Skip to main content

Landmark Selecting on 2D Shapes for Constructing Point Distribution Model

  • Conference paper
  • First Online:
  • 1735 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 662))

Abstract

A new method of selecting landmarks on 2D shapes which are represented by Centripetal Catmull-Rom spline is proposed in this paper. Firstly, a mean shape is generated from training set and landmarks on mean shape are extracted based on curvature and arc-length information. Then the corresponding landmarks on each shape can be obtained by projecting the mean shape back to each sample using non-rigid registration method Coherent Point Drift. Experiments showed that landmarks auto-generated are more accurate than landmarks manual annotated when used in segmentation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models-their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)

    Article  Google Scholar 

  2. Milborrow, S., Nicolls, F.: Active shape models with SIFT descriptors and MARS. In: VISAPP, no. 2, pp. 380–387 (2014)

    Google Scholar 

  3. Kossai, J., Tzimiropoulos, G., Pantic, M.: Fast and exact bi-directional fitting of active appearance models. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 1135–1139. IEEE (2015)

    Google Scholar 

  4. Santiago, C., Nascimento, J.C., Marques, J.S.: 2D segmentation using a robust active shape model with the EM algorithm. IEEE Trans. Image Process. 24(8), 2592–2601 (2015)

    Article  Google Scholar 

  5. Chen, X., Udupa, J.K., Bagci, U., Zhuge, Y., Yao, J.: Medical image segmentation by combining graph cuts and oriented active appearance models. IEEE Trans. Image Process. 21(4), 2035–2046 (2012)

    Article  MathSciNet  Google Scholar 

  6. Hicks, I., Marshall, D., Martin, R.R., Rosin, P.L., Bayer, M.M., Mann, D.G.: Automatic landmarking for building biological shape models. In: 2002 Proceedings of International Conference on Image Processing, vol. 2, pp. II–801. IEEE (2002)

    Google Scholar 

  7. Davies, R.H., Twining, C.J., Cootes, T.F., Waterton, J.C., Taylor, C.J.: A minimum description length approach to statistical shape modeling. IEEE Trans. Med. Imaging 21(5), 525–537 (2002)

    Article  MATH  Google Scholar 

  8. Heitz, G., Rohlfing, T., Maurer Jr., C.R.: Statistical shape model generation using nonrigid deformation of a template mesh. In: Medical Imaging, pp. 1411–1421. International Society for Optics and Photonics (2005)

    Google Scholar 

  9. Rueda, S., Udupa, J.K., Bai, L.: A new method of automatic landmark tagging for shape model construction via local curvature scale. In: Medical Imaging, p. 69180 N. International Society for Optics and Photonics (2008)

    Google Scholar 

  10. Hill, A., Taylor, C.J., Brett, A.D.: A framework for automatic landmark identification using a new method of nonrigid correspondence. IEEE Trans. Pattern Anal. Mach. Intell. 22(3), 241–251 (2000)

    Article  Google Scholar 

  11. Angelopoulou, A., Psarrou, A., Rodriguez, J.G., Revett, K.R.: Automatic landmarking of 2D medical shapes using the growing neural gas network. In: Liu, Y., Jiang, T.-Z., Zhang, C. (eds.) CVBIA 2005. LNCS, vol. 3765, pp. 210–219. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Souza, A., Udupa, J.K.: Automatic landmark selection for active shape models. In: Medical Imaging, pp. 1377–1383. International Society for Optics and Photonics (2005)

    Google Scholar 

  13. Rueda, S., Udupa, J.K., Bai, L.: Shape modeling via local curvature scale. Pattern Recogn. Lett. 31(4), 324–336 (2010)

    Article  Google Scholar 

  14. Yuksel, C., Schaefer, S., Keyser, J.: Parameterization and applications of Catmull-Rom curves. Comput.-Aided Des. 43(7), 747–755 (2011)

    Article  Google Scholar 

  15. Dyn, N., Floater, M.S., Hormann, K.: Four-point curve subdivision based on iterated chordal and centripetal parameterizations. Comput. Aided Geom. Des. 26(3), 279–286 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yuksel, C., Schaefer, S., Keyser, J.: On the parameterization of Catmull-Rom curves. In: 2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling, pp. 47–53. ACM (2009)

    Google Scholar 

  17. Kindlmann, G., Whitaker, R., Tasdizen, T., Moller, T.: Curvature-based transfer functions for direct volume rendering: methods and applications. In: Visualization, VIS 2003, pp. 513–520. IEEE (2003)

    Google Scholar 

  18. Hermann, S., Klette, R.: A comparative study on 2D curvature estimators. Technical report, CITR, The University of Auckland, New Zealand (2006)

    Google Scholar 

  19. Myronenko, A., Song, X.: Point set registration: coherent point drift. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2262–2275 (2010)

    Article  Google Scholar 

  20. Munsell, B.C., Dalal, P., Wang, S.: Evaluating shape correspondence for statistical shape analysis: a benchmark study. IEEE Trans. Pattern Anal. Mach. Intell. 30(11), 2023–2039 (2008)

    Article  Google Scholar 

  21. Davies, R.H.: Learning Shape: Optimal Models for Analysing Natural Variability. University of Manchester, Manchester (2002)

    Google Scholar 

  22. Heimann, T., Wolf, I., Meinzer, H.P.: Optimal landmark distributions for statistical shape model construction. In: Proceedings of SPIE Medical Imaging: Image Processing, vol. 6144, pp. 518–528 (2006)

    Google Scholar 

  23. Niessen, W.J., Bouma, C.J., Vincken, K.L., Viergever, M.A.: Error metrics for quantitative evaluation of medical image segmentation. In: Klette, R., Stiehl, H.S., Viergever, M.A., Vincken, K.L. (eds.) Performance Characterization in Computer Vision, vol. 17, pp. 275–284. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  24. Cootes, T., Baldock, E., Graham, J.: An introduction to active shape models. In: Image Processing Analysis, pp. 223–248 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianghu Ji , Lili Wang , Pan Tao or Zhongliang Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Ji, X., Wang, L., Tao, P., Fu, Z. (2016). Landmark Selecting on 2D Shapes for Constructing Point Distribution Model. In: Tan, T., Li, X., Chen, X., Zhou, J., Yang, J., Cheng, H. (eds) Pattern Recognition. CCPR 2016. Communications in Computer and Information Science, vol 662. Springer, Singapore. https://doi.org/10.1007/978-981-10-3002-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3002-4_27

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3001-7

  • Online ISBN: 978-981-10-3002-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics