Skip to main content

Chromosome Variation Detected by Fluorescent In Situ Hybridization (FISH)

  • Chapter
  • First Online:
Human Chromosome Variation: Heteromorphism, Polymorphism and Pathogenesis

Abstract

Fluorescence in situ hybridization (FISH) has been a powerful adjunct in cytogenetics. In principal, any piece of DNA (or RNA) can be isolated, amplified and labeled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Efstratiadis A et al (1976) Enzymztic in vitro synthesis of globin genes. Cell 7:279–288

    Article  CAS  PubMed  Google Scholar 

  2. White TJ, Arnheim N, Erlich HA (1989) The polymerase chain reaction. Trends Genet 5:185–189

    Article  CAS  PubMed  Google Scholar 

  3. Sambrook J et al (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  4. Shero JH et al (1991) Yeast artificial chromosome vectors for efficient clone manipulation and mapping. Genomics 10:505–508

    Article  CAS  PubMed  Google Scholar 

  5. Monaco AP, Larin Z (1994) YACs, BACs and MACs: artificial chromosomes as research tools. Trends Biotechnol 12:280–286

    Article  CAS  PubMed  Google Scholar 

  6. Ludecke HJ et al (1989) Cloning defined regions of the human genome by microdissection of banded chromosomes and enzymatic amplification. Nature 338:348–350

    Article  CAS  PubMed  Google Scholar 

  7. Kao F-T, Yu J-W (1991) Chromosome microdissection and cloning in human genome and genetic disease analysis. Proc Natl Acad Sci USA 88:1844–1848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Harris P, Boyd E, Ferguson-Smith MA (1985) Optimizing human chromosome separation for the production chromosome-specific DNA libraries by flow sorting. Hum Genet 70:59–65

    Article  CAS  PubMed  Google Scholar 

  9. Deaven LL et al (1986) Construction of human chromosome-specific DNA libraries from flow-sorted chromosomes. Cold Spring Harb Symp Quant Biol 51:159–167

    Article  CAS  PubMed  Google Scholar 

  10. Hopman AHN et al (1988) Non radioactive in situ hybridization. In: Van Leeuwen FW et al (eds) Molecular neuroanatomy. Elsevier, Amsterdam, pp 43–68

    Google Scholar 

  11. Lichter P, Ried T (1994) Molecular analysis of chromosome aberrations. In situ hybridization. In: Gosden JR (ed) Methods in molecular biology. Chromosome analysis protocols. Humana Press, Totowa, pp 449–78

    Google Scholar 

  12. Mascarello JT et al (2011) Section E9 of the American College of Medical Genetics technical standards and guidelines: fluorescence in situ hybridization. Genetics in Medicine 13(7):667–675

    Article  PubMed  Google Scholar 

  13. Knight SJ, Flint J (2000) Perfect endings: a review of subtelomeric probes and their use in clinical diagnosis. J Med Genet 57:401–409

    Article  Google Scholar 

  14. Moyzis RK et al (1988) A highly conserved repetitive sequence (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci USA 85:6622–6626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nederlof PM et al (1989) Three-color fluorescence in situ hybridization for the simultaneous detection of multiple nucleic acid sequences. Cytometry 10:20–27

    Article  CAS  PubMed  Google Scholar 

  16. Lichter P et al (1990) High resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science 247:64–69

    Article  CAS  PubMed  Google Scholar 

  17. Dauwerse JG et al (1992) Multiple colors by fluorescence in situ hybridization using ratio-labelled DNA probes create a molecular karyotype. Hum Mol Genet 1:593–598

    Article  CAS  PubMed  Google Scholar 

  18. Spiecher MR, Ballard S, Ward DC (1996) Karyotyping human chromosomes by combinatorial multifluor FISH. Nat Genet 12:368–375

    Article  Google Scholar 

  19. Schrock E et al (1997) Spectral karyotyping refines cytogenetic diagnsotic of constitutional chromosomal abnormalities. Hum Genet 101:255–262

    Article  CAS  PubMed  Google Scholar 

  20. Bayani J, Squire JA (2001) Advances in the detection of chromosomal aberrations using spectral karyotyping. Clin Genet 59:65–73

    Article  CAS  PubMed  Google Scholar 

  21. Muller S et al (1998) Cross-species colour segmenting: a novel tool in human karyotype analysis. Cytometry 33:445–452

    Article  CAS  PubMed  Google Scholar 

  22. Kallioniemi A et al (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258:818–821

    Article  CAS  PubMed  Google Scholar 

  23. Kallioniemi OP et al (1994) Optimizing comparative genomic hybridization for analysis of DNA sequence copy number changes in solid tumors. Genes Chromosome Canc 10:231–234

    Article  CAS  Google Scholar 

  24. Levy B et al (1998) Clinical applications of comparative genomic hybridization. Genet Med 1:4–12

    Article  CAS  PubMed  Google Scholar 

  25. Bossuyt PJ et al (1995) Incidence of low-fluorescence alpha-satellite region on chromosome 21 escaping detection of aneuploidy at interphase by FISH. Cytogenet Cell Genet 68:203–206

    Article  CAS  PubMed  Google Scholar 

  26. Stergianou K et al (1993) A DA/DAPI positive human 14p heteromorphism defined by fluorescent in situ hybridization using chromosome 15-specific probes D15Z1 (Satellite III) and p-TRA-25 (alphoid). Hereditas 119:105–110

    Article  CAS  PubMed  Google Scholar 

  27. Verlinsky Y et al (1995) Cross-hybridization of the chromosome 13/21 alpha satellite DNA probe to chromosome 22 in the prenatal screening of common chromosomal aneuploidies by FISH. Prenat Diagn 15:831–834

    Article  CAS  PubMed  Google Scholar 

  28. Buiting K et al (1999) A 28-kb deletion spanning D15S63 (PW71) in five families: a rare neutral variant? Am J Hum Genet 65:1588–1594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Silverstein S et al (2001) The 28-kb deletion spanning D15S63 is a polymorphic variant in the Ashkenazi Jewish population. Am J Hum Genet 68:261–263

    Article  CAS  PubMed  Google Scholar 

  30. Pironon N, Peuchberty J, Roizes G (2010) Molecular and evolutionary characteristics of the fraction of human alpha satellite DNA associated with CENP-A at the centromeres of chromosomes 1, 5, 19 and 21. Genomics 11:195–213

    PubMed  PubMed Central  Google Scholar 

  31. Weir HU, Gray JW (1992) A degenerate alpha satellite probe, detecting a centromeric deletion on 2 chromosome 21 in an apparently normal human male shows limitations of the use of satellite DNA probes for interphase ploidy analysis. Anal Cell Pathol 4:81–86

    Google Scholar 

  32. Lapidot-Lifson Y et al (1991) Rapid aneuploidy diagnosis of high risk cases by fluorescence in situ hybridization. Am J Ob Gyn 174:886–890

    Article  Google Scholar 

  33. Tardy EP, Toth A (1997) Letter to the editor. Cross-hybridization of the chromosome 13/21 alpha satellite DNA to chromosome 22 or a rare polymorphism. Prenat Diagn 17:487–490

    Google Scholar 

  34. Vissel B, Choo KH (1991) Four distinct alpha satellite subfamilies shared by human chromosomes 13, 14 and 21. Nucleic Acids Res 19:271–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Choo KH et al (1990) Identification of two distinct subfamilies of alpha satellite DNA that are highly specific for chromosome 15. Genomics 7:517–523

    Article  Google Scholar 

  36. Smeets DFCM, Merkx GFM, Hopman HM (1991) Frequent occurance of translocations of the short arm of chromosome 15 to other D-group chromosomes. Hum Genet 87:45–48

    Article  CAS  PubMed  Google Scholar 

  37. Shim SH et al (2003) FISH variants with D15Z1. J Associ Genet Technol 29(4):146–151

    Google Scholar 

  38. Cockwell AE, Jacobs PA, Crolla JA (2007) Distribution of D15Z1 copy number polymorphism. Europ J Hum Genet 15:441–445

    Article  CAS  PubMed  Google Scholar 

  39. Earle E et al (1992) Absence of satellite III DNA in the centromere and the proximal long-arm region of human chromosome 14: analysis of a 14p variant. Cytogenet Cell Genet 61:78–80

    Article  CAS  PubMed  Google Scholar 

  40. Bonfatti A et al (1993) Heteromorphism of human chromosome 18 detected by fluorescent in situ hybridization. J Histochem 37:149–154

    CAS  Google Scholar 

  41. Jalal SM et al (2000) Screening for subtle structural anomalies by use of subtelomeric specific probe set. Am J Hum Genet 67:A770

    Article  Google Scholar 

  42. Ravnan JB et al (2006) Subtelomeric FISH analysis of 11,688 cases: an evaluation of the frequency and pattern of subtelomeric rearrangements in individuals with developmental disabilities. J Med Genet 43:478–489

    Article  CAS  PubMed  Google Scholar 

  43. Yu S et al (2005) Frequency of truly cryptic subtelomere abnormalities—a study of 534 patients and literature review. Clin Genet 68:436–441

    Article  CAS  PubMed  Google Scholar 

  44. Blake C, Kashork CD, Shaffer KG (2000) The promise and pitfalls of telomere region-specific probes. Am M Hum Genet 67:1356–1359

    Article  Google Scholar 

  45. Linardopoulou EV et al (2005) Human subtelomeres are hot spots of interchromosomal recombination and segmental duplication. Nature 437(7055):94–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang L et al (2005) Patterns of segmental duplication in the human genome. Mol Biol Evol 22(1):135–141

    Article  CAS  PubMed  Google Scholar 

  47. Riethman H (2008) Human telomere structure and biology. Annu Rev Genom Human Genet 9:1–19

    Article  CAS  Google Scholar 

  48. Riethman H (2008) Human subtelomeric copy number variation. Cytogenet Genome Res 123:244–252

    Article  CAS  PubMed  Google Scholar 

  49. Ballif BC et al (2007) The clinical utility of enhanced subtelomeric coverage in array CGH. Am J Med Genet 143A(16):1850–1857

    Article  PubMed  Google Scholar 

  50. Martin CL et al (2007) The evolution of molecular ruler analysis for characterizing telomere imbalances: from fluorescence in situ hybridization to array comparative genomic hybridization. Genet Med 9(9):566–573

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herman E. Wyandt .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Wyandt, H.E., Wilson, G.N., Tonk, V.S. (2017). Chromosome Variation Detected by Fluorescent In Situ Hybridization (FISH). In: Human Chromosome Variation: Heteromorphism, Polymorphism and Pathogenesis. Springer, Singapore. https://doi.org/10.1007/978-981-10-3035-2_8

Download citation

Publish with us

Policies and ethics