Skip to main content

Microstructure and Composition Dependent Physical and Cytocompatibility Property of Glass-Ceramics for Dental Restoration

  • Chapter
  • First Online:
Book cover Biomaterials for Musculoskeletal Regeneration

Part of the book series: Indian Institute of Metals Series ((IIMS))

  • 611 Accesses

Abstract

The design and development of glass ceramic materials provide us the unique opportunity to study the microstructure development with changes in either base glass composition or heat treatment conditions and thereby developing an understanding of processing-microstructure-property (mechanical/biological) relationship. Among various brittle materials, the mica based glass ceramics with crystalline ceramic embedded in a glass matrix are of greater scientific interest, because of their machinability . Considering the potential of these materials as dental implants, this chapter summaries the published results on K2O–B2O3–Al2O3–SiO2–MgO–F glass ceramics to demonstrate the microstructure dependent mechanical, tribological and cytocompatibility properties. Among the high hardness of around 8 GPa together with 3-point flexural strength and elastic modulus of 80 MPa and 69 GPa, respectively were obtained in glass ceramics with maximum amount of crystals. While analyzing influence of environment on the friction and wear behavior systematic decrease in wear rate with test duration was recorded with a minimum wear rate of 10−5 mm3/Nm after 100,000 fretting cycles in artificial saliva . The in vitro results illustrate how small variation in fluorine and boron in base glass composition influences significantly the cytocompatibility and antimicrobial bactericidal property, as evaluated using a range of biochemical assays. Overall, the mechanical, tribological property, in vitro cytocompatibility study, when taken together clearly reveals that microstructure and base glass composition play an important role in enhancing the cellular functionality and antimicrobial property.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kanchanarat N, Bandyopadhyay-Ghosh S, Reaney MI, Brook MI, Hatton VP. Microstructure and mechanical properties of fluorcanasite glass-ceramics for biomedical applications. J Mater Sci. 2008;43:759–65.

    Article  Google Scholar 

  2. Gonzalez P, Serra J, Liste S, Chiuss S, Leon B, Perez-Amor M, Martinez-Fernandez J, de Arellano A, Lopez R, Varela-Feria FM. New biomorphic SiC ceramics coated with bioactive glass for biomedical applications. Biomaterials. 2003;24:4827–32.

    Article  Google Scholar 

  3. Verne E, Ferraris S, Miola M, Fucale G, Maina G, Martinasso G, Canuto RA, Di-Nunzio S, Vitale-Brovarone C. Synthesis and characterisation of bioactive and antibacterial glass-ceramic part 1—microstructure, properties and biological behaviour. Adv Appl Ceram. 2008;107:234–44.

    Article  Google Scholar 

  4. Uno T, Kasuga T, Nakayama S, Ikushima AJ. Microstructure of mica-based nanocomposite glass-ceramics. J Am Ceram Soc. 1993;76(2):539–41.

    Article  Google Scholar 

  5. Baik DS, No KS, Chun JS. Mechanical properties of mica glass–ceramics. J Am Ceram Soc. 1995;78(5):1217–22.

    Google Scholar 

  6. Larry LH. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74:1487–510.

    Article  Google Scholar 

  7. Chen X, Hench LL, Greenspan D, Zhong J, Zhang X. Investigation on phase separation, nucleation and crystallization in bioactive glass-ceramics containing fluorophlogopite and fluorapatite. Ceram Int. 1998;24:401–10.

    Article  Google Scholar 

  8. Roy S, Basu B. Hardness properties and microscopic investigation of crack-crystal interaction in SiO2–MgO–Al2O3–K2O–B2O3–F glass ceramic system. J Mater Sci Mater Med. 2010;21:109–22.

    Article  Google Scholar 

  9. Molla AR, Basu B. Microstructure, mechanical and in vitro properties of Mica Glass-ceramics with varying fluorine content, J Mater Sci Mater Med. 2009; 4:869–882.

    Google Scholar 

  10. Kalmodia S, Molla AR Basu B. In vitro cellular adhesion and antimicrobial property of SiO2-MgO-Al2O3-K2O-B2O3-F glass ceramic, J Mater Sci Mater Med. 2010;21:1297–130.

    Google Scholar 

  11. Molla AR, Manoj Kumar BV, Basu B. Friction and wear mechanisms of K2O-B2O3-Al2O3-SiO2–MgO-F glass ceramics, J Eur Cer Soc. 2009;29:2481–2489.

    Google Scholar 

  12. Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74(7):1487–510.

    Article  Google Scholar 

  13. Holland W, Vogel W. An introduction to bioceramics. Singapore: World Scientific Publishing Company Pvt. Ltd; 1993. p. 125–37.

    Book  Google Scholar 

  14. Holand W, Beall G. Glass ceramic technology. Westerville: The American Ceramic Society; 2002.

    Google Scholar 

  15. Kokubo T, Ito S, Shigematsu M, Sakka S, Yamamuro T. Mechanical properties of a new type of apatite-containing glass-ceramic for prosthetic application. J Mater Sci. 1985;20:2001–4.

    Article  Google Scholar 

  16. Kokubo T, Ito S, Sakka S, Yamamuro T. Formation of a high-strength bioactive glass-ceramic in the system MgO–CaO–SiO2–P2O5. J Mater Sci. 1986;21:536–40.

    Article  Google Scholar 

  17. Akao M, Aoki H, Kato K. Mechanical properties of sintered. hydroxyapatite for prosthetic application. J Mater Sci. 1981;16:809–12.

    Article  Google Scholar 

  18. Dewith G, Vandijk HJA, Hattu N, Prijs K. Preparation, microstructure and mechanical-properties of dense polycrystalline hydroxy apatite. J Mater Sci. 1981;16:1592–8.

    Article  Google Scholar 

  19. Liu D-M. Bioactive glass-ceramic: formation, characterization and bioactivity. Mater Chem Phys. 1994;36:294–303.

    Article  Google Scholar 

  20. Vincenzini P, editor. Ceramics in clinical applications. Amsterdam: Elsevier; 1987.

    Google Scholar 

  21. Kitsugi T, Yamamuro T, Nakamura T, Kokubo T. Bone bonding behavior of MgO–CaO–SiO2–P2O5–CaF2 glass (mother glass of AW-glass-ceramics). J Biomed Mater Res. 1989;23:631–48.

    Article  Google Scholar 

  22. Nakamuro T, Yamamuro T, Higashi S, Kokubo T, Ito S. A new glass-ceramic for bone replacement: evaluation of its bonding to bone tissue. J Biomed Mater Res. 1985;19:685–98.

    Google Scholar 

  23. Quinn JB, Sundar V, Lloyd IK. Influence of microstructure and chemistry on the fracture toughness of dental ceramics. Dent Mater. 2003;19:603–11.

    Article  Google Scholar 

  24. Grossman DG. Processing of dental ceramic by casting method. Ceram Eng Sci Proc. 1985;6:19–40.

    Article  Google Scholar 

  25. Radonjić LJ, Nikolić LJ. The effect of fluorine source and concentration on the crystallization of machinable glass-ceramics. J Euro Ceram Soc. 1991;7(1):11–6.

    Google Scholar 

  26. Cheng K, Wan J, Liang K. Crystallization of R2O–MgO–Al2O3–B2O3–SiO2–F (R = K+, Na+) glasses with different fluorine source. Mater Lett. 2001;47:1–6.

    Article  Google Scholar 

  27. Park J, Ozturk A. Tribological properties of MgO–CaO–SiO2–P2O5–F based glass-ceramic for dental applications. Mater Lett. 2007;61:1916–21.

    Article  Google Scholar 

  28. Xiao H, Cheng Y, Yang Q, Senda T. Mechanical and tribological properties of calcia–magnesia–alumina–silica-based glass–ceramics prepared by in situ crystallization. Mater Sci Eng A. 2006;423:170–4.

    Article  Google Scholar 

  29. Jahanmir S, Dong X. Wear mechanism of a dental glass-ceramic. Wear. 1995;181–183:821–5.

    Article  Google Scholar 

  30. Bibby J, Bubb N, Wood DM. Fluorapatite-mullite glass sputter coated Ti6Al4 V for biomedical applications. J Mater Sci Mater Med. 2005;16:379–85.

    Article  Google Scholar 

  31. Kumar R, Kalmodia S, Nath S, Sigh D, Basu B. Phase assemblage study and cytocompatibility property of heat treated potassium magnesium phosphate–silicate ceramics. J Mater Sci Mater Med. 2009;20:1689–95.

    Article  Google Scholar 

  32. Xiang Q, Liu Y, Sheng X, Dan X. Preparation of mica-based glass-ceramics with needle-like fluorapatite. Dent Mater. 2007;23:251–8.

    Article  Google Scholar 

  33. Alemany MI, Velasquez P, de la Casa-Lillo MA, De Aza PN. Effect of materials’ processing methods on the ‘in vitro’ bioactivity of wollastonite glass-ceramic materials. J Non-Cryst Solids. 2005;351:1716–26.

    Article  Google Scholar 

  34. Salman MS, Salama NS, Darwish H, Mosallam Abo HA. HA forming ability of some glass-ceramics of the CaMgSi2O6–Ca5(PO4)3F–CaAl2SiO6 system. Ceram Int 2006;32:357–64.

    Google Scholar 

  35. Brook IM, Craig GT, Lamb DJ. In vitro interaction between primary bone organ cultures, glass-ionomer cements and hydroxyapatite/tricalcium phosphate ceramics. Biomaterials. 1991;12:179–86.

    Article  Google Scholar 

  36. Soljanto P, Rehtijrvi P, Tuovinen HO. Ferrous iron oxidation by thiobacillus ferrooxidans: inhibition by finely ground particles. Geomicrobiol J. 1980;2:1–12.

    Article  Google Scholar 

  37. Johnson WA, Mehl RF. Reaction Kinetics in process of nucleation and growth. Trans AIME. 1939;135:416–42.

    Google Scholar 

  38. Avrami M. Kinetics of phase change. J Chem Phys. 1939;7:1103–1112, 1941;9:177–84.

    Google Scholar 

  39. Goswami M, Sarkar A, Mirza T, Shrikhande VK, Sangeeta KR, Gurumurthy GP Kothiyal. Study of some thermal and mechanical properties of magnesium aluminium silicate glass ceramic. Ceram Int. 2002;28:585.

    Article  Google Scholar 

  40. Sarkar D, Basu B, Chu MC, Cho SJ. Is glass infiltration beneficial to improve fretting wear properties for Alumina? J Am Ceram Soc. 2007;90:523–32.

    Article  Google Scholar 

  41. Copello GJ, Teves S, Degrossi J, D’Aquino M, Desimone MF, Diaz LE. Antimicrobial activity on glass materials subject to disinfectant xerogel coating. J Ind Microbiol Biotechnol. 2006;33:343–8.

    Article  Google Scholar 

  42. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. Biomaterials science: an introduction to materials in medicine. Published by Academic Press; 2004.

    Google Scholar 

  43. West KA, Zhang H, Brown MC, et al. The LD4 motif of paxillin regulates cell spreading and motility through an interaction with paxillin kinase linker (PKL). J Cell Biol. 2001;154:161–76.

    Article  Google Scholar 

  44. Louise PC. Role of actin-filament disassembly in lamellipodium protrusion in motile cells revealed using the drug jasplakinolide. Curr Biol. 1999;9:1095–105.

    Article  Google Scholar 

  45. Pavalko FM, Otey CA. Role of adhesion molecule cytoplasmic domains in mediating interactions with the cytoskeleton. Proc Soc Exp Biol Med 1994;205:282–93.

    Google Scholar 

  46. Issa Y, Brunton P, Waters CM, Watts DC. Cytotoxicity of metal ions to human oligodendroglial cells and human gingival fibroblasts assessed by mitochondrial dehydrogenase activity. Dent Mater. 2008;24:281–7.

    Article  Google Scholar 

  47. Benderdour M, Hess K, Dzondo-Gadet M, Dousset B, Nabet P, Belleville E. Effect of boric acid solution on cartilage metabolism. Biochem Biophys Res Comm. 1997;234:263–8.

    Article  Google Scholar 

  48. Farley JR, Wergedal JE, Baylink DJ. Fluoride directly stimulates proliferation and alkaline phosphatase activity of bone-forming cells. Science. 1983;22:330–2.

    Article  Google Scholar 

  49. Campoccia D, Arciola CR, Cervellati M, Maltarello MC, Montanaro L. In vitro behaviour of bone marrow-derived mesenchymal cells cultured on fluorhydroxyapatite-coated substrata with different roughness. Biomaterials. 2003;24:587–96.

    Article  Google Scholar 

  50. Hailuo F, et al. In vitro evaluation of borate-based bioactive glass scaffolds prepared by a polymer foam replication method. Mater Sci Eng C. 2009;29:2275–81.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sourabh Ghosh .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Basu, B., Ghosh, S. (2017). Microstructure and Composition Dependent Physical and Cytocompatibility Property of Glass-Ceramics for Dental Restoration. In: Biomaterials for Musculoskeletal Regeneration. Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-10-3017-8_5

Download citation

Publish with us

Policies and ethics