Skip to main content

Abstract

Interferometric Synthetic Aperture Radar (InSAR) is a technique used to obtain the height and displacement of the Earth’s surface. It utilizes the phase difference information between two complex Synthetic Aperture Radar (SAR) images. After years of unremitting research efforts, InSAR techniques have made rapid progress. Here, we present the history of the development of InSAR followed by its application. A detailed account of the basic principles of InSAR is also given in Sect. 8.2. A bistatic InSAR mission example is given in Sect. 8.3. The system design and interferometric performance analysis of the twin L-band satellites configuration are presented in detail. This design concept is based on two L-band radar satellites flying in close formation to achieve the desired interferometric baselines in a highly reconfigurable configuration that can be used in topography mapping. Finally, the multi-static multi-baseline interferometric experiment (MC-InSAR) is presented in Sect. 8.4, including the imaging geometry, system configuration, baseline design, and the interferogram. Our modified interferometric approach, which was developed specifically to address the problems encountered in the MC-InSAR configuration, is provided with the results of our research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. R. Bamler, P. Hartl, Synthetic aperture radar interferometry. Inverse Prob. 14(4), R1–R54 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. P. Rosen, S. Hensley, I. Joughin et al., Synthetic aperture radar interferometry. Proc. IEEE 88(3), 333–382 (2000)

    Article  Google Scholar 

  3. M.A. Richards, A beginner’s guide to interferometric SAR concepts and signal processing. IEEE Aerosp. Electron. Syst. Mag. 22(8), 5–29 (2007)

    Article  Google Scholar 

  4. D. Massonnet, K.L. Feigl, Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys. 36, 441–500 (1998)

    Article  Google Scholar 

  5. D. Massonnet, M. Rossi, C. Carmona et al., The displacement field of the Landers earthquake mapped by radar interferometry. Nature 364(6433), 138–142 (1993)

    Article  Google Scholar 

  6. H.A. Zebker, P. Rosen, On the derivation of coseismic displacement fields using differential radar interferometry: the Landers earthquake, in Geoscience and Remote Sensing Symposium, IGARSS’94. Surface and Atmospheric Remote Sensing: Technologies, Data Analysis and Interpretation, International, IEEE, vol. 1, pp. 286–288 (1994)

    Google Scholar 

  7. A. Hooper, H. Zebker, P. Segall, et al., A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 31(23) (2004)

    Google Scholar 

  8. A. Hooper, P. Segall, H. Zebker, Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. J. Geophys. Res. Solid Earth (1978–2012) 112(B7) (2007)

    Google Scholar 

  9. E.E. Rogers, R.P. Ingalls, Venus: mapping the surface reflectivity by radar mterferometry. Science 165, 797–799 (1969)

    Article  Google Scholar 

  10. S.H. Zisk, A new Earth-based radar technique for the measurement of lunar topography. Moon 4, 296–300 (1972)

    Article  Google Scholar 

  11. L. C. Graham, Synthetic interferometer radar for topographic mapping, in Proceedings of the IEEE, vol. 62, pp. 763–768 (1974)

    Google Scholar 

  12. H. Zebker, R. Goldstein, Topographic mapping from interferometric synthetic aperture radar observations. J. Geophys. Res. 91(B5), 4993–4999 (1986)

    Article  Google Scholar 

  13. R. Goldstein, H. Zebker, Interferometric radar measurement of ocean surface currents. Nature 328, 707–709 (1987)

    Article  Google Scholar 

  14. R. Goldstein, H.A. Zebker, C. Werner, Satellite radar interferometry: two-dimensional phase unwrapping. Radio Sci. 23(4), 713–720 (1988)

    Article  Google Scholar 

  15. A.K. Gabriel, H.A. Zebker, Crossed orbit interferometry: theory and experimental results from SIR-B. Int. J. Remote Sens. 9(5), 857–872 (1988)

    Article  Google Scholar 

  16. C. Prati, F. Rocca, Limits to the resolution of elevation maps form stereo SAR images. Int. J. Remote Sens. 11(12), 2215–2235 (1990)

    Article  Google Scholar 

  17. K. Gabriel, R.M. Goldstein, H.A. Zebker, Mapping small elevation changes over large areas: differential radar interferometry. J. Geophys. Res. 94, 9183–9191 (1989)

    Article  Google Scholar 

  18. F. Li, R.M. Goldstein, Studies of multibaselme spaceborne interferometric synthetic aperture radars. IEEE Trans. Geosci. Remote Sens. 28, 88–97 (1990)

    Article  Google Scholar 

  19. H.A. Zebker, S.N. Madsen, J. Martin, K.B. Wheeler, T. Miller et al., The TOPSAR interferometric radar topographic mapping instrument. IEEE Trans. Geosci. Remote Sens. 30, 933–940 (1992)

    Article  Google Scholar 

  20. S.N. Madsen, J.M. Martin, H.A. Zebker, Analysis and evaluation of the NASA/JPL TOPSAR across-track interferometric SAR system. IEEE Trans. Geosci. Remote Sens. 33, 383–391 (1995)

    Article  Google Scholar 

  21. E. Rodriguez, J.M. Martin, Theory and design of interferometric synthetic- aperture radars, in Proc. Inst Elect. Eng., vol. 139, no. 2, pp: 147–159 (1992)

    Google Scholar 

  22. D. Massonnet, M. Rossi, C. Carmona, F. Adragna, G. PeItzer, K. Fiegl, T. Rabaute, The displacement field of the Landers earthquake mapped by radar interferometry. Nature 364, 138–142 (1993)

    Article  Google Scholar 

  23. R. Lanari, G. Fornaro, D. Riccio et al., Generation of digital elevation models by using SIR-C/X-SAR multifrequency two-pass interferometry: the Etna case study. IEEE Trans. Geosci. Remote Sens. 34(5), 1097–1114 (1996)

    Article  Google Scholar 

  24. P.A. Rosen, S. Hensley, I.R. Joughin et al., Synthetic aperture radar interferometry, in Proceedings of the IEEE, vol. 88, no. 3, pp. 333–382 (2000)

    Google Scholar 

  25. B. Rabus, M. Eineder, A. Roth, R. Bamler, The Shuttle Radar Topography Mission-A new class of digital elevation models acquired by spacebome radar. ISPRS J. Photogramm. Remote Sens. 57, 241 (2003)

    Article  Google Scholar 

  26. N. Adam, M. Eineder, H. Breit, SRTM X-SAR motion compensation: concept and first assessment of the interferometric observation geometry, in Geoscience and Remote Sensing Symposium. IGARSS’01. IEEE 2001 International. IEEE, vol. 5, pp. 2034–2036 (2001)

    Google Scholar 

  27. www.nasa.gov

  28. http://www.astrium-geo.com/worlddem/

  29. B. Hernandez, F. Cotton, M. Campillo et al., A comparison between short term (Co-Seismic) and long term (one year) slip for the Landers Earthquake: measurements from strong motion and SAR interferometry. Geophys. Res. Lett. 24(13), 1579–1582 (1997)

    Article  Google Scholar 

  30. N.B. Bechor, H.A. Zebker, Measuring two-dimensional movements using a single InSAR pair. Geophys. Res. Lett. 33(16) (2006)

    Google Scholar 

  31. H.S. Jung, J.S. Won, S.W. Kim, An improvement of the performance of multiple-aperture SAR interferometry (MAI). IEEE Trans. Geosci. Remote Sens. 47(8), 2859–2869 (2009)

    Article  Google Scholar 

  32. R. Chen, W. Yu, Wang. R et al., 2-Dimensional displacement field recovery: the study case of Yushu Earthquake, 2010, China, in IGARSS (2013)

    Google Scholar 

  33. Z. Lu, R. Rykhus, T. Masterlark et al., Mapping recent lava flows at Westdahl Volcano, Alaska, using radar and optical satellite imagery. Remote Sens. Environ. 91(3), 345–353 (2004)

    Article  Google Scholar 

  34. A. Pavez, D. Remy, S. Bonvalot et al., Insight into ground deformations at Lascar volcano (Chile) from SAR interferometry, photogrammetry and GPS data: implications on volcano dynamics and future space monitoring. Remote Sens. Environ. 100(3), 307–320 (2006)

    Article  Google Scholar 

  35. M. van der Kooij, Land subsidence measurements at the Belridge oil fields from ERS InSAR data (INT), in Third ERS Symposium on Space at the Service of our Environment, vol. 414, p. 1853 (1997)

    Google Scholar 

  36. G. Quin, P. Loreaux, Submillimeter accuracy of multipass corner reflector monitoring by PS technique. IEEE Trans. Geosci. Remote Sens. 51(3), 1775–1783 (2013)

    Article  Google Scholar 

  37. C. Colesanti, A. Ferretti, C. Prati et al., Monitoring landslides and tectonic motions with the permanent scatterers technique. Eng. Geol. 68(1), 3–14 (2003)

    Article  Google Scholar 

  38. P. Lu, N. Casagli, F. Catani et al., Persistent Scatterers Interferometry Hotspot and Cluster Analysis (PSI-HCA) for detection of extremely slow-moving landslides. Int. J. Remote Sens. 33(2), 466–489 (2012)

    Article  Google Scholar 

  39. V. Tofani, F. Raspini, F. Catani et al., Persistent Scatterer Interferometry (PSI) technique for landslide characterization and monitoring. Remote Sens. 5(3), 1045–1065 (2013)

    Article  Google Scholar 

  40. “Delft Object-oriented Radar Interferometric Software User’s manual and technical documentation”, Version: 4.01, Revision: 1. Delft Institute of Earth Observation and Space Systems (DEOS), Delft University of Technology

    Google Scholar 

  41. R. Wang, Y.K. Deng, Z.M. Zhang, Y.F. Shao, J.X. Hou, G. Liu, X.Y. Wu, Double-channel bistatic SAR system with spaceborne illuminator for 2-D and 3-D SAR remote sensing. IEEE Trans. Geosci. Remote Sens. 51(8), 4496–4507 (2013)

    Article  Google Scholar 

  42. Y.F. Shao, R. Wang, Y.K. Deng, Y. Liu, R. Chen, G. Liu, T. Balz, O. Loffeld, Digital elevation model reconstruction in multichannel spaceborne/stationary SAR interferometry. IEEE Geosci. Remote Sens. Lett. 11(12), 2080–2084 (2014)

    Article  Google Scholar 

  43. F. Hong, R. Wang, Z. Zhang, P. Lu, B. Timo, Integrated time and phase synchronization strategy for a multichannel spaceborne-stationary bistatic SAR system. Remote Sens. 8(8), 628 (2016)

    Article  Google Scholar 

  44. Y.F. Shao, R. Wang, Y.K. Deng, Y. Liu, R.P. Chen, G. Liu, T. Balz, O. Loffeld, Error analysis of bistatic SAR imaging and stereoscopy bistatic SAR. IEEE Trans. Geosci. Remote Sens. 51(8), 4518–4543 (2013)

    Article  Google Scholar 

  45. Y.F. Shao, R. Wang, Y.K. Deng, Y. Liu, R.P. Chen, G. Liu, O. Loffeld, Fast backprojection algorithm for bistatic SAR imaging. IEEE Geosci. Remote Sens. Lett. 10(5), 1080–1084 (2013)

    Article  Google Scholar 

  46. H. Zhang, Y. Deng, R. Wang, N. Li, S. Zhao, F. Hong, L. Wu, O. Loffeld, Spaceborne/stationary bistatic SAR imaging with TerraSAR-X as an illuminator in staring-spotlight mode. IEEE Trans. Geosci. Remote Sens. 54(9), 5203–5216 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, R., Deng, Y. (2018). Bistatic InSAR. In: Bistatic SAR System and Signal Processing Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-3078-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3078-9_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3077-2

  • Online ISBN: 978-981-10-3078-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics