

    PubMed  PubMed Central  Google Scholar 

  39. Deb S, Gottschall PE (1996) Increased production of matrix metalloproteinases in enriched astrocyte and mixed hippocampal cultures treated with beta-amyloid peptides. J Neurochem 66:1641–1647

    Article  CAS  PubMed  Google Scholar 

  40. Saarela MS, Lehtimäki T, Rinne JO, Hervonen A, Jylhä M, Röyttä M, Ahonen JP, Mattila KM (2004) Interaction between matrix metalloproteinase 3 and the epsilon4 allele of apolipoprotein E increases the risk of Alzheimer’s disease in Finns. Neurosci Lett 367:336–339

    Article  CAS  PubMed  Google Scholar 

  41. Brkic M, Balusu S, Van Wonterghem E, Gorlé N, Benilova I, Kremer A, Van Hove I, Moons L, De Strooper B, Kanazir S, Libert C, Vandenbroucke RE (2015) Amyloid β oligomers disrupt blood-CSF barrier integrity by activating matrix metalloproteinases. J Neurosci 35:12766–12778

    Article  CAS  PubMed  Google Scholar 

  42. Leake A, Morris CM, Whateley J (2000) Brain matrix metalloproteinase 1 levels are elevated in Alzheimer’s disease. Neurosci Lett 291:201–203

    Article  CAS  PubMed  Google Scholar 

  43. Trojanowski JQ, Lee VM (1998) Aggregation of neurofilament and alpha-synuclein proteins in lewy bodies: implications for the pathogenesis of parkinson disease and lewy body dementia. Arch Neurol 55:151–152

    Article  CAS  PubMed  Google Scholar 

  44. Marsden CD, Obeso JA (1994) The functions of the basal ganglia and the paradox of stereotaxic surgery in Parkinson’s disease. Brain 117:877–897

    Article  PubMed  Google Scholar 

  45. Barcia C, Ros CM, Annese V, Gómez A, Ros-Bernal F, Aguado-Yera D, Martínez-Pagán ME, de Pablos V, Fernandez-Villalba E, Herrero MT (2011) IFN-γ signaling, with the synergistic contribution of TNF-α, mediates cell specific microglial and astroglial activation in experimental models of Parkinson’s disease. Cell Death Dis 2:e142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gao HM, Jiang J, Wilson B, Zhang W, Hong JS, Liu B (2002) Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem 81:1285–1297

    Article  CAS  PubMed  Google Scholar 

  47. Castaño A, Herrera AJ, Cano J, Machado A (1998) Lipopolysaccharide intranigral injection induces inflammatory reaction and damage in nigrostriatal dopaminergic system. J Neurochem 70:1584–1592

    Article  PubMed  Google Scholar 

  48. Lukens JR, Barr MJ, Chaplin DD, Chi H, Kanneganti TD (2012) Inflammasome-derived IL-1β regulates the production of GM-CSF by CD4(+) T cells and γδ T cells. J Immunol 188:3107–3115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim YS, Kim SS, Cho JJ, Choi DH, Hwang O, Shin DH, Chun HS, Beal MF, Joh TH (2005) Matrix metalloproteinase-3: a novel signaling proteinase from apoptotic neuronal cells that activates microglia. J Neurosci 25:3701–3711

    Article  CAS  PubMed  Google Scholar 

  50. McGeer PL, Schwab C, Parent A, Doudet D (2003) Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration. Ann Neurol 54:599–604

    Article  CAS  PubMed  Google Scholar 

  51. Kim YS, Choi DH, Block ML, Lorenzl S, Yang L, Kim YJ, Sugama S, Cho BP, Hwang O, Browne SE, Kim SY, Hong JS, Beal MF, Joh TH (2007) A pivotal role of matrix metalloproteinase-3 activity in dopaminergic neuronal degeneration via microglial activation. FASEB J 21:179–187

    Article  CAS  PubMed  Google Scholar 

  52. Lorenzl S, Calingasan N, Yang L, Albers DS, Shugama S, Gregorio J, Krell HW, Chirichigno J, Joh T, Beal MF (2004) Matrix metalloproteinase-9 is elevated in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in mice. Neuromol Med 5:119–132

    Article  CAS  Google Scholar 

  53. Lorenzl S, Albers DS, Narr S, Chirichigno J, Beal MF (2002) Expression of MMP-2, MMP-9, and MMP-1 and their endogenous counterregulators TIMP-1 and TIMP-2 in postmortem brain tissue of Parkinson’s disease. Exp Neurol 178:13–20

    Article  CAS  PubMed  Google Scholar 

  54. Annese V, Herrero MT, Di Pentima M, Gomez A, Lombardi L, Ros CM, De Pablos V, Fernandez-Villalba E, De Stefano ME (2015) Metalloproteinase-9 contributes to inflammatory glia activation and nigro-striatal pathway degeneration in both mouse and monkey models of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinsonism. Brain Struct Funct 220:703–727

    Article  CAS  PubMed  Google Scholar 

  55. Garbuzova-Davis S, Rodrigues MC, Hernandez-Ontiveros DG, Louis MK, Willing AE, Borlongan CV, Sanberg PR (2011) Amyotrophic lateral sclerosis: a neurovascular disease. Brain Res 1398:113–125

    Article  CAS  PubMed  Google Scholar 

  56. Lim GP, Backstrom JR, Cullen MJ, Miller CA, Atkinson RD, Tökés ZA (1996) Matrix metalloproteinases in the neocortex and spinal cord of amyotrophic lateral sclerosis patients. J Neurochem 67:251–259

    Article  CAS  PubMed  Google Scholar 

  57. Soon CP, Crouch PJ, Turner BJ, McLean CA, Laughton KM, Atkin JD, Masters CL, White AR, Li QX (2010) Serum matrix metalloproteinase-9 activity is dysregulated with disease progression in the mutant SOD1 transgenic mice. Neuromuscul Disord 20:260–266

    Article  PubMed  Google Scholar 

  58. Beuche W, Yushchenko M, Mäder M, Maliszewska M, Felgenhauer K, Weber F (2000) Matrix metalloproteinase-9 is elevated in serum of patients with amyotrophic lateral sclerosis. NeuroReport 11:3419–3422

    Article  CAS  PubMed  Google Scholar 

  59. Demestre M, Parkin-Smith G, Petzold A, Pullen AH (2005) The pro and the active form of matrix metalloproteinase-9 is increased in serum of patients with amyotrophic lateral sclerosis. J Neuroimmunol 159:146–154

    Article  CAS  PubMed  Google Scholar 

  60. Niebroj-Dobosz I, Janik P, Sokołowska B, Kwiecinski H (2010) Matrix metalloproteinases and their tissue inhibitors in serum and cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Eur J Neurol 17:226–231

    Article  CAS  PubMed  Google Scholar 

  61. Fang L, Huber-Abel F, Teuchert M, Hendrich C, Dorst J, Schattauer D, Zettlmeissel H, Wlaschek M, Scharffetter-Kochanek K, Tumani H, Ludolph AC, Brettschneider J (2009) Linking neuron and skin: matrix metalloproteinases in amyotrophic lateral sclerosis (ALS). J Neurol Sci 285:62–66

    Article  CAS  PubMed  Google Scholar 

  62. Kaplan A, Spiller KJ, Towne C, Kanning KC, Choe GT, Geber A, Akay T, Aebischer P, Henderson CE (2014) Neuronal matrix metalloproteinase-9 is a determinant of selective neurodegeneration. Neuron 81:333–348

    Article  CAS  PubMed  Google Scholar 

  63. Kiaei M, Kipiani K, Calingasan NY, Wille E, Chen J, Heissig B, Rafii S, Lorenzl S, Beal MF (2007) Matrix metalloproteinase-9 regulates TNF-alpha and FasL expression in neuronal, glial cells and its absence extends life in a transgenic mouse model of amyotrophic lateral sclerosis. Exp Neurol 205:74–81

    Article  CAS  PubMed  Google Scholar 

  64. Cuzner ML, Gveric D, Strand C, Loughlin AJ, Paemen L, Opdenakker G, Newcombe J (1996) The expression of tissue-type plasminogen activator, matrix metalloproteases and endogenous inhibitors in the central nervous system in multiple sclerosis: comparison of stages in lesion evolution. J Neuropathol Exp Neurol 55:1194–1204

    Article  CAS  PubMed  Google Scholar 

  65. Maeda A, Sobel RA (1996) Matrix metalloproteinases in the normal human central nervous system, microglial nodules, and multiple sclerosis lesions. J Neuropathol Exp Neurol 55:300–309

    Article  CAS  PubMed  Google Scholar 

  66. Leppert D, Ford J, Stabler G, Grygar C, Lienert C, Huber S, Miller KM, Hauser SL, Kappos L (1998) Matrix metalloproteinase-9 (gelatinase B) is selectively elevated in CSF during relapses and stable phases of multiple sclerosis. Brain 121:2327–2334

    Article  PubMed  Google Scholar 

  67. Lee MA, Palace J, Stabler G, Ford J, Gearing A, Miller K (1999) Serum gelatinase B, TIMP-1 and TIMP-2 levels in multiple sclerosis. A longitudinal clinical and MRI study. Brain 122:191–197

    Article  PubMed  Google Scholar 

  68. Waubant E, Goodkin DE, Gee L, Bacchetti P, Sloan R, Stewart T, Andersson PB, Stabler G, Miller K (1999) Serum MMP-9 and TIMP-1 levels are related to MRI activity in relapsing multiple sclerosis. Neurology 53:1397–1401

    Article  CAS  PubMed  Google Scholar 

  69. Kouwenhoven M, Ozenci V, Gomes A, Yarilin D, Giedraitis V, Press R, Link H (2001) Multiple sclerosis: elevated expression of matrix metalloproteinases in blood monocytes. J Autoimmun 16:463–470

    Article  CAS  PubMed  Google Scholar 

  70. Althoff GE, Wolfer DP, Timmesfeld N, Kanzler B, Schrewe H, Pagenstecher A (2010) Long-term expression of tissue-inhibitor of matrix metalloproteinase-1 in the murine central nervous system does not alter the morphological and behavioral phenotype but alleviates the course of experimental allergic encephalomyelitis. Am J Pathol 177:840–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dubois B, Masure S, Hurtenbach U, Paemen L, Heremans H, van den Oord J, Sciot R, Meinhardt T, Hämmerling G, Opdenakker G, Arnold B (1999) Resistance of young gelatinase B-deficient mice to experimental autoimmune encephalomyelitis and necrotizing tail lesions. J Clin Invest 104:1507–1515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kalita J, Kumar S, Vijaykumar K, Palit G, Misra UK (2007) A study of CSF catecholamine and its metabolites in acute and convalescent period of encephalitis. J Neurol Sci 252:62–66

    Article  CAS  PubMed  Google Scholar 

  73. Misra UK, Kumar S, Kalita J, Ahmad A, Khanna VK, Khan MY, Palit G (2009) A study of motor activity and catecholamine levels in different brain regions following Japanese encephalitis virus infection in rats. Brain Res 1292:136–147

    Article  CAS  PubMed  Google Scholar 

  74. Kumar S, Kalita J, Saxena V, Khan MY, Khanna VK, Sharma S, Dhole TN, Misra UK (2009) Some observations on the tropism of Japanese encephalitis virus in rat brain. Brain Res 1268:135–141

    Article  CAS  PubMed  Google Scholar 

  75. Shukla V, Kumar Shakya A, Dhole TN, Misra UK (2012) Upregulated expression of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in BALB/c mouse brain challenged with Japanese encephalitis virus. NeuroImmunoModulation 19:241–254

    Article  CAS  PubMed  Google Scholar 

  76. Tung WH, Tsai HW, Lee IT, Hsieh HL, Chen WJ, Chen YL, Yang CM (2010) Japanese encephalitis virus induces matrix metalloproteinase-9 in rat brain astrocytes via NF-κB signalling dependent on MAPKs and reactive oxygen species. Br J Pharmacol 161:1566–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yang CM, Lin CC, Lee IT, Lin YH, Yang CM, Chen WJ, Jou MJ, Hsiao LD (2012) Japanese encephalitis virus induces matrix metalloproteinase-9 expression via a ROS/c-Src/PDGFR/PI3 K/Akt/MAPKs-dependent AP-1 pathway in rat brain astrocytes. J Neuroinflammation 9:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shukla V, Shakya AK, Dhole TN, Misra UK (2013) Matrix metalloproteinases and their tissue inhibitors in serum and cerebrospinal fluid of children with Japanese encephalitis virus infection. Arch Virol 158:2561–2575

    Article  CAS  PubMed  Google Scholar 

  79. Quigley HA (1999) Neuronal death in glaucoma. Prog Retin Eye Res 18:39–57

    Article  CAS  PubMed  Google Scholar 

  80. De Groef L, Van Hove I, Dekeyster E, Stalmans I, Moons L (2013) MMPs in the trabecular meshwork: promising targets for future glaucoma therapies? Invest Ophthalmol Vis Sci 54:7756–7763

    Article  PubMed  CAS  Google Scholar 

  81. Guo L, Moss SE, Alexander RA, Ali RR, Fitzke FW, Cordeiro MF (2005) Retinal ganglion cell apoptosis in glaucoma is related to intraocular pressure and IOP-induced effects on extracellular matrix. Invest Ophthalmol Vis Sci 46:175–182

    Article  PubMed  PubMed Central  Google Scholar 

  82. Kumar S, Shah S, Tang HM, Smith M, Borrás T, Danias J (2013) Tissue plasminogen activator in trabecular meshwork attenuates steroid induced outflow resistance in mice. PLoS ONE 8:e72447

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kumar S, Shah S, Deutsch ER, Tang HM, Danias J (2013) Triamcinolone acetonide decreases outflow facility in C57BL/6 mouse eyes. Invest Ophthalmol Vis Sci 54:1280–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gerometta R, Kumar S, Shah S, Alvarez L, Candia O, Danias J (2013) Reduction of steroid-induced intraocular pressure elevation in sheep by tissue plasminogen activator. Invest Ophthalmol Vis Sci 54:7903–7909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Elkington PT, Friedland JS (2006) Matrix metalloproteinases in destructive pulmonary pathology. Thorax 61:259–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cataldo D, Munaut C, Noël A, Frankenne F, Bartsch P, Foidart JM, Louis R (2000) MMP-2- and MMP-9-linked gelatinolytic activity in the sputum from patients with asthma and chronic obstructive pulmonary disease. Int Arch Allergy Immunol 123:259–267

    Article  CAS  PubMed  Google Scholar 

  87. Beeh KM, Beier J, Kornmann O, Buhl R (2003) Sputum matrix metalloproteinase-9, tissue inhibitor of metalloprotinease-1, and their molar ratio in patients with chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis and healthy subjects. Respir Med 97:634–639

    Article  CAS  PubMed  Google Scholar 

  88. Finlay GA, Russell KJ, McMahon KJ, D’Arcy EM, Masterson JB, Fitzgerald MX, O’Connor CM (1997) Elevated levels of matrix metalloproteinases in bronchoalveolar lavage fluid of emphysematous patients. Thorax 52:502–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Betsuyaku T, Nishimura M, Takeyabu K, Tanino M, Venge P, Xu S, Kawakami Y (1999) Neutrophil granule proteins in bronchoalveolar lavage fluid from subjects with subclinical emphysema. Am J Respir Crit Care Med 159:1985–1991

    Article  CAS  PubMed  Google Scholar 

  90. Russell RE, Culpitt SV, DeMatos C, Donnelly L, Smith M, Wiggins J, Barnes PJ (2002) Release and activity of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 by alveolar macrophages from patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 26:602–609

    Article  CAS  PubMed  Google Scholar 

  91. Montano M, Beccerril C, Ruiz V, Ramos C, Sansores RH, Gonzalez-Avila G (2004) Matrix metalloproteinases activity in COPD associated with wood smoke. Chest 125:466–472

    Article  CAS  PubMed  Google Scholar 

  92. Finlay GA, O’Driscoll LR, Russell KJ, D’Arcy EM, Masterson JB, Fitzgerald MX, O’Connor CM (1997) Matrix metalloproteinase expression and production by alveolar macrophages in emphysema. Am J Respir Crit Care Med 156:240–247

    Article  CAS  PubMed  Google Scholar 

  93. Segura-Valdez L, Pardo A, Gaxiola M, Uhal BD, Becerril C, Selman M (2000) Upregulation of gelatinases A and B, collagenases 1 and 2, and increased parenchymal cell death in COPD. Chest 117:684–694

    Article  CAS  PubMed  Google Scholar 

  94. Imai K, Dalal SS, Chen ES, Downey R, Schulman LL, Ginsburg M, D’Armiento J (2001) Human collagenase (matrix metalloproteinase-1) expression in the lungs of patients with emphysema. Am J Respir Crit Care Med 163:786–791

    Article  CAS  PubMed  Google Scholar 

  95. Kang MJ, Oh YM, Lee JC, Kim DG, Park MJ, Lee MG, Hyun IG, Han SK, Shim YS, Jung KS (2003) Lung matrix metalloproteinase-9 correlates with cigarette smoking and obstruction of airflow. J Korean Med Sci 18:821–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Joos L, He JQ, Shepherdson MB, Connett JE, Anthonisen NR, Pare PD, Sandford AJ (2002) The role of matrix metalloproteinase polymorphisms in the rate of decline in lung function. Hum Mol Genet 11:569–576

    Article  CAS  PubMed  Google Scholar 

  97. Minematsu N, Nakamura H, Tateno H, Nakajima T, Yamaguchi K (2001) Genetic polymorphism in matrix metalloproteinase-9 and pulmonary emphysema. Biochem Biophys Res Commun 289:116–119

    Article  CAS  PubMed  Google Scholar 

  98. Mattos W, Lim S, Russell R, Jatakanon A, Chung KF, Barnes PJ (2002) Matrix metalloproteinase-9 expression in asthma: effect of asthma severity, allergen challenge, and inhaled corticosteroids. Chest 122:1543–1552

    Article  CAS  PubMed  Google Scholar 

  99. Boulay ME, Prince P, Deschesnes F, Chakir J, Boulet LP (2004) Metalloproteinase-9 in induced sputum correlates with the severity of the late allergen-induced asthmatic response. Respiration 71:216–224

    Article  CAS  PubMed  Google Scholar 

  100. Ingram JL, Slade D, Church TD, Francisco D, Heck K, Sigmon RW, Ghio M, Murillo A, Firszt R, Lugogo NL, Que L, Sunday ME, Kraft M (2016) Role of matrix metalloproteinases-1 and -2 in interleukin-13-suppressed elastin in airway fibroblasts in asthma. Am J Respir Cell Mol Biol 54:41–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lee YC, Lee HB, Rhee YK, Song CH (2001) The involvement of matrix metalloproteinase-9 in airway inflammation of patients with acute asthma. Clin Exp Allergy 31:1623–1630

    Article  CAS  PubMed  Google Scholar 

  102. Rogers NK, Clements D, Dongre A, Harrison TW, Shaw D, Johnson SR (2014) Extra-cellular matrix proteins induce matrix metalloproteinase-1 (MMP-1) activity and increase airway smooth muscle contraction in asthma. PLoS ONE 9:e90565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Park HS, Kim HA, Jung JW, Kim YK, Lee SK, Kim SS, Nahm DH (2003) Metalloproteinase-9 is increased after toluene diisocyanate exposure in the induced sputum from patients with toluene diisocyanate-induced asthma. Clin Exp Allergy 33:113–118

    Article  CAS  PubMed  Google Scholar 

  104. Lemjabbar H, Gosset P, Lamblin C, Tillie I, Hartmann D, Wallaert B, Tonnel AB, Lafuma C (1999) Contribution of 92 kDa gelatinase/type IV collagenase in bronchial inflammation during status asthmaticus. Am J Respir Crit Care Med 159:1298–1307

    Article  CAS  PubMed  Google Scholar 

  105. Pham DN, Chu HW, Martin RJ, Kraft M (2003) Increased matrix metalloproteinase-9 with elastolysis in nocturnal asthma. Ann Allergy Asthma Immunol 90:72–78

    Article  CAS  PubMed  Google Scholar 

  106. Cundall M, Sun Y, Miranda C, Trudeau JB, Barnes S, Wenzel SE (2003) Neutrophil-derived matrix metalloproteinase-9 is increased in severe asthma and poorly inhibited by glucocorticoids. J Allergy Clin Immunol 112:1064–1071

    Article  CAS  PubMed  Google Scholar 

  107. Belleguic C, Corbel M, Germain N, Lena H, Boichot E, Delaval PH, Lagente V (2002) Increased release of matrix metalloproteinase-9 in the plasma of acute severe asthmatic patients. Clin Exp Allergy 32:217–223

    Article  CAS  PubMed  Google Scholar 

  108. Han Z, Junxu Zhong N (2003) Expression of matrix metalloproteinases MMP-9 within the airways in asthma. Respir Med 97:563–567

    Article  CAS  PubMed  Google Scholar 

  109. Wenzel SE, Balzar S, Cundall M, Chu HW (2003) Subepithelial basement membrane immunoreactivity for matrix metalloproteinase 9: association with asthma severity, neutrophilic inflammation, and wound repair. J Allergy Clin Immunol 111:1345–1352

    Article  CAS  PubMed  Google Scholar 

  110. Cataldo DD, Gueders M, Munaut C, Rocks N, Bartsch P, Foidart JM, Noel A, Louis R (2004) Matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases mRNA transcripts in the bronchial secretions of asthmatics. Lab Invest 84:418–424

    Article  CAS  PubMed  Google Scholar 

  111. Vermaelen KY, Cataldo D, Tournoy K, Maes T, Dhulst A, Louis R, Foidart JM, Noel A, Pauwels R (2003) Matrix metalloproteinase-9-mediated dendritic cell recruitment into the airways is a critical step in a mouse model of asthma. J Immunol 171:1016–1022

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Sincere gratitude to Prof. Sajal Chakraborti, University of Kalyani, India for considering SR as an author. Thanks to Planning and Budgeting committee (PBC), Israel and Prof. Israel Sekler, BGU, Israel for funding SR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumitra Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Roy, S., Pramanik, A., Chakraborti, T., Chakraborti, S. (2017). Multifaceted Role of Matrix Metalloproteases on Human Diseases. In: Chakraborti, S., Chakraborti, T., Dhalla, N. (eds) Proteases in Human Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-10-3162-5_2

Download citation

Publish with us

Policies and ethics