Skip to main content

Introduction

  • Chapter
  • First Online:
Orbital Data Applications for Space Objects
  • 979 Accesses

Abstract

The origins, types, and application purposes of space object orbital data are introduced, where the applications of space object orbital data in target conjunction assessments and space situational analyses are emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liou JC (2014) Satellite box score. Orbital Debris Q News 18(1):9

    Google Scholar 

  2. Hash Y, Bean NP, Steyn WH et al (1998) Attitude control recovery of the CERISE microsatellite following an in–orbit collision. Adv Astronaut Sci 98:655–663

    Google Scholar 

  3. Johnson N (1996) First natural collision of cataloged earth satellites. Orbital Debris Q News 1(2):1–2

    MathSciNet  Google Scholar 

  4. Liou JC (2005) Accidental collisions of cataloged satellites identified. Orbital Debris Q News 9(2):1

    Google Scholar 

  5. Liou JC (2009) Satellite collision leaves significant debris clouds. Orbital Debris Q News 13(2):1

    Google Scholar 

  6. Joint chiefs of staff (2013) Space operations. Joint Publication 3–14. May 29th 2013

    Google Scholar 

  7. Liu ZG (2000) Design of low orbit space target surveillance net. J Spacecraft TT&C Technol 19(4):9–17

    Google Scholar 

  8. Qiao K, Wang ZL, Cong MY (2006) Comparison and Analysis on space-based and ground-based surveillance systems of space objects. Opt Tech 32(5):744–749

    Google Scholar 

  9. Burnham WF, Morton FE, Sridharan R et al (2000) Mission planning for space—based surveillance with the space-based visible sensor. J Guid Control Dyn 23(1):165–169

    Article  Google Scholar 

  10. Liu L (2000) Orbit theory of spacecraft. National Defense Industry Press, Beijing

    Google Scholar 

  11. Hoots FR, Roehrich RL (1980) Space track report no 3: models for propagation of NORAD element sets. Aerospace Defense Command, Peterson, pp 1–79

    Google Scholar 

  12. Hoots FR, Schumacher PW, Glover RA (2004) History of analytical orbit modeling in the U. S. space surveillance system. J Guidance Control Dyn 27(2):174–185

    Article  Google Scholar 

  13. Vallado DA, Crawford P, Hujsak R (2006) Revisiting spacetrack no 3. In: AIAA/AAS astrodynamics specialist conference and exhibit, AIAA 2006-6753, Keystone, Colorado

    Google Scholar 

  14. Li JS (2003) Orbit determination of spacecrafts. National Defense Industry Press, Beijing

    Google Scholar 

  15. Vallado DA (2005) An analysis of state vector propagation using differing flight dynamics programs, AAS 05-199. In: space flight mechanics conference AAS/AIAA, Copper Mountain, Colorado

    Google Scholar 

  16. Fonte DJ (1996) Comparison of orbit propagation in the research and development Goddard trajectory determination system. Adv Astronaut Sci 90(2):1–949

    Google Scholar 

  17. Wu LD (2011) Orbits and detections of man-made satellites and space debris. Science and Technology Press of China, Beijing

    Google Scholar 

  18. Gavin RT (2010) NASA’ s orbital debris conjunction assessment and collision avoidance strategy, JSC-CN-19799. NASA Johnson Space Center Flight Dynamics Division, Houston

    Google Scholar 

  19. Newman L K, Duncan M (2006) Establishment and implementation of a close approach evaluation and avoidance process for Earth observing system missions. In: astrodynamics specialist conference and exhibit AIAA 2006–6291, AIAA/AAS Aug 21–24 2006, Keystone, Colorado

    Google Scholar 

  20. Kelso T S, Alfano S (2005) Satellite orbital conjunction reports assessing threatening encounters in space (SOC-RATES). AAS 05-124. In: 15th AAS/AIAA space flight mechanics conference, Copper Mountain, Colorado

    Google Scholar 

  21. Klinkrad H, Alarcon J R, Sanchez N (2005) Collision avoidance for operational ESA satellite. In: Proceedings of the fourth european conference on space debris Darmstadt, Germany

    Google Scholar 

  22. Alarcon – Rodriguez JR, Martinez – Fadrique FM, Klinkrad H (2004) Development of a collision risk assessment tool. Adv Space Res 34:1120–1124

    Article  Google Scholar 

  23. Flohrer T, Krag H, Klinkrad H (2009) ESA’s process for the identification and assessment of high—risk con-junction events. Adv Space Res 44:355–363

    Article  Google Scholar 

  24. Laporte F, Sasot E (2008) Operational management of collision risks for LEO satellites at CNES. In: AIAA 2008-3409 SpaceOps 2008 conference, Heidelberg, Germany

    Google Scholar 

  25. Aida S, Kirschner M, Wermuth M, et al (2010) Collision avoidance operations for LEO satellites controlled by GSOC. In: AIAA 2010-2298. SpaceOps 2010 conference, Huntsville, Alabama

    Google Scholar 

  26. Matsuda I, Hirose C, Kudo N (2010) The JAXA conjunction assessment process. In: AIAA 2010-2039. SpaceOps 2010 conference, Huntsville, Alabama

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 National Defense Industry Press, Beijing and Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Chen, L., Bai, XZ., Liang, YG., Li, KB. (2017). Introduction. In: Orbital Data Applications for Space Objects. Springer, Singapore. https://doi.org/10.1007/978-981-10-2963-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2963-9_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2962-2

  • Online ISBN: 978-981-10-2963-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics