Skip to main content

Fundamentals of Bistatic SAR

  • Chapter
  • First Online:
Bistatic SAR System and Signal Processing Technology

Abstract

Bistatic SAR (BiSAR) has been developing for 40 years, and it is still a topic of much discussion in the field of radar. BiSAR is a SAR system whose transmitter and receiver are spatially separated. This separation improves the system’s capability, reliability and flexibility, making it a promising and useful supplement to a classical monostatic SAR system. BiSAR draws researchers’ attention due to its unique advantages over the traditional monostatic SAR, including frequent monitoring, resolution enhancement, reduced vulnerability for military applications, reduced costs using existing illuminators of opportunity with several receive-only systems, and also the possibility of forward- or backward-looking SAR imaging. Bistatic SAR is receiving more and more attention due to these advantages. This chapter focuses on the fundamentals of the BiSAR system. We first review the history of BiSAR, including the important BiSAR mission ever taken with their interesting results. We then present bistatic SAR imaging geometry and the signal model. We derive and explain the two-dimensional resolution. Finally, we illustrate the bistatic radar equation and bistatic radar cross section (RCS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. M. Soumekh, Bistatic synthetic aperture radar inversion with application in dynamic object imaging. IEEE Trans. Signal Process. 39, 2044–2055 (1991)

    Article  Google Scholar 

  2. G. Yates, A. Horne, A. Blake, R. Middleton, Bistatic SAR image formation. IEEE Proc.-Radar Sonar Navig. 153, 208–213 (2006)

    Article  Google Scholar 

  3. M. Wendler, G. Krieger, R. Horn, B. Gabler, P. Dubois-Fernandez, B. Vaizan, et al., “Results of a bistatic airborne SAR experiment,” in Proceedings IRS, Dresden, Germany, 2003, pp. 247–253

    Google Scholar 

  4. M. Rodriguez-Cassola, G. Krieger, M. Wendler, Azimuth-invariant, bistatic airborne SAR processing strategies based on monostatic algorithms, in Proceedings of IGARSS’05, 2005, pp. 1047–1050

    Google Scholar 

  5. P. Dubois-Fernandez, H. Cantalloube, B. Vaizan, G. Krieger, R. Horn, M. Wendler et al., ONERA-DLR bistatic SAR campaign: planning, data acquisition, and first analysis of bistatic scattering behaviour of natural and urban targets. IEE Proc.-Radar Sonar Navig. 153, 214–223 (2006)

    Article  Google Scholar 

  6. I. Walterscheid, A. Brenner, J.H. Ender, Geometry and system aspects for a bistatic airborne SAR-experiment, in Proceedings of EUSAR, 2004, pp. 567–570

    Google Scholar 

  7. J.H. Ender, I. Walterscheid, A.R. Brenner, New aspects of bistatic SAR: processing and experiments, in Proceedings of IGARSS’04, 2004, pp. 1758–1762

    Google Scholar 

  8. I. Walterscheid, J.H. Ender, A.R. Brenner, O. Loffeld, Bistatic SAR processing and experiments. IEEE Trans. Geosci. Remote Sens. 44, 2710–2717 (2006)

    Article  Google Scholar 

  9. J. Klare, I. Walterscheid, A.R. Brenner, J.H. Ender, Evaluation and optimisation of configurations of a hybrid bistatic SAR experiment between TerraSAR-X and PAMIR. Proc. IGARSS 2006, 1208–1211 (2006)

    Google Scholar 

  10. I. Walterscheid, T. Espeter, A.R. Brenner, J. Klare, J.H.G. Ender, H. Nies, R. Wang, O. Loffeld, Bistatic SAR experiments with PAMIR and TerraSAR-X—setup, processing, and image results. IEEE Trans. Geosci. Remote Sens. 48(8), 3268–3279 (2010)

    Article  Google Scholar 

  11. I. Walterscheid, J.H.G. Ender, J. Klare, A.R. Brenner, O. Loffeld, Bistatic image processing for a hybrid SAR experiment between TerraSAR-X and PAMIR, in Proceedings of IGARSS, Denver, Colorardo, USA, Aug 2006, pp. 1934–1937

    Google Scholar 

  12. R. Wang, O. Loffeld, Y.L. Neo, H. Nies, I. Walterscheid, T. Espeter, J. Klare, J.H.G. Ender, Focusing bistatic SAR data in airborne/stationary configuration. IEEE Trans. Geosci. Remote Sens. 48(1), 452–465 (2010)

    Article  Google Scholar 

  13. F. Behner, S. Reuter, H. Nies, O. Loffied, Synchronization and processing in the HITCHHIKER bistatic SAR experiment. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 9(3), 1028–1035 (2016)

    Article  Google Scholar 

  14. S. Reuter, F. Behner, H. Nies O. Loffeld, A noise based transmitter system for the HITCHHIKER project, in Synthetic Aperture Radar, 2012. EUSAR. 9th European Conference on, Nuremberg, Germany, 2012, pp. 235–238

    Google Scholar 

  15. F. Behner, S. Reuter, HITCHHIKER—hybrid bistatic high resolution SAR experiment using a stationary receiver and TerraSAR-X transmitter, in Proceedings of 8th European Conference Synthetic Aperture Radar (EUSAR), 2010 (CD-ROM)

    Google Scholar 

  16. S. Duque, P. Lopez-Dekker, J.J. Mallorqui, Single-pass bistatic SAR interferometry using fixed-receiver configurations: theory and experimental validation. IEEE Trans. Geosci. Remote Sens. 48(6), 2740–2749 (2010)

    Article  Google Scholar 

  17. J. Sanz-Marcos, P. Lopez-Dekker, J.J. Mallorqui, A. Aguasca, P. Prats, SABRINA: A SAR bistatic receiver for interferometric applications. IEEE Geosci. Remote Sens. Lett. 4(2), 307–311 (2007)

    Article  Google Scholar 

  18. R. Wang, Y.K. Deng, Z.M. Zhang, Y.F. Shao, J.X. Hou, G. Liu et al., Double-channel bistatic SAR system with spaceborne illuminator for 2-D and 3-D SAR remote sensing. IEEE Trans. Geosci. Remote Sens. 51, 4496–4507 (2013)

    Article  Google Scholar 

  19. M. Zhang, R. Wang, Y. Deng, L. Wu, Z. Zhang, H. Zhang, N. Li, Y. Liu, X. Luo, A synchronization algorithm for spaceborne/stationary BiSAR imaging based on contrast optimization with direct signal from radar satellite. IEEE Trans. Geosci. Remote Sens. 54(4), 1977–1989 (2016)

    Google Scholar 

  20. Y. Shao, R. Wang, Y. Deng, R. Liu, R. Chen, G. Liu, T. Balz, O. Loffeld, Error analysis of bistatic SAR imaging and stereoscopy bistatic SAR. IEEE Trans. Geosci. Remote Sens. 51(8), 4518–4543 (2013)

    Article  Google Scholar 

  21. R. Wang, W. Wang, Y. Shao, F. Hong, P. Wang, Y. Deng, Z. Zhang, O. Loffeld, First bistatic demonstration of digital beamforming in elevation with TerraSAR-X as an illuminator. IEEE Trans. Geosci. Remote Sens. 54(2), 842–849 (2016)

    Article  Google Scholar 

  22. Y. Shao, R. Wang, Y. Deng, R. Chen, G. Liu, O. Loffeld, Fast backprojection algorithm for bistatic SAR imaging. IEEE Geosci. Remote Sens. Lett. 10(5), 1080–1084 (2013)

    Article  Google Scholar 

  23. Y. Shao, R. Wang, Y. Deng, R. Liu, R. Chen, G. Liu, T. Balz, O. Loffeld, Digital elevation model reconstruction in multichannel spaceborne/stationary SAR interferometry. IEEE Geosci. Remote Sens. Lett. 11(12), 2080–2084 (2014)

    Article  Google Scholar 

  24. Z. Li, J. Wu, Y. Huang, Z. Sun, J. Yang, Ground-moving target imaging and velocity estimation based on mismatched compression for bistatic forward-looking SAR. IEEE Trans. Geosci. Remote Sens. 54(6), 3277–3291 (2016)

    Article  Google Scholar 

  25. J. Ding, Z. Zhang, M. Xing, Z. Bao, A new look at the bistatic-to-monostatic conversion for Tandem SAR image formation. IEEE Geosci. Remote Sens. Lett. 5(3), 392–395 (2008)

    Article  Google Scholar 

  26. T. Zeng, R. Wang, F. Li, T. Long, A modified nonlinear chirp scaling algorithm for spaceborne/stationary bistatic SAR based on series reversion. IEEE Trans. Geosci. Remote Sens. 51(5), 3108–3118 (2013)

    Article  Google Scholar 

  27. T. Zeng et al., Extended NLCS algorithm of BiSAR systems with a squinted transmitter and a fixed receiver: theory and experimental confirmation. IEEE Trans. Geosci. Remote Sens. 51(10), 5019–5030 (2013)

    Article  Google Scholar 

  28. B. Barber, Theory of digital imaging from orbital synthetic-aperture radar. Int. J. Remote Sens. 6, 1009–1057 (1985)

    Article  Google Scholar 

  29. Y. Ding, D.C. Munson Jr, A fast back-projection algorithm for bistatic SAR imaging, in Proceedings of ICIP 2002, vol. 2, pp. II-449-II-452 (2002)

    Google Scholar 

  30. B.D. Rigling, R.L. Moses, Polar format algorithm for bistatic SAR. IEEE Trans. Aerosp. Electron. Syst. 40, 1147–1159 (2004)

    Article  Google Scholar 

  31. Z. Zhen-bo, T. Zi-yue, J.X. Zhou, The chirp scaling algorithm of airborne bistatic SAR imaging. J. Electron. Inf. Technol. 28, 977–981 (2006)

    Google Scholar 

  32. F.H. Wong, T.S. Yeo, New applications of nonlinear chirp scaling in SAR data processing. IEEE Trans. Geosci. Remote Sens. 39, 946–953 (2001)

    Article  Google Scholar 

  33. Y. Neo, F. Wong, I. Cumming, Focusing bistatic SAR images using non-linear chirp scaling, in IEEE/URSI International Conference on Radar Systems RADAR’ 2004, pp. 18–22 (2004)

    Google Scholar 

  34. O. Loffeld, H. Nies, V. Peters, S. Knedlik, Models and useful relations for bistatic SAR processing. IEEE Trans. Geosci. Remote Sens. 42, 2031–2038 (2004)

    Article  Google Scholar 

  35. R. Wang, O. Loffeld, Y.L. Neo, H. Nies, Z. Dai, Extending Loffeld’s bistatic formula for the general bistatic SAR configuration. IET Radar Sonar Navig. 4, 74–84 (2010)

    Article  Google Scholar 

  36. K. Natroshvili, O. Loffeld, H. Nies, A.M. Ortiz, S. Knedlik, Focusing of general bistatic SAR configuration data with 2-D inverse scaled FFT. IEEE Trans. Geosci. Remote Sens. 44, 2718–2727 (2006)

    Article  Google Scholar 

  37. J.H.G. Ender, I. Walterscheid, A.R. Brenner, Bistatic SAR—translational invariant processing and experimental results. IEE Proc.-Radar Sonar Navig. 153, 177–183 (2006)

    Article  Google Scholar 

  38. Y. Hong-hui, W. Yan-fei, Y. Hai-feng, L. Li, An imaging method of distributed small satellites bistatic SAR based on range distance compensation. J. Electron. Inf. Technol. 27, 771–774 (2005)

    Google Scholar 

  39. A. M. Guarnieri, F. Rocca, Reduction to monostatic focusing of bistatic or motion uncompensated SAR surveys. IEE Proc.-Radar Sonar Navig. 153, 199–207 (2006)

    Article  Google Scholar 

  40. D. D’Aria, A. Monti Guarnieri, F. Rocca, Focusing bistatic synthetic aperture radar using dip move out. IEEE Trans. Geosci. Remote Sens. 42, 1362–1376 (2004)

    Google Scholar 

  41. M. Cherniakov, in Bistatic Radars: Emerging Technology (Wiley, New York, 2008)

    Google Scholar 

  42. M. Eineder, Ocillator clock drift compensation in bistatic interferometric SAR, in Proceedings of IGARSS’03, 2003, pp. 1449–1451

    Google Scholar 

  43. M. Weiß, Time and frequency synchronisation aspects for bistatic SAR systems, in Proceedings of EUSAR, 2004, pp. 395–398

    Google Scholar 

  44. M. Younis, R. Metzig, G. Krieger, Performance prediction of a phase synchronization link for bistatic SAR. IEEE Geosci. Remote Sens. Lett. 3, 429–433 (2006)

    Article  Google Scholar 

  45. M. Weiβ, Synchronisation of bistatic radar systems, in Proceedings of IGARSS’04, 2004, pp. 1750–1753

    Google Scholar 

  46. P. López-Dekker, J.J. Mallorquí, P. Serra-Morales, J. Sanz-Marcos, Phase synchronization and Doppler centroid estimation in fixed receiver bistatic SAR systems. IEEE Trans. Geosci. Remote Sens. 46, 3459–3471 (2008)

    Article  Google Scholar 

  47. M. Rodriguez-Cassola, S.V. Baumgartner, G. Krieger, A. Moreira, Bistatic TerraSAR-X/F-SAR spaceborne–airborne SAR experiment: description, data processing, and results. IEEE Trans. Geosci. Remote Sens. 48, 781–794 (2010)

    Article  Google Scholar 

  48. M. Rodriguez-Cassola, P. Prats, S.V. Baumgartner, G. Krieger, A. Nottensteiner, R. Horn, et al., New processing approach and results for bistatic TerraSAR-X/F-SAR spaceborne-airborne experiments, in Proceedings of IGARSS 2009, pp. II-242-II-245, (2009)

    Google Scholar 

  49. I. G. Cumming, F. H. Wong, Digital Signal Processing of Synthetic Aperture Radar Data: Algorithms and Implementation (Artech House, 2004)

    Google Scholar 

  50. J. Ender, A step to bistatic SAR processing, in Proceedings of EUSAR, 2004, pp. 356–359

    Google Scholar 

  51. Y.L. Neo, F. Wong, I.G. Cumming, Processing of azimuth-invariant bistatic SAR data using the range Doppler algorithm. IEEE Trans. Geosci. Remote Sens. 46(1), 14–21 (2008)

    Article  Google Scholar 

  52. N.J. Willis, Bistatic Radar (Artech House, Norwood, MA, USA, 1991)

    Google Scholar 

  53. M. Chemiakov, Bistatic Radar: Emerging Technology (Wiley, Chichester, West Sussex, 2008)

    Book  Google Scholar 

  54. G. P. Cardillo, On the use of the gradient to determine bistatic SAR resolution, Antennas and Propagation Society International Symposium, vol. 2, 1990. pp. 1032–1035

    Google Scholar 

  55. T. Zeng, M. Cherniakov, T. Long, Generalized approach to resolution analysis in BSAR. IEEE Trans. Aerosp. Electron. Syst. 41, 461–474 (2005)

    Article  Google Scholar 

  56. G. Krieger, A. Moreira, Spaceborne bi- and multistatic SAR: potential and challenges. IET Radar Sonar Navigat. 153(3), 184–198 (2006)

    Article  Google Scholar 

  57. J.W. Crispin, K.M. Siegel, Methods of Radar Cross Section Analysis (Academic Press, New York, 1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, R., Deng, Y. (2018). Fundamentals of Bistatic SAR. In: Bistatic SAR System and Signal Processing Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-3078-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3078-9_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3077-2

  • Online ISBN: 978-981-10-3078-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics