Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 536 Accesses

Abstract

Over the past decade, submicron crystals with characteristic size ranging from several hundred nanometers to several micrometers have attracted continuous interest. Their unique particular properties make them exhibit great promise for applications in microdevices and small-scale structures. At the same time, their untypical mechanical behaviors, such as size effect and intermittent plasticity, challenge the applicability of conventional plasticity model to submicron scale. In this chapter, the relevant experimental, numerical and theoretical studies on submicron single crystal plasticity are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Montemayor LC, Meza LR, Greer JR (2014) Design and fabrication of hollow rigid nanolattices via two-photon lithography. Adv Eng Mater 16(2):184–189. doi:10.1002/adem.201300254

    Article  Google Scholar 

  2. Uchic MD, Dimiduk DM, Florando JN, Nix WD (2004) Sample dimensions influence strength and crystal plasticity. Science 305:986–989

    Article  Google Scholar 

  3. Csikor FF, Motz C, Weygand D, Zaiser M, Zapperi S (2007) Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale. Science 318(5848):251

    Article  Google Scholar 

  4. Nix WD, Gao H (1998) Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids 46(3):411–425. doi:10.1016/S0022-5096(97)00086-0

    Article  MATH  Google Scholar 

  5. Hall EO (1951) The deformation and ageing of mild steel III: discussion of results. Proc Phys Soc Lond Sect B 64(9):747–753

    Article  Google Scholar 

  6. Petch NJ (1953) The cleavage strength of polycrystals. J. Iron Steel Inst. 174:25–28

    Google Scholar 

  7. Schuh CA, Nieh TG, Yamasaki T (2002) Hall-Petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel. Scripta Mater 46(10):735–740. doi:10.1016/S1359-6462(02)00062-3

    Article  Google Scholar 

  8. El-Sherik AM, Erb U, Palumbo G, Aust KT (1992) Deviations from hall-petch behaviour in as-prepared nanocrystalline nickel. Scr Metall Mater 27(9):1185–1188

    Article  Google Scholar 

  9. Kelly A, Nicholson RB (1972) Strengthening methods in crystals. Halstead Press Division, Wiley

    Google Scholar 

  10. Nix WD (1989) Mechanical properties of thin films. Metall Trans A 20(11):2217–2245. doi:10.1007/bf02666659

    Article  Google Scholar 

  11. Uchic MD, Shade PA, Dimiduk DM (2009) Plasticity of micrometer-scale single crystals in compression. Annu Rev Mater Res 39:361–386

    Article  Google Scholar 

  12. Gil Sevillano J, Ocana Arizcorreta I, Kubin LP (2001) Intrinsic size effects in plasticity by dislocation glide. Mater Sci Eng A 309:393–405

    Article  Google Scholar 

  13. Arzt E (1998) Size effects in materials due to microstructural and dimensional constraints: a comparative review. Acta Mater 46(16):5611–5626

    Article  Google Scholar 

  14. Bushby AJ, Dunstan DJ (2004) Plasticity size effects in nanoindentation. J Mater Res 19(01):137–142. doi:10.1557/jmr.2004.19.1.137

    Article  MATH  Google Scholar 

  15. Liu D, He Y, Dunstan DJ, Zhang B, Gan Z, Hu P, Ding H (2013) Toward a further understanding of size effects in the torsion of thin metal wires: an experimental and theoretical assessment. Int J Plast 41:30–52. doi:10.1016/j.ijplas.2012.08.007

    Article  Google Scholar 

  16. Fleck NA, Muller GM, Ashby MF, Hutchinson JW (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42(2):475–487

    Article  Google Scholar 

  17. Tu KN, Rosenberg R (eds) (1982) Treatise on materials science and technology. Academic Press, New York

    Google Scholar 

  18. Shim S, Bei H, Miller MK, Pharr GM, George EP (2009) Effects of focused ion beam milling on the compressive behavior of directionally solidified micropillars and the nanoindentation response of an electropolished surface. Acta Mater 57(2):503–510

    Article  Google Scholar 

  19. Bei H, Shim S, Miller MK, Pharr GM, George EP (2007) Effects of focused ion beam milling on the nanomechanical behavior of a molybdenum-alloy single crystal. Appl Phys Lett 91:111915

    Article  Google Scholar 

  20. Ouyang C, Li Z, Huang M, Hu L, Hou C (2009) Combined influences of micro-pillar geometry and substrate constraint on microplastic behavior of compressed single-crystal micro-pillar: two-dimensional discrete dislocation dynamics modeling. Mater Sci Eng A 526(1–2):235–243

    Article  Google Scholar 

  21. Jennings AT, Burek MJ, Greer JR (2010) Microstructure versus size: mechanical properties of electroplated single crystalline cu nanopillars. Phys Rev Lett 104(13):135503

    Article  Google Scholar 

  22. Shade PA, Wheeler R, Choi YS, Uchic MD, Dimiduk DM, Fraser HL (2009) A combined experimental and simulation study to examine lateral constraint effects on microcompression of single-slip oriented single crystals. Acta Mater 57(15):4580–4587

    Article  Google Scholar 

  23. Gao Y, Liu Z, You X, Zhuang Z (2010) A hybrid multiscale computational framework of crystal plasticity at submicron scales. Comput Mater Sci 49:672–681

    Article  Google Scholar 

  24. Greer JR, Oliver WC, Nix WD (2005) Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater 53(6):1821–1830

    Article  Google Scholar 

  25. Greer JR (2006) Bridging the gap between computational and experimental length scales: a review on nano-scale plasticity. Rev Adv Mater Sci 13:59–70

    Google Scholar 

  26. Shan ZW, Mishra RK, Asif SAS, Warren OL, Minor AM (2008) Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat Mater 7:115–119

    Article  Google Scholar 

  27. Liu Z, Liu X, Zhuang Z, You X (2009) A multi-scale computational model of crystal plasticity at submicron-to-nanometer scales. Int J Plast 25(8):1436–1455

    Article  MATH  Google Scholar 

  28. Liu Z, Liu X, Zhuang Z, You X (2009) Atypical three-stage-hardening mechanical behavior of Cu single-crystal micropillars. Scripta Mater 60(7):594–597

    Article  Google Scholar 

  29. Benzerga AA (2009) Micro-pillar plasticity: 2.5D mesoscopic simulations. J Mech Phys Solids 57(9):1459–1469. doi:10.1016/j.jmps.2009.06.003

    Article  MATH  Google Scholar 

  30. Nix WD, Lee SW (2010) Micro-pillar plasticity controlled by dislocation nucleation at surfaces. Philos Mag 91(7):1084–1096

    Google Scholar 

  31. Tang H, Schwarz KW, Espinosa HD (2008) Dislocation-source shutdown and the plastic behavior of single-crystal micropillars. Phys Rev Lett 100(18):185503–185504

    Article  Google Scholar 

  32. Motz C, Weygand D, Senger J, Gumbsch P (2009) Initial dislocation structures in 3-D discrete dislocation dynamics and their influence on microscale plasticity. Acta Mater 57(6):1744–1754

    Article  Google Scholar 

  33. Akarapu S, Zbib HM, Bahr DF (2010) Analysis of heterogeneous deformation and dislocation dynamics in single crystal micropillars under compression. Int J Plast 26(2):239–257

    Article  MATH  Google Scholar 

  34. Zhou C, Beyerlein IJ, LeSar R (2011) Plastic deformation mechanisms of fcc single crystals at small scales. Acta Mater 59(20):7673–7682

    Article  Google Scholar 

  35. Oh SH, Legros M, Kiener D, Dehm G (2009) In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal. Nat Mater 8(2):95–100

    Article  Google Scholar 

  36. Rao SI, Dimiduk DM, Tang M, Uchic MD, Parthasarathy TA, Woodward C (2007) Estimating the strength of single-ended dislocation sources in micron-sized single crystals. Philos Mag 87(30):4777–4794

    Article  Google Scholar 

  37. Parthasarathy TA, Rao SI, Dimiduk DM, Uchic MD, Trinkle DR (2007) Contribution to size effect of yield strength from the stochastics of dislocation source lengths in finite samples. Scripta Mater 56(4):313–316

    Article  Google Scholar 

  38. Lee S-W, Nix WD (2012) Size dependence of the yield strength of fcc and bcc metallic micropillars with diameters of a few micrometers. Philos Mag 92(10):1238–1260. doi:10.1080/14786435.2011.643250

    Article  Google Scholar 

  39. Greer JR, Nix WD (2006) Nanoscale gold pillars strengthened through dislocation starvation. Phys Rev B 73(24):245410

    Article  Google Scholar 

  40. Frick CP, Clark BG, Orso S, Schneider AS, Arzt E (2008) Size effect on strength and strain hardening of small-scale [111] nickel compression pillars. Mater Sci Eng A 489(1):319–329

    Article  Google Scholar 

  41. Volkert CA, Lilleodden ET (2006) Size effects in the deformation of sub-micron Au columns. Philos Mag 86(33–35):5567–5579

    Article  Google Scholar 

  42. Cui YN, Lin P, Liu ZL, Zhuang Z (2014) Theoretical and numerical investigations of single arm dislocation source controlled plastic flow in FCC micropillars. Int J Plast 55:279–292

    Article  Google Scholar 

  43. Lee S-W, Han SM, Nix WD (2009) Uniaxial compression of fcc Au nanopillars on an MgO substrate: the effects of prestraining and annealing. Acta Mater 57(15):4404–4415

    Article  Google Scholar 

  44. Brinckmann S, Kim J-Y, Greer JR (2008) Fundamental differences in mechanical behavior between two types of crystals at the nanoscale. Phys Rev Lett 100(15):155502

    Article  Google Scholar 

  45. Norfleet DM, Dimiduk DM, Polasik SJ, Uchic MD, Mills MJ (2008) Dislocation structures and their relationship to strength in deformed nickel microcrystals. Acta Mater 56(13):2988–3001

    Article  Google Scholar 

  46. Dimiduk DM, Uchic MD, Parthasarathy TA (2005) Size-affected single-slip behavior of pure nickel microcrystals. Acta Mater 53(15):4065–4077

    Article  Google Scholar 

  47. Kiener D, Minor AM (2011) Source-controlled yield and hardening of Cu (100) studied by in situ transmission electron microscopy. Acta Mater 59(4):1328–1337

    Article  Google Scholar 

  48. Dimiduk DM, Woodward C, LeSar R, Uchic MD (2006) Scale-free intermittent flow in crystal plasticity. Science 312(5777):1188

    Article  Google Scholar 

  49. Dimiduk DM, Nadgorny EM, Woodward C, Uchic MD, Shade PA (2010) An experimental investigation of intermittent flow and strain burst scaling behavior in LiF crystals during microcompression testing. Philos Mag 90(27–28):3621–3649

    Article  Google Scholar 

  50. Friedman N, Ito S, Brinkman BAW, Shimono M, DeVille REL, Dahmen KA, Beggs JM, Butler TC (2012) Universal critical dynamics in high resolution neuronal avalanche data. Phys Rev Lett 108(20):208102

    Article  Google Scholar 

  51. Friedman N, Jennings AT, Tsekenis G, Kim JY, Tao M, Uhl JT, Greer JR, Dahmen KA (2012) Statistics of dislocation slip avalanches in nanosized single crystals show tuned critical behavior predicted by a simple mean field model. Phys Rev Lett 109(9):95507

    Article  Google Scholar 

  52. Clauset A, Shalizi C, Newman M (2009) Power-Law distributions in empirical data. SIAM Rev 51(4):661–703. doi:10.1137/070710111

    Article  MathSciNet  MATH  Google Scholar 

  53. Zhang X, Pan B, Shang F (2012) Scale-free behavior of displacement bursts: lower limit and scaling exponent. EPL (Europhysics Letters) 100(1):16005

    Article  Google Scholar 

  54. Ng KS, Ngan AHW (2008) Stochastic nature of plasticity of aluminum micro-pillars. Acta Mater 56(8):1712–1720

    Article  Google Scholar 

  55. Ng KS, Ngan AHW (2008) A Monte Carlo model for the intermittent plasticity of micro-pillars. Modell Simul Mater Sci Eng 16(5):055004

    Article  Google Scholar 

  56. Maaß R, Van Petegem S, Van Swygenhoven H, Derlet PM, Volkert CA, Grolimund D (2007) Time-Resolved Laue diffraction of deforming micropillars. Phys Rev Lett 99(14):145505

    Article  Google Scholar 

  57. Rao SI, Dimiduk DM, Parthasarathy TA, Uchic M, Tang M, Woodward C (2008) Athermal mechanisms of size-dependent crystal flow gleaned from three-dimensional discrete dislocation simulations. Acta Mater 56(13):3245–3259

    Article  Google Scholar 

  58. Mook W, Niederberger C, Bechelany M, Philippe L, Michler J (2010) Compression of freestanding gold nanostructures: from stochastic yield to predictable flow. Nanotechnology 21:055701

    Article  Google Scholar 

  59. Wang ZJ, Shan ZW, Li J, Sun J, Ma E (2012) Pristine-to-pristine regime of plastic deformation in submicron-sized single crystal gold particles. Acta Mater 60(3):1368–1377

    Article  Google Scholar 

  60. Hu JQ, Liu ZL, Cui YN, Wang ZJ, Shan ZW, Zhuang Z (2014) Sensitive material behavior: theoretical model and experiment for compression collapse of gold particles at submicron scale. J Appl Mech 81(9):091007. doi:10.1115/1.4027916

    Article  Google Scholar 

  61. Ng KS, Ngan AHW (2009) Deformation of micron-sized aluminium bi-crystal pillars. Phil Mag 89(33):3013–3026

    Article  Google Scholar 

  62. Wang Z, Shan Z, Li J, Sun J, Ma E (2014) An index for deformation controllability of small-volume materials. Sci China Technol Sci 57(4):663–670. doi:10.1007/s11431-014-5498-0

    Article  Google Scholar 

  63. Ng KS, Ngan AHW (2009) Effects of trapping dislocations within small crystals on their deformation behavior. Acta Mater 57(16):4902–4910

    Article  Google Scholar 

  64. Jennings AT, Gross C, Greer F, Aitken ZH, Lee S-W, Weinberger CR, Greer JR (2012) Higher compressive strengths and the Bauschinger effect in conformally passivated copper nanopillars. Acta Mater 60(8):3444–3455

    Article  Google Scholar 

  65. Aifantis EC (1987) The physics of plastic deformation. Int J Plast 3(3):211–247

    Article  MathSciNet  MATH  Google Scholar 

  66. Kiener D, Motz C, Grosinger W, Weygand D, Pippan R (2010) Cyclic response of copper single crystal micro-beams. Scripta Mater 63(5):500–503

    Article  Google Scholar 

  67. Zhang GP, Schwaiger R, Volkert CA, Kraft O (2003) Effect of film thickness and grain size on fatigue-induced dislocation structures in Cu thin films. Philos Mag Lett 83(8):477–483

    Article  Google Scholar 

  68. Zhang GP, Volkert CA, Schwaiger R, Wellner P, Arzt E, Kraft O (2006) Length-scale-controlled fatigue mechanisms in thin copper films. Acta Mater 54(11):3127–3139

    Article  Google Scholar 

  69. Wang D, Volkert CA, Kraft O (2008) Effect of length scale on fatigue life and damage formation in thin Cu films. Mater Sci Eng A 493(1):267–273

    Article  Google Scholar 

  70. Muhlstein CL, Brown SB, Ritchie RO (2001) High-cycle fatigue of single-crystal silicon thin films. J Microelectromech Syst 10(4):593–600

    Article  Google Scholar 

  71. Li X, Bhushan B (2003) Fatigue studies of nanoscale structures for MEMS/NEMS applications using nanoindentation techniques. Surf Coat Technol 163:521–526

    Article  Google Scholar 

  72. Brinckmann S, Van der Giessen E (2004) A discrete dislocation dynamics study aiming at understanding fatigue crack initiation. Mater Sci Eng A 387:461–464

    Article  Google Scholar 

  73. Shin CS, Fivel MC, Verdier M, Robertson C (2005) Dislocation dynamics simulations of fatigue of precipitation-hardened materials. Mater Sci Eng A 400:166–169

    Article  Google Scholar 

  74. Déprés C, Robertson CF, Fivel MC (2004) Crack initiation in fatigue: experiments and three-dimensional dislocation simulations. Mater Sci Eng A 387:288–291

    Article  Google Scholar 

  75. Namazu T, Isono Y (2009) Fatigue life prediction criterion for micro–nanoscale single-crystal silicon structures. J Microelectromech Syst 18(1):129–137

    Article  Google Scholar 

  76. Kiener D, Minor AM (2011) Source truncation and exhaustion: insights from quantitative in-situ TEM tensile testing. Nano Lett 11(9):3816–3820

    Google Scholar 

  77. Wang ZJ, Li QJ, Cui YN, Liu ZL, Ma E, Li J, Sun J, Zhuang Z, Dao M, Shan ZW, Suresh S (2015) Cyclic deformation leads to defect healing and strengthening of small-volume metal single crystals. PNAS 112(44):13502–13507

    Google Scholar 

  78. Dupuy L, Fivel MC (2002) A study of dislocation junctions in FCC metals by an orientation dependent line tension model. Acta Mater 50(19):4873–4885

    Article  Google Scholar 

  79. Rodney D, Phillips R (1999) Structure and strength of dislocation junctions: an atomic level analysis. Phys Rev Lett 82(8):1704–1707

    Article  Google Scholar 

  80. Gao H, Huang Y, Nix WD, Hutchinson JW (1999) Mechanism-based strain gradient plasticity—I. Theory. J Mech Phys Solids 47(6):1239–1263

    Article  MathSciNet  MATH  Google Scholar 

  81. Huang Y, Gao H, Nix WD, Hutchinson JW (2000) Mechanism-based strain gradient plasticity—II. Analysis. J Mech Phys Solids 48(1):99–128. doi:10.1016/S0022-5096(99)00022-8

    Article  MathSciNet  MATH  Google Scholar 

  82. Han C-S, Gao H, Huang Y, Nix WD (2005) Mechanism-based strain gradient crystal plasticity—I. Theory. J Mech Phys Solids 53(5):1188–1203

    Article  MathSciNet  MATH  Google Scholar 

  83. Han C-S, Gao H, Huang Y, Nix WD (2005) Mechanism-based strain gradient crystal plasticity—II. Analysis. J Mech Phys Solids 53(5):1204–1222. doi:10.1016/j.jmps.2005.01.004

    Article  MathSciNet  MATH  Google Scholar 

  84. Evers LP, Brekelmans WAM, Geers MGD (2004) Non-local crystal plasticity model with intrinsic SSD and GND effects. J Mech Phys Solids 52(10):2379–2401. doi:10.1016/j.jmps.2004.03.007

    Article  MATH  Google Scholar 

  85. Geers MGD, Brekelmans WAM, Bayley CJ (2007) Second-order crystal plasticity: internal stress effects and cyclic loading. Modell Simul Mater Sci Eng 15:S133

    Article  Google Scholar 

  86. Gurtin ME (2002) A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J Mech Phys Solids 50(1):5–32

    Article  MathSciNet  MATH  Google Scholar 

  87. Gurtin ME (2010) A finite-deformation, gradient theory of single-crystal plasticity with free energy dependent on the accumulation of geometrically necessary dislocations. Int J Plast 26(8):1073–1096

    Article  MATH  Google Scholar 

  88. Borg U (2007) A strain gradient crystal plasticity analysis of grain size effects in polycrystals. Eur J Mech A Solids 26(2):313–324. doi:10.1016/j.euromechsol.2006.09.006

    Article  MATH  Google Scholar 

  89. Evans AG, Hutchinson JW (2009) A critical assessment of theories of strain gradient plasticity. Acta Mater 57(5):1675–1688

    Article  Google Scholar 

  90. Kuroda M, Tvergaard V (2008) On the formulations of higher-order strain gradient crystal plasticity models. J Mech Phys Solids 56(4):1591–1608

    Article  MathSciNet  MATH  Google Scholar 

  91. Liu ZL, Zhuang Z, Liu XM, Zhao XC, Zhang ZH (2011) A dislocation-dynamics based higher-order crystal plasticity model and applications on confined thin-film plasticity. Int J Plast 27(2):201–216

    Article  Google Scholar 

  92. Qu S, Huang Y, Jiang H, Liu C, Wu PD, Hwang KC (2004) Fracture analysis in the conventional theory of mechanism-based strain gradient (CMSG) plasticity. Int J Fract 129(3):199–220. doi:10.1023/B:FRAC.0000047786.40200.f8

    Article  MATH  Google Scholar 

  93. Wei Y (2006) A new finite element method for strain gradient theories and applications to fracture analyses. Eur J Mech A Solids 25(6):897–913. doi:10.1016/j.euromechsol.2006.03.001

    Article  MathSciNet  MATH  Google Scholar 

  94. Aifantis KE, Ngan AHW (2007) Modeling dislocation—grain boundary interactions through gradient plasticity and nanoindentation. Mater Sci Eng, A 459(1–2):251–261. doi:10.1016/j.msea.2007.01.028

    Article  Google Scholar 

  95. Zaiser M, Aifantis EC (2006) Randomness and slip avalanches in gradient plasticity. Int J Plast 22(8):1432–1455. doi:10.1016/j.ijplas.2005.07.010

    Article  MATH  Google Scholar 

  96. Zhang X, Aifantis KE (2011) Interpreting strain bursts and size effects in micropillars using gradient plasticity. Mater Sci Eng, A 528(15):5036–5043. doi:10.1016/j.msea.2011.02.049

    Article  Google Scholar 

  97. Zhang X, Shang F (2014) A continuum model for intermittent deformation of single crystal micropillars. Int J Solids Struct 51(10):1859–1871

    Article  Google Scholar 

  98. Mayeur JR, McDowell DL (2013) An evaluation of higher-order single crystal strength models for constrained thin films subjected to simple shear. J Mech Phys Solids 61(9):1935–1954

    Google Scholar 

  99. Guruprasad PJ, Benzerga AA (2008) Size effects under homogeneous deformation of single crystals: A discrete dislocation analysis. J Mech Phys Solids 56(1):132–156. doi:10.1016/j.jmps.2007.03.009

    Article  MATH  Google Scholar 

  100. LeSar R (2014) Simulations of dislocation structure and response. Annu Rev Condens Matter Phys 5(1):375–407. doi:10.1146/annurev-conmatphys-031113-133858

    Article  Google Scholar 

  101. Xu S, Guo YF, Ngan AHW (2013) A molecular dynamics study on the orientation, size, and dislocation confinement effects on the plastic deformation of Al nanopillars. Int J Plast 43:116–127

    Google Scholar 

  102. Zuo L, Ngan AHW (2006) Molecular dynamics study on compressive yield strength in Ni3Al micro-pillars. Philos Mag Lett 86(6):355–365

    Article  Google Scholar 

  103. Zhou SJ, Preston DL, Lomdahl PS, Beazley DM (1998) Large-Scale molecular dynamics simulations of dislocation intersection in copper. Science 279(5356):1525–1527. doi:10.1126/science.279.5356.1525

    Article  Google Scholar 

  104. Needleman A (2000) Computational mechanics at the mesoscale. Acta Mater 48(1):105–124

    Article  MathSciNet  Google Scholar 

  105. Foreman AJE (1968) Junction reaction hardening by dislocation loops. Phil Mag 17(146):353–364. doi:10.1080/14786436808226168

    Article  Google Scholar 

  106. Deshpande VS, Needleman A, Van der Giessen E (2003) Finite strain discrete dislocation plasticity. J Mech Phys Solids 51(11–12):2057–2083. doi:10.1016/j.jmps.2003.09.012

    Article  MathSciNet  MATH  Google Scholar 

  107. Deshpande VS, Needleman A, Van der Giessen E (2005) Plasticity size effects in tension and compression of single crystals. J Mech Phys Solids 53(12):2661–2691

    Article  MATH  Google Scholar 

  108. Ouyang C, Li Z, Huang M, Fan H (2010) Cylindrical nano-indentation on metal film/elastic substrate system with discrete dislocation plasticity analysis: a simple model for nano-indentation size effect. Int J Solids Struct 47(22–23):3103–3114

    Google Scholar 

  109. Huang M, Tong J, Li Z (2014) A study of fatigue crack tip characteristics using discrete dislocation dynamics. Int J Plast 54:229–246. doi:10.1016/j.ijplas.2013.08.016

    Article  Google Scholar 

  110. Benzerga AA, Bréchet Y, Needleman A, Giessen E (2004) Incorporating three-dimensional mechanisms into two-dimensional dislocation dynamics. Modell Simul Mater Sci Eng 12:159

    Article  Google Scholar 

  111. Kubin LP, Canova G, Condat M, Devincre B, Pontikis V, Bréchet Y (1992) Dislocation microstructures and plastic flow: a 3D simulation. Solid State Phenom 23:455–472

    Article  Google Scholar 

  112. Bulatov VV, Cai W (2006) Computer Simulations of dislocations. Oxford University Press, New York

    MATH  Google Scholar 

  113. El-Awady JA, Bulent Biner S, NM S (2008) A self-consistent boundary element, parametric dislocation dynamics formulation of plastic flow in finite volumes. J Mech Phys Solids 56(5):2019–2035

    Article  MATH  Google Scholar 

  114. Po G, Mohamed M, Crosby T, Erel C, El-Azab A, Ghoniem N (2014) Recent progress in discrete dislocation dynamics and its applications to micro plasticity. JOM 66(10):2108–2120. doi:10.1007/s11837-014-1153-2

    Article  Google Scholar 

  115. El-Awady JA, Rao SI, Woodward C, Dimiduk DM, Uchic MD (2011) Trapping and escape of dislocations in micro-crystals with external and internal barriers. Int J Plast 27(3):372–387

    Article  MATH  Google Scholar 

  116. Lee S-W, Jennings AT, Greer JR (2013) Emergence of enhanced strengths and Bauschinger effect in conformally passivated copper nanopillars as revealed by dislocation dynamics. Acta Mater 61(6):1872–1885

    Article  Google Scholar 

  117. Zhou C, Biner S, LeSar R (2010) Discrete dislocation dynamics simulations of plasticity at small scales. Acta Mater 58(5):1565–1577

    Article  Google Scholar 

  118. Cui Y, Po G, Ghoniem N (2016) Temperature insensitivity of the flow stress in body-centered cubic micropillar crystals. Acta Mater 108:128–137. doi:10.1016/j.actamat.2016.02.008

    Article  Google Scholar 

  119. Weinberger CR, Cai W (2007) Computing image stress in an elastic cylinder. J Mech Phys Solids 55(10):2027–2054

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinan Cui .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Cui, Y. (2017). Introduction. In: The Investigation of Plastic Behavior by Discrete Dislocation Dynamics for Single Crystal Pillar at Submicron Scale. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-3032-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3032-1_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3031-4

  • Online ISBN: 978-981-10-3032-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics