Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 510 Accesses

Abstract

Mechanical annealing is an effective method to drive the dislocations out of the submicron sample. However, simultaneously significant shape change is always generated by plastic deformation under monotonic loading. In the present work, through discrete dislocation dynamic simulation, we find that low stress cyclic loading is a potential mechanical annealing method with virtually little change of the shape. A combined numerical and theoretical study has been performed to reveal the underlying mechanism. By comparing the evolution of dislocation junction under monotonic, cyclic and relaxation deformation, the cumulative irreversible slip is found to be the key factor of promoting junction destruction and dislocation annihilation at free surface under cyclic loading condition. By introducing this mechanism into dislocation density evolution equations, a theoretical model is proposed to predict the critical conditions for mechanical annealing under cyclic loading mode.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bei H, Shim S, Pharr GM, George EP (2008) Effects of pre-strain on the compressive stress-strain response of Mo-alloy single-crystal micropillars. Acta Mater 56(17):4762–4770

    Article  Google Scholar 

  2. Alpay SP, Misirlioglu IB, Nagarajan V, Ramesh R (2004) Can interface dislocations degrade ferroelectric properties? Appl Phys Lett 85(11):2044–2046

    Article  Google Scholar 

  3. Watling JR, Paul DJ (2011) A study of the impact of dislocations on the thermoelectric properties of quantum wells in the Si/SiGe materials system. J Appl Phys 110(11):114508

    Article  Google Scholar 

  4. Shan ZW, Mishra RK, Asif SAS, Warren OL, Minor AM (2008) Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat Mater 7:115–119

    Article  Google Scholar 

  5. Greer JR, Nix WD (2006) Nanoscale gold pillars strengthened through dislocation starvation. Phys Rev B 73(24):245410

    Article  Google Scholar 

  6. Uchic MD, Shade PA, Dimiduk DM (2009) Plasticity of micrometer-scale single crystals in compression. Annu Rev Mater Res 39:361–386

    Article  Google Scholar 

  7. Greer JR (2006) Bridging the gap between computational and experimental length scales: a review on nano-scale plasticity. Rev Adv Mater Sci 13:59–70

    Google Scholar 

  8. Wang ZJ, Li QJ, Shan ZW, Li J, Sun J, Ma E (2012) Sample size effects on the large strain bursts in submicron aluminum pillars. Appl Phys Lett 100(7):071906

    Article  Google Scholar 

  9. Aifantis EC (1987) The physics of plastic deformation. Int J Plast 3(3):211–247

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhang GP, Volkert CA, Schwaiger R, Wellner P, Arzt E, Kraft O (2006) Length-scale-controlled fatigue mechanisms in thin copper films. Acta Mater 54(11):3127–3139

    Article  Google Scholar 

  11. Wang ZJ, Li QJ, Cui YN, Liu ZL, Ma E, Li J, Sun J, Zhuang Z, Dao M, Shan ZW, Suresh S (2015) Cyclic deformation leads to defect healing and strengthening of small-volume metal single crystals. PNAS 112(44):13502–13507

    Google Scholar 

  12. Dupuy L, Fivel MC (2002) A study of dislocation junctions in FCC metals by an orientation dependent line tension model. Acta Mater 50(19):4873–4885

    Article  Google Scholar 

  13. Rodney D, Phillips R (1999) Structure and strength of dislocation junctions: an atomic level analysis. Phys Rev Lett 82(8):1704–1707

    Article  Google Scholar 

  14. Picu RC, Soare MA (2010) Asymmetric dislocation junctions exhibit a broad range of strengths. Scr Mater 62(7):508–511

    Article  Google Scholar 

  15. Zhou C, Beyerlein IJ, LeSar R (2011) Plastic deformation mechanisms of fcc single crystals at small scales. Acta Mater 59(20):7673–7682

    Article  Google Scholar 

  16. Cui YN, Lin P, Liu ZL, Zhuang Z (2014) Theoretical and numerical investigations of single arm dislocation source controlled plastic flow in FCC micropillars. Int J Plast 55:279–292

    Article  Google Scholar 

  17. Motz C, Weygand D, Senger J, Gumbsch P (2008) Micro-bending tests: a comparison between three-dimensional discrete dislocation dynamics simulations and experiments. Acta Mater 56(9):1942–1955

    Article  Google Scholar 

  18. Rao SI, Dimiduk DM, Parthasarathy TA, Uchic MD, Tang M, Woodward C (2008) Athermal mechanisms of size-dependent crystal flow gleaned from three-dimensional discrete dislocation simulations. Acta Mater 56(13):3245–3259

    Article  Google Scholar 

  19. Lee S-W, Jennings AT, Greer JR (2013) Emergence of enhanced strengths and Bauschinger effect in conformally passivated copper nanopillars as revealed by dislocation dynamics. Acta Mater 61(6):1872–1885

    Article  Google Scholar 

  20. Espinosa HD, Panico M, Berbenni S, Schwarz KW (2006) Discrete dislocation dynamics simulations to interpret plasticity size and surface effects in freestanding FCC thin films. Int J Plast 22(11):2091–2117

    Article  MATH  Google Scholar 

  21. Cui YN, Liu ZL, Wang ZJ, Zhuang Z (2016) Mechanical annealing under low-amplitude cyclic loading in micropillars. J Mech Phys Solids 89:1–15

    Article  Google Scholar 

  22. Motz C, Weygand D, Senger J, Gumbsch P (2009) Initial dislocation structures in 3-D discrete dislocation dynamics and their influence on microscale plasticity. Acta Mater 57(6):1744–1754

    Article  Google Scholar 

  23. Déprés C, Fivel M, Tabourot L (2008) A dislocation-based model for low-amplitude fatigue behaviour of face-centred cubic single crystals. Scr Mater 58(12):1086–1089

    Article  Google Scholar 

  24. Rajagopalan J, Han JH, Saif MTA (2007) Plastic deformation recovery in freestanding nanocrystalline aluminum and gold thin films. Science 315(5820):1831–1834

    Article  Google Scholar 

  25. Franciosi P, Zaoui A (1982) Multislip tests on copper crystals: a junctions hardening effect. Acta Metall 30(12):2141–2151

    Article  Google Scholar 

  26. Mughrabi H (2009) Cyclic slip irreversibilities and the evolution of fatigue damage. Metall Mater Trans A 40(6):1257–1279

    Article  Google Scholar 

  27. Gilman JJ (1969) Micromechanics of flow in solids. McGraw-Hill

    Google Scholar 

  28. Ungar T, Li L, Tichy G, Pantleon W, Choo H, Liaw PK (2011) Work softening in nanocrystalline materials induced by dislocation annihilation. Scr Mater

    Google Scholar 

  29. Pantleon W (2004) Stage IV work-hardening related to disorientations in dislocation structures. Mater Sci Eng A 387:257–261

    Article  Google Scholar 

  30. Devincre B, Hoc T, Kubin L (2008) Dislocation mean free paths and strain hardening of crystals. Science 320(5884):1745–1748

    Article  Google Scholar 

  31. Kubin LP, Canova G, Condat M, Devincre B, Pontikis V, Bréchet Y (1992) Dislocation microstructures and plastic flow: a 3D simulation. Solid State Phenom 23:455–472

    Article  Google Scholar 

  32. Cleveringa H, Van der Giessen E, Needleman A (2000) A discrete dislocation analysis of mode I crack growth. J Mech Phys Solids 48(6):1133–1157

    Article  MathSciNet  MATH  Google Scholar 

  33. Malygin G (2012) Influence of the transverse size of samples with micro-and nano-grained structures on the yield and flow stresses. Phys Solid State 54(3):559–567

    Article  Google Scholar 

  34. Parthasarathy TA, Rao SI, Dimiduk DM, Uchic MD, Trinkle DR (2007) Contribution to size effect of yield strength from the stochastics of dislocation source lengths in finite samples. Scripta Mater 56(4):313–316

    Article  Google Scholar 

  35. Zhou C, LeSar R (2012) Dislocation dynamics simulations of plasticity in polycrystalline thin films. Int J Plast 30:185–201

    Article  Google Scholar 

  36. Jennings A, Gross C, Greer F, Aitken Z, Lee S-W, Weinberger C, Greer J (2012) Higher compressive strengths and the Bauschinger effect in conformally passivated copper nanopillars. Acta Mater 60(8):3444–3455

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinan Cui .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Cui, Y. (2017). Mechanical Annealing Under Low Amplitude Cyclic Loading in Micropillars. In: The Investigation of Plastic Behavior by Discrete Dislocation Dynamics for Single Crystal Pillar at Submicron Scale. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-3032-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3032-1_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3031-4

  • Online ISBN: 978-981-10-3032-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics