Skip to main content

The Ohlson and Feltham Ohlson Models

  • Chapter
  • First Online:
Equity Valuation and Negative Earnings

Abstract

This chapter analyses the phenomenon of “positive valuation of losses” in the new economy companies in the US. One of the potential explanations of this phenomenon is that these companies are start-up companies, mostly technology-based, that invest massively in intangible assets, in particular research and development (R&D) and advertising. Under Generally Accepted Accounting Principles (GAAP), these investments should be considered at full cost in the year they occur. Thus, in this chapter, we analyse the Ohlson (OM) (Contemp Acc Rev 11(2):661–687, 1995) and Feltham and Ohlson (FOM) (Contemp Acc Rev 11(2):689–731, 1995) valuation models. Feltham and Ohlson (Contemp Acc Rev 11(2):689–731, 1995) demonstrated analytically, using dynamic information, that losses, particularly at the stage of start-up in growth and technology-based companies, are considered to be costs that create an effect of conservatism accounting, consequently, there is an undervaluation of assets, hence the results and equity. However, this situation tends to be reversed over time, because given the principle of rationality, the investors continue to invest in the company if those investments are associated with abnormal profitability expectations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    According to Lo and Lys (2001), in 1999, and with reference to the OM model, the mean number of citations was already higher than nine.

  2. 2.

    Holthausan and Watts (2001) criticize the OM model because it is a partial equilibrium model, where the financial variables used are defined exogenously to the model. But as Beaver (2002: 458) claims, parsimony is also a very important quality in any model, arguing that: “By analogy, the capital asset pricing model (CAPM) has the demand for financial institutions, financial institutions yet we observe empirically”. With this reasoning, Barth et al. (2001: 90) state: To our knowledge, there is no academic theory of accounting that derives the demand for accounting information arising from the equilibrium forces and provides the mapping of accounting information into price shares.

  3. 3.

    This assumption is in line with the principle of perfect capital markets, so it excludes any signal effect associated with the variable “income”.

  4. 4.

    Expressing dividends according to the current results, through the CSR principle and replacing x t , the expression obtained for the abnormal results, we obtain \(d_{t} = x_{t}^{a} - {\text{bv}}_{t} + R_{\text{f}} {\text{bv}}_{t - 1}\).

  5. 5.

    Note that \(R_{\text{f}}^{ - \tau } E_{t} ({\text{bv}}_{t + \tau } ) \to 0\;com\;\tau \to \infty\), i.e. the present value of capital converges to zero as the time horizon tends to infinity. The model assumes that the equity grows at a rate less than r f

  6. 6.

    The parameters w and \(\gamma\) assume values greater than zero for economic conditions and values less than 1 in order to ensure stability/stationarity of the model. This condition implies that the \(E_{t} \left( {x_{t + \tau }^{a} } \right) \to 0\) and \(E_{t} \left( {v_{t + \tau } } \right) \to 0\) with \(\tau \to \infty\). Indeed if w = 1, this means that growth opportunities persist indefinitely, which is not consistent with the empirical evidence.

  7. 7.

    The CSR defines \({\text{bv}}_{t} = {\text{bv}}_{t - 1} + x_{t} - d_{t}\) being \(x_{t}^{a} = x_{t} - (R_{\text{f}} - 1){\text{bv}}_{t - 1}\); replacing x t in the CSR expression we obtain \({\text{bv}}_{t} = x_{t}^{a} + R_{\text{f}} {\text{bv}}_{t - 1} - d{}_{t}\), an expression that shows that any relevant events from the point of view of information are contained in the value of equity (bv t ) through the “dynamic information”.

  8. 8.

    The analytical deduction of the Eqs. 2.8 and 2.9 appear in the Appendix 2.1.

  9. 9.

    In theory, Ferreira and Sarmento (2004) argue that the equity valuation and evaluation on the basis of updated income streams should give the same value. However, empirically, and given the existence of goodwill associated with the presence of intangible assets and the relevance or lack of relevance of financial statements, which derives from their (in)capacity in terms of timely reporting of all relevant and reliable information, the two approaches tend to have marked differences.

  10. 10.

    This variable can take a negative value when the non-operating liabilities exceed the non-operating assets. For convenience of analysis, and similarly to the d t variable, it is considered fa t  > 0.

  11. 11.

    In a context of perfect markets, the company cannot change interest rates. Moreover, given the homemade concept, individual investors cannot mimic the decisions of indebtedness of the company, since, at a higher or lower level of debt, the company is not a creative source of value Miller and Modigliani (1961), Modigliani and Miller (1958). To emphasize that, Feltham and Ohlson in 1999 incorporated risk aversion and the existence of heterogeneous preferences of investors in their article.

  12. 12.

    If negative, c t corresponds to net investments in operating assets (oa t ).

  13. 13.

    The analytical deduction of these formulas and their equivalence with the PVED model are reported in Appendix 2.2.

  14. 14.

    For Ohlson (1995) unbiased accounting is characterized by a self-corrective process, in which the medium- and long-term abnormal results tend to zero and the return on equity ratio (ROE) converges to r (the cost of capital). Kothari (2001) highlights this autocorrective effect of the OM model, which makes the OM “immune” to the manipulation of policies and/or accounting principles. For example, any strategy to increase the results in t, will increase the bv t . In the following period, this effect tends to be offset by a reduction of the abnormal results because the cost of capital [(R f − 1) * bv t−1] increases.

  15. 15.

    This effect is most easily seen in the expression: \(\sum\nolimits_{\tau = 1}^{\infty } {R_{\text{f}}^{ - \tau } E_{t} (c_{t + \tau } ) = {\text{oa}}_{t} + \sum\nolimits_{\tau = 1}^{\infty } {R_{\text{f}}^{ - \tau } E_{t} \left( {{\text{ox}}_{t + \tau }^{a} } \right)} }\) deduced from the Eq. (2.15c). Given the objectivity in how the variable c t (cash flow to the firm) is measured (which is independent of any criteria or accounting policy), an understatement of operating assets (oa t ) must be compensated by an overestimation of abnormal results \(({\text{ox}}_{t}^{a} )\); thus the value of the variable c t remains unchanged.

  16. 16.

    To impose \(w_{12} \succ 0\) the model eliminates the effect of aggressive accounting, i.e. the MVE is less than BVE. This restriction simplifies the analysis, and is in accordance with the empirical evidence. Indeed, Feltham and Ohlson (1995: 701) find, and taking as reference the data from the Compustat database, that the MVE of companies tends to be greater than 2/3 of their BVE. Stober (1999) found the opposite (aggressive accounting), but only for the period 1973–1979,  and justified as a consequence of the oil shock.

  17. 17.

    The deduction of this model (Eq. 2.22) is in Appendix 2.3.

  18. 18.

    The concept of the new economy company is defined in Sect. 5.4.1.

  19. 19.

    Recall that the RIV model is equivalent to the PVED model, which assumes as a theoretical framework an economy, where the preferences of agents are homogeneous and they are risk neutral.

References

  • Barth M, Cram D, Nelson K (2001) Accruals and the prediction of future cash-flows. Acc Rev 7(1):27–58

    Article  Google Scholar 

  • Beaver WH (2002) Perspectives on recent capital research. Acc Rev 77(2):453–474

    Article  Google Scholar 

  • Copeland T, Koller T, Murrin J (2000) Valuation: measuring and managing the value of companies, 3rd edn. Wiley, New York

    Google Scholar 

  • Core JE, GuayWR, Buskirk AV (2003) Market valuations in the new economy: an investigation of what has changed? J Acc Econ 34(1, 3):43–67

    Google Scholar 

  • Damodaran A (2001) The dark side of valuation. Prentice Hall, US

    Google Scholar 

  • Edwards EO, Bell PW (1961) The theory of and measurement of business income. University of California Press, Berkeley, Los Angeles

    Google Scholar 

  • Fama E (1976) Foundations of finance. Basic Books, New York

    Google Scholar 

  • Feltham G, Ohlson J (1995) Valuation and clean surplus accounting for operating and financial activities. Contemp Acc Res 11(2):689–731

    Article  Google Scholar 

  • Feltham G, Ohlson J (1999) Residual earnings valuation with risk and stochastic interest rates. Acc Rev 74:165–183

    Article  Google Scholar 

  • Ferreira L, Sarmento M (2004) Que modelos adoptam os Revisores Oficiais de Contas na Avaliação de Empresas e de Participações Sociais? Revisores e Empresas 6(25):19–31

    Google Scholar 

  • Gordon M, Shapiro E (1956) Capital equipment analysis: the required rate of profit. Manage Sci 3:102–110

    Article  Google Scholar 

  • Holthausen RW, Watts RL (2001) The relevance of the value-relevance literature for financial accounting standard setting. J Acc Econ 31:3–75

    Article  Google Scholar 

  • Jensen M (1986) Agency costs of free cash flow, corporate finance and takeovers. Am Econ Rev 76(2):383–393

    Google Scholar 

  • Kothari SP (2001) Capital markets research in accounting. J Acct Econ 31(1,3):105–231

    Article  Google Scholar 

  • Lo K, Lys T (2001) The Ohlson model: contribution to valuation theory, limitations, and empirical applications. J Acc Audit Financ 15(3):337–367

    Google Scholar 

  • McCrae M, Nilsson H (2001) The explanatory and predictive power of different specifications of the Ohlson, J. (1995) valuation models. Eur Acc Rev 10(2):315–341

    Google Scholar 

  • Miller M, Modigliani F (1961) Dividend policy, growth and the valuation of shares. J Bus 34(4):411–433

    Article  Google Scholar 

  • Modigliani F, Miller M (1958) The cost of capital, corporate finance and the theory of investment. Am Econ Rev 48(3):261–297

    Google Scholar 

  • Morgenstern O (1963) On the accuracy of economic observations, 2nd edn. Princeton University Press, Princeton

    Google Scholar 

  • Myers SC (1977) Determinants of corporate borrowing. J Financ Econ 5:147–175

    Article  Google Scholar 

  • Ohlson J (1995) Earnings, book values, and dividends in equity valuation. Contemp Acc Rev 11(2):661–687

    Article  Google Scholar 

  • Ohlson J (2000) Earnings, book values, and dividends in equity valuation: an empirical perspective. Contemp Acc Rev 18(1):107–120

    Article  Google Scholar 

  • Rayn S (1995) A model of accrual measurement with implications for future profitability, risk and market value. Rev Acc Stud 33:95–112

    Google Scholar 

  • Richardson G, Tinaikar S (2004) Accounting based valuation models: what have we learned? Acc Financ 44(2):223–333

    Google Scholar 

  • Stober TL (1999) Empirical applications of the Ohlson [1995] and Feltham and Ohlson [1995, 1996] valuation models. Manag Financ 25(12):3–16

    Google Scholar 

  • Tokic D (2004) R&D, advertising and the market value of internet firms: part I. J Internet Commer 3(2):79–99. Doi:10.1300/J179v03n02_05

    Article  Google Scholar 

  • Tokic D (2005) R&D, advertising and the market value of internet firms: part II. J Internet Commer 4(4):23–40. Doi:10.1300/J179v04n04_02

    Article  Google Scholar 

  • White GI, Sondhi AC, Fried D (1997) The analysis and use of financial statements, 2nd edn. Wiley, US

    Google Scholar 

  • Williams JB (1938) The theory of investment value. Harvard University Press, Cambridge

    Google Scholar 

  • Zhang X (2000) Conservative accounting and equity valuation. J Acc Econ 29(1):125–149

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Paula Matias Gama .

Appendices

Appendix 2.1: Deduction of the OM Model (Eqs. 2.8 and 2.9)

  1. 1.

    Deduction of the Ohlson (OM) ( 1995 ) modelEq. 2.8:

Ohlson (1995) defines the valuation function as:

$$P_{t} = {\text{bv}}_{t} + \alpha_{1} x_{t}^{a} + \alpha_{2} v_{t} .$$

with the parameters assuming the values:

$$\begin{aligned} \alpha_{1} & = \frac{w}{{R_{\text{f}} - w}} \ge 0\;{\text{and}} \\ \alpha_{2} & = \frac{{R_{\text{f}} }}{{\left( {R_{\text{f}} - w} \right)\left( {R_{\text{f}} - \gamma } \right)}} \succ 0. \\ \end{aligned}$$

To obtain this function we first assume:

  1. (i)

    The matrix \(P = R_{\text{f}}^{ - 1} \left[ {\begin{array}{*{20}c} w & 1 \\ 0 & \gamma \\ \end{array} } \right]\);

  2. (ii)

    The dynamic of information is defined as:

    \(\left[ {x_{t + 1}^{a} ,v_{t + 1}^{{}} } \right] = R_{\text{f}} P\left[ {x_{t}^{a,} ,v_{t} } \right] + \left[ {\varepsilon_{1,t + 1} ,\varepsilon_{2,t + 1} } \right]\) and,

  3. (iii)

    Assuming that the supranormal results are defined as:

    $$R_{\text{f}}^{ - \tau } E_{t} \left( {x_{t + \tau }^{a} } \right) = \left[ {1,0} \right]P^{\tau } \left[ {x_{t}^{a} ,v_{t} } \right].$$

Based on the Residual Income Valuation Model (RIV), the expression assumes:

$$P_{t} - {\text{bv}}_{t} = \sum\limits_{\tau = 1}^{\infty } {R_{\text{f}}^{ - \tau } E_{t} \left( {x_{t + \tau }^{a} } \right) = \left[ {1,0} \right]\;\left[ {P + P^{2} + \ldots } \right]\;\left[ {x_{t}^{a} ,v_{t} } \right]} .$$

A series of matrices P + P2 + …are convergent, given the square root of the characteristic of the matrix is less than unit. Thus, we could conclude that:

$$\begin{aligned} & \left[ {1,0} \right]P\left[ {I - P} \right]^{ - 1} = \left[ {\alpha_{1} ,\alpha_{2} } \right],\;{\text{i}}.{\text{e}}.{:} \\ & \left[ {1,0} \right]\;\left[ {R_{\text{f}}^{ - 1} \left[ {\begin{array}{*{20}c} w & 1 \\ 0 & \gamma \\ \end{array} } \right]} \right]\;\left[ {\left[ {\begin{array}{*{20}c} 1 & 0 \\ 0 & 1 \\ \end{array} } \right] - R_{\text{f}}^{ - 1} \left[ {\begin{array}{*{20}c} w & 1 \\ 0 & \gamma \\ \end{array} } \right]} \right]^{ - 1} = \left[ {\alpha_{1} ,\alpha_{2} } \right] \\ & \left[ {\begin{array}{*{20}c} {R_{\text{f}}^{ - 1} w} & {R_{f}^{ - 1} } \\ \end{array} } \right]\;\left[ {\begin{array}{*{20}c} {1 - R_{\text{f}}^{ - 1} w} & { - R_{\text{f}}^{ - 1} } \\ 0 & {1 - R_{\text{f}}^{ - 1} \gamma } \\ \end{array} } \right]^{ - 1} = \left[ {\alpha_{1} ,\alpha_{2} } \right] \\ & \left[ {\begin{array}{*{20}c} {R_{\text{f}}^{ - 1} w} & {R_{\text{f}}^{ - 1} } \\ \end{array} } \right]\;\left[ {\begin{array}{*{20}c} {\frac{1}{{1 - R_{\text{f}}^{ - 1} w}}} & {\frac{{R_{\text{f}}^{ - 1} }}{{\left( {1 - R_{\text{f}}^{ - 1} w} \right)\left( {1 - R_{\text{f}}^{ - 1} \gamma } \right)}}} \\ 0 & {\frac{1}{{1 - R_{\text{f}}^{ - 1} \gamma }}} \\ \end{array} } \right] = \left[ {\alpha_{1} ,\alpha_{2} } \right] \\ & \left[ {\begin{array}{*{20}c} {\frac{{R_{\text{f}}^{ - 1} w}}{{1 - R_{\text{f}}^{ - 1} w}}} & {\frac{{R_{\text{f}}^{ - 1} wR_{\text{f}}^{ - 1} }}{{\left( {1 - R_{\text{f}}^{ - 1} w} \right)\left( {1 - R_{\text{f}}^{ - 1} \gamma } \right)}} + \frac{{R_{\text{f}}^{ - 1} }}{{1 - R_{\text{f}}^{ - 1} \gamma }}} \\ \end{array} } \right] = \left[ {\alpha_{1,} \alpha_{2} } \right] \\ & \left\{ {\begin{array}{*{20}l} {\alpha_{1} = \frac{{R_{\text{f}}^{ - 1} w}}{{1 - R_{\text{f}}^{ - 1} w}} = \frac{{R_{\text{f}}^{ - 1} w}}{{R_{\text{f}}^{ - 1} (R_{\text{f}} - w)}} = \frac{w}{{R_{\text{f}} - w}}} \hfill \\ {\alpha_{2} = \frac{{R_{\text{f}}^{ - 1} wR_{\text{f}}^{ - 1} }}{{\left( {1 - R_{\text{f}}^{ - 1} w} \right)\left( {1 - R_{\text{f}}^{ - 1} \gamma } \right)}} + \frac{{R_{\text{f}}^{ - 1} }}{{1 - R_{\text{f}}^{ - 1} \gamma }} = \frac{{R_{\text{f}}^{ - 1} wR_{\text{f}}^{ - 1} }}{{R_{\text{f}}^{ - 1} (R_{\text{f}} - w)R_{\text{f}}^{ - 1} (R_{\text{f}} - \gamma )}} + \frac{{R_{\text{f}}^{ - 1} }}{{R_{\text{f}}^{ - 1} (R_{\text{f}} - \gamma )}}} \hfill \\ \end{array} } \right. \\ & \left\{ {\begin{array}{*{20}l} {\alpha_{1} = \frac{w}{{R_{\text{f}} - w}}} \hfill \\ {\alpha_{2} = \frac{w}{{(R_{\text{f}} - w)(R_{\text{f}} - \gamma )}} + \frac{{R_{\text{f}} - w}}{{(R_{\text{f}} - w)(R_{\text{f}} - \gamma )}} = \frac{{R_{\text{f}} }}{{(R_{\text{f}} - w)(R_{\text{f}} - \gamma )}}} \hfill \\ \end{array} } \right.. \\ \end{aligned}$$
  1. 2.

    Deduction of the Eq. 2.9 of the OM Model

Assuming the Eq. 2.8:

$$P_{t} = {\text{bv}}_{t} + \alpha_{1} x_{t}^{a} + \alpha_{2} v_{t} ,$$

and substituting \(x_{t}^{a}\), we obtain,

$$P_{t} = y_{t} + \alpha_{1} \left[ {x_{t} - \left( {R_{\text{f}} - 1} \right)y_{t - 1} } \right] + \alpha_{2} v{}_{t}.$$

Due the CSR principle:

$$\begin{aligned} P_{t} & = {\text{bv}}_{t} + \alpha_{1} x_{t} - \alpha_{1} (R_{\text{f}} - 1)({\text{bv}}_{t} - x_{t} + d_{t} ) + \alpha_{2} v_{t} \Leftrightarrow \\ P_{t} & = {\text{bv}}_{t} + \alpha_{1} x_{t} - \alpha_{1} \left( {R_{\text{f}} - 1} \right){\text{bv}}_{t} + \alpha_{1} \left( {R_{\text{f}} - 1} \right)x_{t} - \alpha_{1} \left( {R_{\text{f}} - 1} \right)d_{t} + \alpha_{2} v_{t} \Leftrightarrow , \\ \end{aligned}$$

\(P_{t} = {\text{bv}}_{t} \left[ {1 - \alpha_{1} (R_{\text{f}} - 1)} \right] + \alpha_{2} v_{t} + \alpha_{1} x_{t} + \alpha_{1} (R_{\text{f}} - 1)x_{t} - \alpha_{1} (R_{\text{f}} - 1)d_{t}\) and \(\kappa = \alpha_{1} \left( {R{}_{\text{f}} - 1} \right)\) thus,

\(P_{t} = {\text{bv}}_{t} (1 - k) + \alpha_{2} v_{t} + \alpha_{1} \left[ {x_{t} + (R_{\text{f}} - 1)x_{t} - (R_{\text{f}} - 1)d_{t} } \right]\), \(P_{t} = (1 - k){\text{bv}}_{t} + \alpha_{2} v_{t} + \alpha_{1} R_{\text{f}} x_{t} - \alpha_{1} (R_{\text{f}} - 1)d_{t}\), and \(\varphi = \frac{{R_{\text{f}} }}{{R_{\text{f}} - 1}}\), we obtain:

$$P_{t} = \kappa \left( {\varphi x_{t} - d_{t} } \right) + \left( {1 - \kappa } \right){\text{bv}}_{t} + \alpha_{2} v_{t} .$$

Appendix 2.2: Deduction of the Equivalence of the Preposition Number 1 of Feltham and Ohlson (FOM) (1995) Model and Eqs. 2.15a, 2.15b and 2.15c

  1. (i)

    Equation 2.15a: \(P_{t} = {\text{fa}}_{t} + \sum\nolimits_{\tau = 1}^{\infty } {R_{\text{f}}^{ - \tau } E_{t} \left( {c_{t + \tau } } \right)}\)

    Assuming the FAR [fa t  = fa t−1 + i t    (d t  − c t )] and the definition of i t [i t  = (R f − 1)fa t−1], the dividends could be expressed as:

    $$d_{t} = {\text{fa}}_{t - 1} + i_{t} + c_{t} - {\text{fa}}_{t} = {\text{fa}}_{t - 1} + (R_{\text{f}} - 1){\text{fa}}_{t - 1} + c_{t} - {\text{fa}}_{t} = R_{\text{f}} {\text{fa}}_{t - 1} + c_{t} - {\text{fa}}_{t.}$$

    Hence for any sequence of the variables c t e fa t ({c t+τ , fa t+τ } τ≥1), valuation function is:

    $$P_{t} = \sum\limits_{\tau = 1}^{\infty } {R_{\text{f}}^{ - \tau } E_{t} \left( {d_{t + \tau } } \right)} = \sum\limits_{\tau = 1}^{\infty } {R_{\text{f}}^{ - \tau } E{}_{t}\left[ {R_{\text{f}} {\text{fa}}_{t + 1 - \tau } + c_{t + \tau } - {\text{fa}}_{t + \tau } } \right]} = {\text{fa}}_{t} + \sum\limits_{\tau = 1}^{\infty } {R_{\text{f}}^{ - \tau } E_{t} \left( {c_{t + \tau } } \right)} ,$$

    because \(R_{\text{f}}^{ - \tau } E_{t} \left( {{\text{fa}}_{t + \tau } } \right) \to 0\;com\;\tau \to \infty\).

  2. (ii)

    Equation 2.15b: \(P_{t} = {\text{bv}}_{t} + \sum\nolimits_{\tau = 1}^{\infty } {R_{\text{f}}^{ - \tau } E_{t} \left( {x_{t + \tau }^{a} } \right)}\)

    This equations corresponds to the Residual Income valuation Model defines in Eq. 2.6.

  3. (iii)

    Equation 2.15c: \(P_{t} = {\text{bv}}_{t} + \sum\nolimits_{\tau = 1}^{\infty } {R_{\text{f}}^{ - \tau } E_{t} \left( {ox_{t + \tau }^{a} } \right)}\)

    Assuming operational and non-operational activities, the following expression corresponds to the operational abnormal results: \({\text{ox}}_{t}^{a} = {\text{ox}}_{t} - \left( {R_{\text{f}} - 1} \right){\text{oa}}_{t - 1}\), applying the OAR we obtain:

    $$\begin{aligned} {\text{oa}}_{t}& = {\text{oa}}_{t - 1} + {\text{ox}}_{t} - c_{t} , {\text{substituting the variable}} \; {\text{ox}}_{t}\\ c_{t} & = {\text{oa}}_{t - 1} + \left[ {{\text{ox}}_{t}^{a} + (R_{\text{f}} - 1){\text{oa}}{}_{t - 1}} \right] - {\text{oa}}_{t} \Leftrightarrow \\ c_{t} & = {\text{ox}}_{t}^{a} + R_{\text{f}} {\text{oa}}{}_{t - 1} - {\text{oa}}_{t} . \\ \end{aligned}$$

    For any sequences of the variables \(\left( {\left\{ {{\text{ox}}_{t + \tau }^{a} ,\left. {{\text{oa}}_{t + \tau - 1} } \right\}_{\tau \ge 1} } \right.} \right)\), we obtain:

    $$\sum\limits_{\tau = 1}^{\infty } {R_{\text{f}}^{ - \tau } E_{t} \left( {c_{t + \tau } } \right) = \sum\limits_{\tau = 1}^{\infty } {R_{\text{f}}^{ - \tau } E_{t} \left( {{\text{ox}}_{t + \tau }^{a} + R_{\text{f}} {\text{oa}}_{t - 1 + \tau } - {\text{oa}}_{t + \tau } } \right)} = {\text{oa}}_{t} + \sum\limits_{\tau = 1}^{\infty } {R_{\text{f}}^{ - \tau } E_{t} \left( {{\text{ox}}_{t + \tau }^{a} } \right)} } ,$$

    thus, \(R_{\text{f}}^{ - \tau } E_{t} \left( {{\text{oa}}_{t + \tau } } \right) \to 0\;com\;\tau \to \infty .\)

    If we add fa t to the above expression, and due the Eq. 2.15a, the valuation function is:

    $$P_{t} = \sum\limits_{\tau = 1}^{\infty } {R_{\text{f}}^{ - \tau } E{}_{t}\left( {d_{t + \tau } } \right) = ({\text{oa}}_{t} + {\text{fa}}_{t} ) + \sum\limits_{\tau = 1}^{\infty } {{\text{ox}}_{t + \tau }^{a} } } = {\text{bv}}_{t} + \sum\limits_{\tau = 1}^{\infty } {{\text{ox}}_{t + \tau }^{a} } .$$

Appendix 2.3: Deduction of the Feltham and Ohlson (1995)—Eq. 2.22

Assuming the definition of goodwill:

$$g_{t} = P_{t} - {\text{bv}}_{t}$$

Multiplying the above expression by R f and according Ohlson (2000):

$$R_{\text{f}} g_{t} = E_{t} \left[ {g_{t + 1} + {\text{ox}}_{t + 1}^{a} } \right].$$

g t could be defined as a linear function, such as:

$$P_{t} - {\text{bv}}_{t} = g_{t} = \alpha_{1} {\text{ox}}_{t}^{a} + \alpha_{2} {\text{oa}}_{t} + \beta \cdot v_{t}$$

with

$$\begin{aligned} & R_{\text{f}} g_{t} = R{}_{\text{f}}\left[ {\alpha_{1} {\text{ox}}_{t}^{a} + \alpha_{2} {\text{oa}}_{t} + \beta \cdot v_{t} } \right] = E_{t} \left[ {\alpha_{1} {\text{ox}}_{t + 1}^{a} + \alpha_{2} {\text{oa}}_{t} + \beta \cdot v_{t} + {\text{ox}}_{t + 1}^{a} } \right] \Leftrightarrow \\ & R_{\text{f}} \alpha_{1} {\text{ox}}_{t}^{a} + R_{\text{f}} \alpha_{2} {\text{oa}}_{t} + R_{\text{f}} \beta \cdot v_{t} = E_{t} \left[ {(\alpha_{1} + 1){\text{ox}}_{t + 1}^{a} + \alpha_{2} {\text{oa}}_{t + 1} + \beta v_{t + 1} } \right]. \\ \end{aligned}$$

Due the structure of Linear Information Model (LIM):

$$R_{\text{f}} \alpha_{1} {\text{ox}}_{t}^{a} + R_{\text{f}} \alpha_{2} {\text{oa}}_{t} + R_{\text{f}} \beta_{1} v_{1t} + R_{\text{f}} \beta_{2} v_{2t} = (\alpha_{1} + 1)E_{t} ({\text{ox}}_{t + 1}^{a} ) + \alpha_{2} E_{t} ({\text{oa}}_{t + 1} ) + \beta E_{t} (v_{t + 1} )$$

Substituting the expected values according the dynamic information:

$$\begin{aligned} R_{\text{f}} \alpha_{1} {\text{ox}}_{t}^{a} + R_{\text{f}} \alpha_{2} {\text{oa}}_{t} + R_{\text{f}} \beta_{1} v_{1t} + R_{\text{f}} \beta_{2} v_{2t} & = (\alpha_{1} + 1)(w_{11} {\text{ox}}_{t}^{a} + w_{12} {\text{oa}}_{t} + v_{1t} ) \\ & \quad + \alpha_{2} (w_{22} {\text{oa}}_{t} + v_{2t} ) + \beta_{1} \gamma_{1} v_{1t} + \beta_{2} \gamma_{2} v_{2t} \\ \end{aligned}$$

Solving the equation based on that the probability should be one, thus:

$$\begin{aligned} & \left\{ {\begin{array}{*{20}l} {R_{\text{f}} \alpha_{1} = (\alpha_{1} + 1)w_{11} } \hfill \\ {R_{\text{f}} \alpha_{2} = (\alpha_{1} + 1)w_{12} + \alpha_{2} w_{22} } \hfill \\ {R_{\text{f}} \beta_{1} = (\alpha_{1} + 1) + \beta_{1} \gamma_{1} } \hfill \\ {R_{\text{f}} \beta_{2} = \alpha_{2} + \beta_{2} \gamma_{2} } \hfill \\ \end{array} } \right. \Leftrightarrow \left\{ {\begin{array}{*{20}l} {R_{\text{f}} \alpha_{1} = \alpha_{1} w_{11} + w_{11} } \hfill \\ {R_{\text{f}} \alpha_{2} - \alpha_{2} w_{22} = (\alpha_{1} + 1)w_{12} } \hfill \\ {R_{\text{f}} \beta_{1} - \beta_{1} \gamma_{1} = (\alpha_{1} + 1)} \hfill \\ {R_{\text{f}} \beta_{2} - \beta_{2} \gamma_{2} = \alpha_{2} } \hfill \\ \end{array} } \right. \Leftrightarrow \left\{ {\begin{array}{*{20}l} {\alpha {}_{1}(R_{\text{f}} - w_{11} ) = w_{11} } \hfill \\ {\alpha_{2} (R_{\text{f}} - w_{22} ) = (\alpha_{1} + 1)w_{12} } \hfill \\ {\beta_{1} (R_{\text{f}} - \gamma_{1} ) = (\alpha_{1} + 1)} \hfill \\ {\beta_{2} (R_{\text{f}} - \gamma_{2} ) = \alpha_{2} } \hfill \\ \end{array} } \right. \\ & \Leftrightarrow \left\{ {\begin{array}{*{20}l} {\alpha_{1} = \frac{{w_{11} }}{{R_{\text{f}} - w_{11} }}} \hfill \\ {\alpha_{2} (R_{\text{f}} - w_{22} ) = (\frac{{w_{11} }}{{R_{\text{f}} - w_{11} }} + 1)w_{12} } \hfill \\ {\beta_{1} (R_{\text{f}} - \gamma_{1} ) = \frac{{w_{11} }}{{R_{\text{f}} - w_{11} }} + 1} \hfill \\ {\beta_{2} (R_{\text{f}} - \gamma_{2} ) = \alpha_{2} } \hfill \\ \end{array} } \right. \Leftrightarrow \left\{ {\begin{array}{*{20}l} {\alpha_{1} = \frac{{w_{11} }}{{R_{\text{f}} - w_{11} }}} \hfill \\ {\alpha_{2} (R_{\text{f}} - w_{22} ) = (\frac{{w_{11} + R_{\text{f}} - w_{11} }}{{R_{\text{f}} - w_{11} }})w_{12} } \hfill \\ {\beta_{1} (R_{\text{f}} - \gamma_{1} ) = \frac{{w_{11} + R_{\text{f}} - w_{11} }}{{R_{\text{f}} - w_{11} }}} \hfill \\ {\beta_{2} = \frac{{\alpha_{2} }}{{R{}_{\text{f}} - \gamma_{2} }}} \hfill \\ \end{array} } \right. \\ & \Leftrightarrow \left\{ {\begin{array}{*{20}l} {\alpha_{1} = \frac{{w_{11} }}{{R_{\text{f}} - w_{11} }}} \hfill \\ {\alpha_{2} = \frac{{R_{\text{f}} w_{12} }}{{\left( {R_{\text{f}} - w_{11} } \right)\left( {R_{\text{f}} - w_{22} } \right)}}} \hfill \\ {\beta_{1} = \frac{{R_{f} }}{{\left( {R_{\text{f}} - w_{11} } \right)\left( {R_{\text{f}} - \gamma_{1} } \right)}}} \hfill \\ {\beta_{2} = \frac{{\alpha_{2} }}{{R_{\text{f}} - \gamma_{2} }}} \hfill \\ \end{array} } \right. .\\ \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Matias Gama, A.P., Segura, L.C., Milani Filho, M.A.F. (2017). The Ohlson and Feltham Ohlson Models. In: Equity Valuation and Negative Earnings. Accounting, Finance, Sustainability, Governance & Fraud: Theory and Application. Springer, Singapore. https://doi.org/10.1007/978-981-10-3009-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3009-3_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3007-9

  • Online ISBN: 978-981-10-3009-3

  • eBook Packages: Economics and FinanceEconomics and Finance (R0)

Publish with us

Policies and ethics