Skip to main content

Close Approach Analysis Between Space Object

  • Chapter
  • First Online:
Orbital Data Applications for Space Objects

Abstract

An introduction to the analytical and numerical methods commonly applied to the space object approaching analysis is unfolded.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zheng QY, Wu LD (2004) A computation method to warn the collision event between space probe and debris. Acta Astronomica Sinica 45(4):422–427

    Google Scholar 

  2. Liu J, Wang RL, Zhang HB (2004) Space debris collision prediction research. Chin J Space Sci 24(6):462–469

    Google Scholar 

  3. Hoots FR, Crawford LL, Roehrich RL (1984) An analytic method to determine future close approaches between satellites. Celest Mech 33(2):143–158

    Article  MATH  Google Scholar 

  4. Qiu HX, Zhu ZM, Wu LD (2005) A study of collision analysis method for spacecraft. J Astronaut 26(3):257–261

    Google Scholar 

  5. Dybczynski PA, Jopek TJ, Serafin RA (1986) On the minimum distance between two Keplerian orbits with a common focus. Celest Mech 38:345–356

    Article  MATH  Google Scholar 

  6. Kholshevnikov KV, Vassiliev NN (1999) On the distance function between two Keplerian elliptic orbits. Celest Mech Dyn Astron 75:75–83

    Article  MathSciNet  MATH  Google Scholar 

  7. Gronchi GF (2005) An algebraic method to compute the critical points of the distance function between two Keplerian orbits. Celest Mech Dyn Astron 93:295–329

    Article  MATH  Google Scholar 

  8. Gronchi GF, Tommei G (2007) On the uncertainty of the minimal distance between two confocal Keplerian orbits. Discrete Continuous Dyn Syst Ser B 7(4):755–778

    Article  MathSciNet  MATH  Google Scholar 

  9. Murison MA, Munteanu A (2006) On the distance function between two confocal Keplerian orbits. In: AIAA/ AAS astrodynamics specialist conference and exhibit, Keystone, Colorado

    Google Scholar 

  10. Armellin R, Di Lizia P, Berz M et al (2010) Computing the critical points of the distance function between two Keplerian orbits via rigorous global optimization. Celest Mech Dyn Astron 107:377–395

    Article  MathSciNet  MATH  Google Scholar 

  11. Hoots FR (1997) The future of artificial satellite theories, hybrid ephemeris compression model. Celest Mech Dyn Astron 66:51–60

    Article  Google Scholar 

  12. Liou JC (2005) Accidental collisions of cataloged satellites identified. Orbital Debris Q News 9(2):1

    Google Scholar 

  13. Alfano S, Negron D (1993) Determining satellite close approach. J Astronaut Sci 41(2):217–225

    Google Scholar 

  14. Alfano S (1994) Determining satellite close approach Part II. J Astronaut Sci 42(2):143–152

    Google Scholar 

  15. Li J, Xiao YL (2007) An improved efficient algorithm for close approach determination of space objects. Acta Aeronautica et Astronautica Sinica 28(S):s42–s48

    Google Scholar 

  16. Rodriguez JRA, Martinez - Fadrique FM, Klinkrad H (2002) Collision risk assessment with a smart sieve method. In: Proceedings of joint ESA/NASA space-flight conference, Noordwijk, Netherland

    Google Scholar 

  17. Klinkrad H (2006) Space debris-models and risk analysis. Springer-Praxis, New York

    Google Scholar 

  18. Wang H, Huang H (2008) Methods to determine close approaches among orbiting objects. J Astronaut 29(6):1747–1751

    Google Scholar 

  19. Faulds AL, Spencer DB (2003) Satellite close-approach filtering using genetic algorithms. Spacecraft Rockets 40(2):248–252

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 National Defense Industry Press, Beijing and Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Chen, L., Bai, XZ., Liang, YG., Li, KB. (2017). Close Approach Analysis Between Space Object. In: Orbital Data Applications for Space Objects. Springer, Singapore. https://doi.org/10.1007/978-981-10-2963-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2963-9_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2962-2

  • Online ISBN: 978-981-10-2963-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics