Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 558 Accesses

Abstract

The ‘dislocation source’ controlled plastic behaviors in submicron single crystals, which differ significantly from macroscopic plastic flow, are widely observed in recent in-situ TEM tests. In this work, single arm source (SAS) controlled plastic flow in the micropillars with diameter ranging from 200 nm to 800 nm is extensively investigated by a statistically based theoretical model and three dimensional discrete dislocation dynamic (3D DDD) method. First, by 3D DDD simulations of micropillar compression test, some specific features of submicron plastic flow are obtained: 1) Intermittent strain burst is directly controlled by the operation and shutdown of SAS; 2) Strain hardening is virtually absent due to continuous operation of stable SAS and weak dislocation interactions; 3) The initially high dislocation density finally reaches a stable value after a sharp decrease. And meanwhile, it is found that stable SAS length also reaches a constant value which only depends on the pillar diameter. Then by modifying the conventional dislocation density evolution equation and strain hardening model to consider the SAS operation mechanism, a theoretical model is developed to quantitatively describe the submicron plastic behavior. Here the evolution of SAS length is decided by a statistical model. Once the pillar diameter and initial dislocation density are given, the stress-strain curve, dislocation density, SAS length, and the stable flow stress can all be predicted by this theoretical model and match well with the experimental data and 3D DDD simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. El-Awady JA, Wen M, Ghoniem NM (2009) The role of the weakest-link mechanism in controlling the plasticity of micropillars. J Mech Phys Solids 57(1):32–50

    Article  MATH  Google Scholar 

  2. Ng KS, Ngan AHW (2008) Stochastic nature of plasticity of aluminum micro-pillars. Acta Mater 56(8):1712–1720

    Article  Google Scholar 

  3. Mayeur JR, McDowell DL (2013) An evaluation of higher-order single crystal strength models for constrained thin films subjected to simple shear. J Mech Phys Solids 61(9):1935–1954

    Article  MathSciNet  Google Scholar 

  4. Akarapu S, Zbib HM, Bahr DF (2010) Analysis of heterogeneous deformation and dislocation dynamics in single crystal micropillars under compression. Int J Plast 26(2):239–257

    Article  MATH  Google Scholar 

  5. Gu R, Ngan AHW (2013) Dislocation arrangement in small crystal volumes determines power-law size dependence of yield strength. J Mech Phys Solids 61(6):1531–1542

    Article  MathSciNet  Google Scholar 

  6. Greer JR (2006) Bridging the gap between computational and experimental length scales: a review on nano-scale plasticity. Rev Adv Mater Sci 13:59–70

    Google Scholar 

  7. Greer JR, Nix WD (2006) Nanoscale gold pillars strengthened through dislocation starvation. Phys Rev B 73(24):245410

    Article  Google Scholar 

  8. Beanland R (1995) Dislocation multiplication mechanisms in low-misfit strained epitaxial layers. J Appl Phys 77(12):6217–6222

    Article  Google Scholar 

  9. Parthasarathy TA, Rao SI, Dimiduk DM, Uchic MD, Trinkle DR (2007) Contribution to size effect of yield strength from the stochastics of dislocation source lengths in finite samples. Scripta Mater 56(4):313–316

    Article  Google Scholar 

  10. Oh SH, Legros M, Kiener D, Dehm G (2009) In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal. Nat Mater 8(2):95–100

    Article  Google Scholar 

  11. Tang H, Schwarz KW, Espinosa HD (2008) Dislocation-source shutdown and the plastic behavior of single-crystal micropillars. Phys Rev Lett 100(18):185503

    Article  Google Scholar 

  12. Lee S-W, Han SM, Nix WD (2009) Uniaxial compression of FCC Au nanopillars on an MgO substrate: the effects of prestraining and annealing. Acta Mater 57(15):4404–4415

    Article  Google Scholar 

  13. Lee S-W, Nix WD (2012) Size dependence of the yield strength of FCC and BCC metallic micropillars with diameters of a few micrometers. Phil Mag 92(10):1238–1260. doi:10.1080/14786435.2011.643250

    Article  Google Scholar 

  14. Rao SI, Dimiduk D, Parthasarathy TA, Uchic M, Tang M, Woodward C (2008) Athermal mechanisms of size-dependent crystal flow gleaned from three-dimensional discrete dislocation simulations. Acta Mater 56(13):3245–3259

    Article  Google Scholar 

  15. Lee S-W, Jennings AT, Greer JR (2013) Emergence of enhanced strengths and Bauschinger effect in conformally passivated copper nanopillars as revealed by dislocation dynamics. Acta Mater 61(6):1872–1885

    Article  Google Scholar 

  16. Nix WD, Lee SW (2010) Micro-pillar plasticity controlled by dislocation nucleation at surfaces. Phil Mag 91(7):1084–1096

    Google Scholar 

  17. Benzerga AA (2009) Micro-pillar plasticity: 2.5 D mesoscopic simulations. J Mech Phys Solids 57(9):1459–1469

    Article  MATH  Google Scholar 

  18. Kiener D, Minor AM (2011) Source-controlled yield and hardening of Cu (100) studied by in situ transmission electron microscopy. Acta Mater 59(4):1328–1337

    Article  Google Scholar 

  19. Dimiduk DM, Uchic MD, Parthasarathy TA (2005) Size-affected single-slip behavior of pure nickel microcrystals. Acta Mater 53(15):4065–4077

    Article  Google Scholar 

  20. Cui YN, Lin P, Liu ZL, Zhuang Z (2014) Theoretical and numerical investigations of single arm dislocation source controlled plastic flow in FCC micropillars. Int J Plast 55:279–292

    Article  Google Scholar 

  21. Zhou C, Beyerlein IJ, LeSar R (2011) Plastic deformation mechanisms of FCC single crystals at small scales. Acta Mater 59(20):7673–7682

    Article  Google Scholar 

  22. Motz C, Weygand D, Senger J, Gumbsch P (2009) Initial dislocation structures in 3-D discrete dislocation dynamics and their influence on microscale plasticity. Acta Mater 57(6):1744–1754

    Article  Google Scholar 

  23. Liu ZL, Liu XM, Zhuang Z, You XC (2009) A multi-scale computational model of crystal plasticity at submicron-to-nanometer scales. Int J Plast 25(8):1436–1455

    Article  MATH  Google Scholar 

  24. Jennings AT, Burek MJ, Greer JR (2010) Microstructure versus size: mechanical properties of electroplated single crystalline Cu nanopillars. Phys Rev Lett 104(13):135503

    Article  Google Scholar 

  25. Norfleet DM, Dimiduk DM, Polasik SJ, Uchic MD, Mills MJ (2008) Dislocation structures and their relationship to strength in deformed nickel microcrystals. Acta Mater 56(13):2988–3001

    Article  Google Scholar 

  26. Uchic MD, Dimiduk DM, Florando JN, Nix WD (2004) Sample dimensions influence strength and crystal plasticity. Science 305:986–989

    Article  Google Scholar 

  27. Zhou C, Biner SB, LeSar R (2010) Discrete dislocation dynamics simulations of plasticity at small scales. Acta Mater 58(5):1565–1577

    Article  Google Scholar 

  28. Benzerga AA (2008) An analysis of exhaustion hardening in micron-scale plasticity. Int J Plast 24(7):1128–1157

    Article  MATH  Google Scholar 

  29. Uchic MD, Shade PA, Dimiduk DM (2009) Plasticity of micrometer-scale single crystals in compression. Annu Rev Mater Res 39:361–386

    Article  Google Scholar 

  30. Dunstan DJ, Bushby AJ (2013) The scaling exponent in the size effect of small scale plastic deformation. Int J Plast 40:152–162

    Article  Google Scholar 

  31. Dunstan DJ, Bushby AJ (2013) Grain size dependence of the strength of metals: The Hall-Petch effect does not scale as the inverse square root of grain size. Int J Plast. doi:10.1016/j.ijplas.2013.07.004

    Google Scholar 

  32. Malygin GA (2010) Size effects under plastic deformation of microcrystals and nanocrystals. Phys Solid State 52(1):49–57

    Article  Google Scholar 

  33. Devincre B, Hoc T, Kubin L (2008) Dislocation mean free paths and strain hardening of crystals. Science 320(5884):1745–1748

    Article  Google Scholar 

  34. Malygin GA (2012) Influence of the transverse size of samples with micro-and nano-grained structures on the yield and flow stresses. Phys Solid State 54(3):559–567

    Article  Google Scholar 

  35. Zhou C, LeSar R (2012) Dislocation dynamics simulations of plasticity in polycrystalline thin films. Int J Plast 30:185–201

    Article  Google Scholar 

  36. Jennings AT, Gross C, Greer F, Aitken ZH, Lee S-W, Weinberger CR, Greer JR (2012) Higher compressive strengths and the Bauschinger effect in conformally passivated copper nanopillars. Acta Mater 60(8):3444–3455

    Article  Google Scholar 

  37. Ng KS, Ngan AHW (2008) Breakdown of Schmid’s law in micropillars. Scr Mater 59(7):796–799

    Article  Google Scholar 

  38. Frick CP, Clark BG, Orso S, Schneider AS, Arzt E (2008) Size effect on strength and strain hardening of small-scale [111] nickel compression pillars. Mater Sci Eng A 489(1):319–329

    Article  Google Scholar 

  39. Shan ZW, Mishra RK, Asif SAS, Warren OL, Minor AM (2008) Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat Mater 7:115–119

    Article  Google Scholar 

  40. Wang ZJ, Li QJ, Shan ZW, Li J, Sun J, Ma E (2012) Sample size effects on the large strain bursts in submicron aluminum pillars. Appl Phys Lett 100(7):071906

    Article  Google Scholar 

  41. Jérusalem A, Fernández A, Kunz A, Greer JR (2011) Continuum modeling of dislocation starvation and subsequent nucleation in nano-pillar compression. Scr Mater  66(2):93–96

    Google Scholar 

  42. Kraft O, Gruber PA, Mönig R, Weygand D (2010) Plasticity in confined dimensions. Ann Rev Mater Res 40:293–317

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinan Cui .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Cui, Y. (2017). Single Arm Dislocation Source Controlled Plastic Flow in FCC Micropillars. In: The Investigation of Plastic Behavior by Discrete Dislocation Dynamics for Single Crystal Pillar at Submicron Scale. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-3032-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3032-1_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3031-4

  • Online ISBN: 978-981-10-3032-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics