Skip to main content

Micro Multi-objective Genetic Algorithm

  • Chapter
  • First Online:
Numerical Simulation-based Design

Abstract

As a global search approach based on population evolution, the genetic algorithm (GA) has great advantage in solving MOPs. For most of the multi-objective genetic algorithms (MOGAs), a large size of evolutionary population is adopted in the process of fitness evaluation and selection operation to make the evolution direction towards the non-dominated optimal solution set and to guarantee the population diversity and the distribution uniformity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krishnakumar, K. (1989). Micro-genetic algorithms for stationary and non-stationary function optimization. In SPIE Proceedings: Intelligent Control and Adaptive systems (pp. 289–296).

    Google Scholar 

  2. Liu, G. P., Han, X., & Jiang, C. (2008). A novel multi-objective optimization method based on an approximation model management technique. Computer Methods in Applied Mechanics and Engineering, 197(33–40), 2719–2731.

    Article  Google Scholar 

  3. Liu, G. P. (2007). Multi-objective optimization method and applications based on the micro genetic algorithm. Ph.D. Thesis, Hunan University, Changsha.

    Google Scholar 

  4. Liu, G. P., Han, X., & Jiang, C. (2012). An efficient multi-objective optimization approach based on the micro genetic algorithm and its application. International Journal of Mechanics and Materials in Design, 8(1), 37–49.

    Article  Google Scholar 

  5. Deb, K., Pratap, A., Agarwal, S., et al. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

    Article  Google Scholar 

  6. Deb, K. (2000). An efficient constraint-handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering, 186(2–4), 311–338.

    Article  Google Scholar 

  7. Karl, D., Walter, J. G., & Richard, F. H. (2004). Pareto ant colony optimization: Ametaheuristic approach to multi-objective portfolio selection. Annals of Operations Research, 131(1), 79–99.

    MathSciNet  Google Scholar 

  8. Coello, C. A. C., & Pulido, G. T. (2001). A micro-genetic algorithm for multiobjective optimization. In Proceedings of the Genetic and Evolutionary Computation Conference. San Francisco: Morgan Kaufmann Publishers (pp. 274–282).

    Google Scholar 

  9. Zitzler, E., & Thiele, L. (1999). Multi-objective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 3(4), 257–271.

    Article  Google Scholar 

  10. Fonseca, C. M., & Fleming, P. J. (1998). Multiobjective optimization and multiple constraint handling with evolutionary algorithms-Part II: Application example. IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans, 28, 38–47.

    Article  Google Scholar 

  11. Kursawe, F. (1991). A variant of evolution strategies for vector optimization. In Parallel Problem Solving from Nature. Berlin, Heidelberg: Springer (pp. 193–197).

    Google Scholar 

  12. Zitzler, E., Deb, K., & Thiele, L. (2000). Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation, 8(2), 173–195.

    Article  Google Scholar 

  13. Deb, K., Thiele, L., Laumanns, M., et al. (2001). Scalable test problems for evolutionary multi-objective optimization. Technical Report 112, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.

    Google Scholar 

  14. Schott, J. R. (1995). Fault tolerant design using single and multicriteria genetic algorithm optimization. Master’s thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts.

    Google Scholar 

  15. Luh, G. C., & Chueh, C. H. (2004). Multi-objective optimal design of truss structure with immune algorithm. Computers & Structures, 82(11), 829–844.

    Article  MathSciNet  Google Scholar 

  16. Ding, F., Han, X., Liu, G. P., et al. (2010). Hardpoints sensitivity analysis and multi-objective optimization of suspension guiding mechanism. Automotive Engineering, 32(2), 137–142.

    Google Scholar 

  17. Han, X., Jiang, C., Li, G. Y., et al. (2006). An inversion procedure for determination of variable binder force in U-shaped forming. Inverse Problems in Science and Engineering, 14(3), 301–312.

    Article  Google Scholar 

  18. Liu, G. P., Han, X., & Jiang, C. (2007). Optimization of variable binder force in sheet metal forming using the micro multi-objective genetic algorithm. China Mechanical Engineering, 21(18), 2614–2616.

    Google Scholar 

  19. Liu, G., Lin, Z. Q., Xu, W. L., et al. (2002). Variable blankholder force in U-shaped part forming for eliminating springback error. Journal of Materials Processing Technology, 120(1), 259–264.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Han .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Science Press, Beijing and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Han, X., Liu, J. (2020). Micro Multi-objective Genetic Algorithm. In: Numerical Simulation-based Design. Springer, Singapore. https://doi.org/10.1007/978-981-10-3090-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3090-1_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3089-5

  • Online ISBN: 978-981-10-3090-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics