Skip to main content

Case Study: Development of Constructs for Maxillofacial Reconstruction

  • Chapter
  • First Online:
Biomaterials for Musculoskeletal Regeneration

Part of the book series: Indian Institute of Metals Series ((IIMS))

  • 627 Accesses

Abstract

Increasing number of clinical incidences of maxillofacial disorders has developed the quest for the fabrication of improved synthetic materials to aid in complete craniofacial restoration. Replicating the complex 3D architecture and functional dynamics of maxillofacial bone tissue is a challenging proposition which aggravates the need for a custom-made, on demand tissue replacement strategy for rendering patient specificity which could not be achieved till date. Textile technology offers versatility to develop 3D spatial structures with tailor-made mechanical properties in the order of micro- and macro meters. 3D printed structures have fascinating potential for reconstruction of maxillofacial deformations due to the ability to fabricate patient-specific, defect site-specific structural features in the order of several nanometers along with the flexibility of being tailored into any desired shape or size. These case studies highlight clinical trials to evaluate the key properties of high performance textile braided structures for preservation of dimension of alveolar ridge as well as 3D printed Hydroxyapatite Direct-write scaffolds for maxillofacial reconstruction and how tailoring their architecture could enhance patient-specificity and defect-specificity in situ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goiato MC, Santos MR, Pesqueira AA, Moreno A, dos Santos DM, Haddad MF. Prototyping for surgical and prosthetic treatment. J Craniofac Surg. 2011;22(3):914–7.

    Article  Google Scholar 

  2. Yadav SK and Shrestha S, Current and Advancing Concepts in Pedicled Flaps, Old and New, for Oral and Maxillofacial Reconstruction. Medical and Clinical reviews 2016 Mar; 2 (18).

    Google Scholar 

  3. Rogers GF, Greene AK. Autogenous bone graft: basic science and clinical implications. J Craniofac Surg. 2012;23(1):323–7.

    Article  Google Scholar 

  4. Schubert W, Gear AJ, Lee C, Hilger PA, Haus E, Migliori MR, Mann DA, Benjamin CI. Incorporation of titanium mesh in orbital and midface reconstruction. Plast Reconstr Surg. 2002 Sep 15;110(4):1022–30; discussion 1031-2.

    Google Scholar 

  5. Conejero JA, Lee JA, Parrett BM, Terry M, Wear-Maggitti K, Grant RT, Breitbart AS. Repair of Palatal Bone Defects Using Osteogenically Differentiated Fat-Derived Stem Cells. Plast Reconstr Surg. 2006;117(3):857–63.

    Article  Google Scholar 

  6. Adamopoulos O, Papadopoulos T. Nanostructured bioceramics for maxillofacial applications. J Mater Sci Mater Med. 2007;18(8):1587–97.

    Article  Google Scholar 

  7. Marelli B, Ghezzi CE, Alessandrino A, Barralet JE, Freddi G, Nazhat SN. Silk fibroin derived polypeptide-induced biomineralization of collagen. Biomaterials. 2012;33(1):102–8.

    Article  Google Scholar 

  8. Gosain AK. Bioactive glass for bone replacement in craniomaxillofacial reconstruction. Plast Reconstr Surg. 2004;114(2):590–3.

    Article  Google Scholar 

  9. De Water VR, Rubio EJ, Schouten JW, Koudstaal MJ. Deformation of a Titanium Calvarial Implant following Trauma: A Case Report. Craniomaxillofac Trauma Reconstr. 2016;9(2):158–61.

    Google Scholar 

  10. Arora A, Datarkar AN, Borle RM, Rai A, Adwani DG. Custom-Made Implant for Maxillofacial Defects Using Rapid Prototype Models. J Oral Maxillofac Surg. 2013;71(2):e104–10.

    Article  Google Scholar 

  11. Choi JW, Kim N. Clinical Application of Three-Dimensional Printing Technology in Craniofacial Plastic Surgery. Arch Plast Surg. 2015;42(4):513.

    Article  Google Scholar 

  12. Mörmann W, Brandestini M, Ferru A, Lutz F, Krejci I. Marginal adaptation of adhesive porcelain inlays in vitro. Schweiz Monatsschr Zahnmed (1984). 1985 Dec;95(12):1118–29.

    Google Scholar 

  13. Pochon JP, Klöti J. Cranioplasty for acquired skull defects in children–a comparison between autologous material and methylmethacrylate 1974-1990. Eur J Pediatr Surg. 1991;1(4):199–201.

    Article  Google Scholar 

  14. Christensen AM, Humphries SM. Role of rapid digital manufacture in planning and implementation of complex medical treatments. Advanced Manufacturing Technology for Medical Applications in Advanced Manufacturing Technology for Medical Applications: Reverse Engineering, Software Conversion and Rapid Prototyping (ed I. Gibson), John Wiley & Sons, Ltd, Chichester, UK. doi:10.1002/0470033983.ch2.

  15. Ritacco LE, Di Lella F, Mancino A. Gonzalez Bernaldo de Quiros F, Boccio C, Milano FE. 3D Printed Models and Navigation for Skull Base Surgery: Case Report and Virtual Validation. Stud Health Technol Inform. 2015;216:1025.

    Google Scholar 

  16. Williams RJ, Bibb R, Eggbeer D, Collis J. Use of CAD/CAM technology to fabricate a removable partial denture framework. J Prosthet Dent. 2006;96(2):96–9.

    Article  Google Scholar 

  17. Ghosh S, Parker ST, Wang X, Kaplan DL, Lewis JA. Direct-Write Assembly of Micro-Periodic Silk Fibroin Scaffolds for Tissue Engineering Applications. Adv Funct Mater. 2008;18(13):1883–9.

    Article  Google Scholar 

  18. Lewis JA. Direct Ink Writing of 3D Functional Materials. Adv Funct Mater. 2006;16(17):2193–204.

    Article  Google Scholar 

  19. Das S, Pati F, Chameettachal S, Pahwa S, Ray AR, Dhara S, Ghosh S. Enhanced redifferentiation of chondrocytes on microperiodic silk-gelatin scaffolds: toward tailor-made tissue engineering. Biomacromolecules. 2013;14(2):311–21.

    Article  Google Scholar 

  20. Michna S, Wu W, Lewis JA. Concentrated hydroxyapatite inks for direct-write assembly of 3-D periodic scaffolds. Biomaterials. 2005;26(28):5632–9.

    Article  Google Scholar 

  21. Fearraigh PO. The Modern Methods in the Surgical Reconstruction and Rehabilitation of the Orofacial Region. A Review of the Literature. TSMJ. 2008;9:44–7.

    Google Scholar 

  22. Tobita M, Mizuno H. Oral and Maxillofacial Tissue Engineering with Adipose- Derived Stem Cells. Regenerative Medicine and Tissue Engineering.2013. Prof. Jose A. Andrades (Ed.), ISBN: 978-953-51-1108-5, InTech, doi:10.5772/55899.

  23. Tardy ME, Kastenbauer ER. Head and neck surgery. 1995. Vol. I.2nd rev. ed. New York, NY: Thieme Medical Publishers, Inc.

    Google Scholar 

  24. Kadam D, Pillai V, Bhandary S, Hukkeri RY, Kadam M. Indian Facial contour deformity correction with microvascular flaps based on the 3-dimentional template and facial moulage. Indian J Plast Surg. 2013;46(3):521–8.

    Article  Google Scholar 

  25. Pogrel MA, Podlesh S, Anthony JP, Alexander J. A comparison of vascularized and nonvascularized bone grafts for reconstruction of mandibular continuity defects. J Oral Maxillofac Surg. 1997;55(11):1200–6.

    Article  Google Scholar 

  26. Genden E, Haughey BH. Mandibular reconstruction by vascularised free tissue transfer. Am J Otolaryngol. 1996 Jul–Aug;17(4):219–27.

    Google Scholar 

  27. Hidalgo DA. Fibula free flap: a new method of mandible reconstruction. Plast Reconstr Surg. 1989;84(1):71–9.

    Article  Google Scholar 

  28. Mehta RP, Deschler DG. Mandibular reconstruction in 2004: an analysis of different techniques. Curr. Opin. Otolaryngol. Head Neck Surg. 2004;12:288–93.

    Article  Google Scholar 

  29. Wolff J, Sándor GK, Miettinen A, Tuovinen VJ, Mannerström B, Patrikoski M, Miettinen S. 2013. GMP-level adipose stem cells combined with computer aided manufacturing to reconstruct mandibular ameloblastoma resection defects: Experience with three cases. Ann Maxillofac Surg. 2013 Jul–Dec; 3(2): 114–125.

    Google Scholar 

  30. Ling XF, Peng X. Review What is the price to pay for a free fibula flap? A systematic review of donor-site morbidity following free fibula flap surgery. Plast Reconstr Surg. 2012;129(3):657–74.

    Article  Google Scholar 

  31. Alsberg E, Hill EE, Mooney DJ. Craniofacial tissue engineering. Crit Rev Oral Biol Med. 2001;12(1):64–75.

    Article  Google Scholar 

  32. McCarthy JG, Schreiber J, Karp N, Thorne CH, Grayson BH. Lengthening the human mandible by gradual distraction. Plast Reconstr Surg. 1992 Jan;89(1):1–8; discussion 9-10.

    Google Scholar 

  33. Mofid MM, Manson PN, Robertson BC, Tufaro AP, Elias JJ, Vander Kolk CA. Craniofacial distraction osteogenesis: a review of 3278 cases. Plast Reconstr Surg. 2001 Oct;108(5):1103–14; discussion 1115-7.

    Google Scholar 

  34. Wiltfang J, Merten HA, Schultze-Mosgau S, Schrell U, Wénzel D, Kessler P. Biodegradable miniplates (Lacto Sorb): Long-term results in infant minipigs and clinical results. J Craniofac Surg. 2000 May;11(3):239–43; discussion 244-5.

    Google Scholar 

  35. Moreira-Gonzalez A, Jackson IT, Miyawaki T, Barakat K, DiNick V. Clinical outcome in cranioplasty: critical review in long-term follow-up. J J Craniofac Surg. 2003;14(2):144–53.

    Article  Google Scholar 

  36. Burstein FD1, Williams JK, Hudgins R, Boydston W, Reisner A, Stevenson K, Cohen S. Hydroxyapatite cement in craniofacial reconstruction: experience in 150 patients. Plast Reconstr Surg. 2006 Aug;118(2):484–9.

    Google Scholar 

  37. Tanaka T, Kumagae Y, Saito M, Chazono M, Komaki H, Kikuchi T, Kitasato S, Marumo K.J. Bone formation and resorption in patients after implantation of beta-tricalcium phosphate blocks with 60 % and 75 % porosity in opening-wedge high tibial osteotomy. J Biomed Mater Res B Appl Biomater. 2008 Aug;86(2):453–9.

    Google Scholar 

  38. Kokemueller H, Spalthoff S, Nolff M, Tavassol F, Essig H, Stuehmer C, Bormann KH, Rücker M, Gellrich NC. Prefabrication of vascularized bioartificial bone grafts in vivo for segmental mandibular reconstruction: Experimental pilot study in sheep and first clinical application. Int J Oral Maxillofac Surg. 2010;39(4):379–87.

    Article  Google Scholar 

  39. Hollister SJ, Lin CY, Saito E, Lin CY, Schek RD, Taboas JM, Williams JM, Partee B, Flanagan CL, Diggs A, Wilke EN, Van Lenthe GH, Müller R, Wirtz T, Das S, Feinberg SE, Krebsbach PH. Engineering craniofacial scaffolds. Orthod Craniofac Res. 2005;8(3):162–73.

    Article  Google Scholar 

  40. Aibibu D, Hild M, Wöltje M, Cherif C. Textile cell-free scaffolds for in situ tissue engineering applications. J Mater Sci Mater Med. 2016;27(3):63.

    Article  Google Scholar 

  41. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, et al. Silk-based biomaterials. Biomaterials. 2003;24(3):401–16.

    Article  Google Scholar 

  42. Midha S, Murab S, Ghosh S. Osteogenic signaling on silk-based matrices. Biomaterials. 2016;97:133–53.

    Article  Google Scholar 

  43. Bhattacharjee M, Schultz-Thater E, Trella E, Miot S, Das S, Loparic M, Ray AR, Martin I, Spagnoli GC, Ghosh S. The role of 3D structure and protein conformation on the innate and adaptive immune responses to silk-based biomaterials. Biomaterials. 2013;34(33):8161–71.

    Article  Google Scholar 

  44. Midha S, Tripathi R, Geng H, Lee P, Ghosh S. Elucidation of differential mineralization on native and regenerated silk matrices. Mater Sci Eng, C. 2016;68:663–74.

    Article  Google Scholar 

  45. Leong NL, Petrigliano FA, McAllister DR. Current tissue engineering strategies in anterior cruciate ligament reconstruction. J Biomed Mater Res A. 2014;102(5):1614–24.

    Article  Google Scholar 

  46. Araújo MG, Silva CO, Misawa M, Sukekava F. Alveolar socket healing: what can we learn? Periodontol 2000. 2015 Jun;68(1):122–34.

    Google Scholar 

  47. Tan WL, Wong TL, Wong MC, Lang NP. A systematic review of post-extractional alveolar hard and soft tissue dimensional changes in humans, Clin Oral Implants Res. 2012 Feb;23 Suppl 5:1–21.Jambhekar S, Kernen F, Bidra AS. Clinical and histologic outcomes of socket grafting after flapless tooth extraction: a systematic review of randomized controlled clinical trials, J Prosthet Dent. 2015 May;113(5):371-82.

    Google Scholar 

  48. Stein JM, Hammächer C. Postextraction Socket Seal Surgery with an Epithelized Connective Tissue Graft Using a Subpapillar Tunneling Procedure. Int J Periodontics Restorative Dent. 2015 Nov-Dec;35(6):877–84.

    Google Scholar 

  49. Hawker GA, Mian S, Kendzerska T, French M. Measures of adult pain: Visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF-36 BPS), and Measure of Intermittent and Constant Osteoarthritis Pain (ICOAP). Arthritis Care Res (Hoboken). 2011;63(Suppl 11):S240–52.

    Article  Google Scholar 

  50. Gittard SD, Narayan RJ, Lusk J, Morel P, Stockmans F, Ramsey M, Laverde C, Phillips J, Monteiro-Riviere NA, Ovsianikov A, Chichkov BN. Rapid prototyping of scaphoid and lunate bones. Biotechnol J. 2009;4(1):129–34.

    Article  Google Scholar 

  51. Yang S, Leong K, Du Z, Chua C. The design of scaffolds for use in tissue engineering. Part 2. Rapid prototyping techniques. Tissue Eng. 2002;8(1):1–11.

    Article  Google Scholar 

  52. Gittard SD, Narayan R. Laser direct writing of micro- and nano-scale medical devices.

    Google Scholar 

  53. Expert Rev Med Devices. 2010 May; 7(3): 343–356.

    Google Scholar 

  54. Zhang X, Jiang XN, Sun C. Micro-stereolithography of polymeric and ceramic microstructures. Sens Actuator A. 1999;77(2):149–56.

    Article  Google Scholar 

  55. Hutmacher DW, Cool S. Concepts of scaffold-based tissue engineering–the rationale to use solid free-form fabrication techniques. J Cell Mol Med. 2007 Jul-Aug;11(4):654–69.

    Google Scholar 

  56. Simon JL, Michna S, Lewis JA, Rekow ED, Thompson VP, Smay JE, Yampolsky A, Parsons JR, Ricci JL. In vivo bone response to 3D periodic hydroxyapatite scaffolds assembled by direct ink writing. J Biomed Mater Res A. 2007;83(3):747–58.

    Article  Google Scholar 

  57. Smay JE, Cesarano J III, Lewis JA. Colloidal Inks for Directed Assembly of 3-D Periodic Structures. Materials Science and Engineering Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, and Sandia National Laboratories, Albuquerque, New Mexico 87106. Langmuir. 2002;18(14):5429–37.

    Article  Google Scholar 

  58. Sun L, Parker ST, Syoji D, Wang X, Lewis JA, Kaplan DL. Direct-write assembly of 3D silk/hydroxyapatite scaffolds for bone co-cultures. Adv Healthc Mater. 2012;1(6):729–35.

    Article  Google Scholar 

  59. Deligianni DD, Katsala ND, Koutsoukos PG, Missirlis YF. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials. 2001;22(1):87–96.

    Article  Google Scholar 

  60. Specchia N, Pagnotta A, Cappella M. Effect of hydroxyapatite porosity on growth and differentiation of human osteoblast-like cells. Journal of Materials Science. 2002;37(3):577–84.

    Article  Google Scholar 

  61. Rosa AL, Beloti MM, Noort RV, Hatton PV. Surface topography of hydroxyapatite affects ROS17/2.8 cells response. Pesqui. Odontol. Bras. 2002;16(3):209–15.

    Google Scholar 

  62. Fröhlich M, Grayson WL, Wan LQ, Marolt D, Drobnic M, Vunjak-Novakovic G. Tissue engineered bone grafts: biological requirements, tissue culture and clinical relevance. Curr Stem Cell Res Ther. 2008; 3(4):254–64.Miller RJ, Edwards WC, Boudet C, Cohen JH. The Mandibular Symphysis in 3D Revised Maxillofacial Anatomy: 2009. 1(2):1-7.

    Google Scholar 

  63. Kanczler JM, Oreffo RO. Eur Cell Mater. Osteogenesis and angiogenesis: the potential for engineering bone. Eur Cell Mater. 2008;15:100–14.

    Google Scholar 

  64. Montoro JR, Tavares MG, Melo DH, Franco Rde L, Mello-Filho FV, Xavier SP, Trivellato AE, Lucas AS. Mandibular ameloblastoma treated by bone resection and immediate reconstruction. Braz J Otorhinolaryngol. 2008;74(1):155–7.

    Article  Google Scholar 

  65. Kawai T, Echigo S, Matsui K, Tanuma Y, Takahashi T, Suzuki O, Kamakura S. First Clinical Application of Octacalcium Phosphate Collagen Composite in Human Bone Defect. Tissue Eng Part A. 2014;20(7–8):1336–41.

    Article  Google Scholar 

  66. Samman N, Luk WK, Chow TW, Cheung LK, Tideman H. Clark RK Custom-made titanium mandibular reconstruction tray. Aust Dent J. 1999;44(3):195–9.

    Article  Google Scholar 

  67. Tonino A, Davidson CL, Klopper PJ, Linelau LA. Protection from stress in bone and its effects. J Bone Joint Surg Br. 1976;58(1):107–13.

    Google Scholar 

  68. Raphel J, Karlsson J, Galli S, Wennerberg A, Lindsay C, Haugh MG, Pajarinen J, Goodman SB, Jimbo R, Andersson M, Heilshorn SC. Engineered protein coatings to improve the osseointegration of dental and orthopaedic implants. Biomaterials. 2016;83:269–82.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sourabh Ghosh .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Basu, B., Ghosh, S. (2017). Case Study: Development of Constructs for Maxillofacial Reconstruction. In: Biomaterials for Musculoskeletal Regeneration. Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-10-3017-8_10

Download citation

Publish with us

Policies and ethics