Skip to main content

Genetic Engineering to Improve Biotic Stress Tolerance in Plants

  • Chapter
  • First Online:
  • 2610 Accesses

Abstract

Genetic engineering of plants for resistance is an effective method to counter pathogens and pests owing to the specificity and efficiency of the technology. The genes that have been used to genetically engineer resistance are as diverse as the diseases they act against. In cases where gene-for-gene resistance coded by resistance (R) genes exists, engineering resistance in plants becomes a straight path. Different classes of R genes have been engineered to provide resistance against viruses, bacteria, filamentous phytopathogens, and nematodes. Where the resistance mechanism is not R gene mediated, myriad of other mechanisms have been tried. These include the use of genes coding for antimicrobial compounds against bacterial and filamentous pathogens. The cloning of transcription factors, receptor genes, proteases, and genes involved in the systemic acquired resistance (SAR) has also been found to be effective. RNA silencing against specific genes involved in pathogenicity has proved to be an efficacious strategy against viruses and nematodes. Posttranscriptional silencing of genes coding for viral coat proteins has been successful, both scientifically and commercially. The most extensively used technology till date has been the introduction of cry genes from the bacterium Bacillus thuringiensis into plants to render them resistant against insect pests. Advances in molecular biology have paved the way for new strategies, the phenomenon of host-induced gene silencing (HIGS) being an interesting example. Amidst all the hue and cry raised against genetic modification of crops, it is necessary to highlight the scientific principles involved so as to make full use of a technology that could very well solve the problem of food shortage.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abel PP, Nelson RS, De B et al (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232(4751):738–743

    Article  CAS  PubMed  Google Scholar 

  • Ai T, Zhang L, Gao Z et al (2011) Highly efficient virus resistance mediated by artificial microRNAs that target the suppressor of PVX and PVY in plants. Plant Biol 13(2):304–316

    Article  CAS  PubMed  Google Scholar 

  • Alexandersson E, Becker JVW, Jacobson D et al (2011) Constitutive expression of a grapevine polygalacturonase-inhibiting protein affects gene expression and cell wall properties in uninfected tobacco. BMC Res Notes 4:493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alfonso-Rubi J, Ortego F, Castanera P et al (2003) Transgenic expression of trypsin inhibitor CMe from barley in indica and japonica rice, confers resistance to the rice weevil Sitophilus oryzae. Transgenic Res 12:23–31

    Google Scholar 

  • Arce-Ochoa JP, Dainello F, Pike LM (1995) Field performance comparison of two transgenic summer squash hybrids to their parental hybrid line. Hort Science 30:492–493

    Google Scholar 

  • Asai T, Tena G, Plotnikova J et al (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415(6875):977–983

    Article  CAS  PubMed  Google Scholar 

  • Audy P, Palukaitis P, Slack SA et al (1994) Replicase-mediated resistance to potato virus Y in transgenic tobacco plants. Mol Plant-Microbe Interact 7(1):15–22

    Article  CAS  PubMed  Google Scholar 

  • Barrell PJ, Conner AJ (2009) Expression of a chimeric magainin gene in potato confers improved resistance to the phytopathogen Erwinia carotovora. The Open Plant Sci J 3:14–21

    Article  CAS  Google Scholar 

  • Bendahmane A, Kanyuka K, Baulcombe DC (1997) High-resolution genetical and physical mapping of the Rx gene for extreme resistance to potato virus X in tetraploid potato. Theor Appl Genet 95:153–162

    Article  CAS  Google Scholar 

  • Bendahmane A, Kanyuka K, Baulcombe DC (1999) The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11:781–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berrocal-Lobo M, Molina A (2004) Ethylene response factor 1 mediates Arabidopsis resistance to the soilborne fungus Fusarium oxysporum. Mol Plant-Microbe Interact 17(7):763–770

    Article  CAS  PubMed  Google Scholar 

  • Bolar JP, Norelli JL, Wong KW et al (2000) Expression of endochitinase from Trichoderma harzianum in transgenic apple increases resistance to apple scab and reduces vigor. Phytopathol 90(1):72–77

    Google Scholar 

  • Bonning BC, Pal N, Liu S et al (2014) Toxin delivery by the coat protein of an aphid-vectored plant virus provides plant resistance to aphids. Nat Biotechnol 32(1):102–105

    Article  CAS  PubMed  Google Scholar 

  • Borejsza-Wysocka E, Norelli JL, Aldwinckle HS et al (2010) Stable expression and phenotypic impact of attacin E transgene in orchard grown apple trees over a 12 year period. BMC Biotechnol 10:41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bradeen JM, Iorizzo M, Mollov DS et al (2009) Higher copy numbers of the potato RB transgene correspond to enhanced transcript and late blight resistance levels. Mol Plant-Microbe Interact 22(4):437–446

    Article  CAS  PubMed  Google Scholar 

  • Cai D, Kleine M, Kifle S et al (1997) Positional cloning of a gene for nematode resistance in sugar beet. Science 275(5301):832–834

    Article  CAS  PubMed  Google Scholar 

  • Cao H, Li X, Dong X (1998) Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc Natl Acad Sci USA 95(11):6531–6536

    Google Scholar 

  • Chern MS, Fitzgerald HA, Yadav RC et al (2001) Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in Arabidopsis. Plant J 27(2):101–113

    Article  CAS  PubMed  Google Scholar 

  • Christou P, Capell T, Kohli A et al (2006) Recent developments and future prospects in insect pest control in transgenic crops. Trends Plant Sci 11(6):302–308

    Article  CAS  PubMed  Google Scholar 

  • Clough GH, Hamm PB (1995) Coat protein transgenic resistance to watermelon mosaic and zucchini yellows mosaic virus in squash and cantaloupe. Plant Dis 79:1107–1109

    Article  CAS  Google Scholar 

  • Cooley MB, Pathirana S, Wu HJ et al (2000) Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. Plant Cell 12(5):663–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dangl JL, Horvath DM, Staskawicz BJ (2013) Pivoting the plant immune system from dissection to deployment. Science 341(6147):746–751

    Article  CAS  PubMed  Google Scholar 

  • Daniel A, Dean DH, Adang MJ (2001) Analyses of the pore forming ability of Bacillus thuringiensis Cry1A mutant toxins using a light-scattering technique. Pesticide Biochem Physiol 70:7–18

    Article  CAS  Google Scholar 

  • DeGray G, Rajasekaran K, Smith F et al (2001) Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol 127(3):852–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan CG, Wang CH, Fang RX et al (2008) Artificial microRNAs highly accessible to targets confer efficient virus resistance in plants. J Virol 82:11084–11095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duprat A, Caranta C, Revers F et al (2002) The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses. Plant J 32(6):927–934

    Article  CAS  PubMed  Google Scholar 

  • Düring K, Porsch P, Fladung M et al (1993) Transgenic potato plants resistant to the phytopathogenic bacterium Erwinia carotovora. Plant J 3(4):587–598

    Article  Google Scholar 

  • Dutta I, Saha P, Majumder P et al (2005) The efficacy of a novel insecticidal protein, Allium sativum leaf lectin (ASAL), against homopteran insects monitored in transgenic tobacco. Plant Biotechnol J 3:601–611

    Article  CAS  PubMed  Google Scholar 

  • Fecker LF, Kaufmann A, Commandeur U et al (1996) Expression of single-chain antibody fragments (scFv) specific for beet necrotic yellow vein virus coat protein or 25 kDa protein in Escherichia coli and Nicotiana benthamiana. Plant Mol Biol 32(5):979–986

    Article  CAS  PubMed  Google Scholar 

  • Fuchs M, Gonsalves D (1995) Resistance of transgenic hybrid squash ZW-20 expressing the coat protein genes of zucchini yellow mosaic virus and watermelon mosaic virus 2 to mixed infections by both potyviruses. Nat Biotechnol 13:1466–1473

    Google Scholar 

  • Gan D, Zhang J, Jiang H et al (2010) Bacterially expressed dsRNA protects maize against SCMV infection. Plant Cell Rep 29(11):1261–1268

    Article  CAS  PubMed  Google Scholar 

  • Ganapathi TR, Ghosh SB, Laxmi NHS et al (2007) Expression of an antimicrobial peptide (MSI-99) confers enhanced resistance to Aspergillus niger in transgenic potato. Ind J Biotechnol 6:63-67

    CAS  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  CAS  PubMed  Google Scholar 

  • Goggin FL, Jia L, Shah G et al (2006) Heterologous expression of the Mi-1.2 gene from tomato confers resistance against nematodes but not aphids in eggplant. Mol Plant-Microbe Interact 19(4):383–388

    Article  CAS  PubMed  Google Scholar 

  • Golemboski DB, Lomonossoff GP, Zaitlin M (1990) Plants transformed with a tobacco mosaic virus nonstructural gene sequence are resistant to the virus. Proc Natl Acad Sci U S A 87(16):6311–6315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonsalves D (1998) Control of papaya ringspot in papaya: a case study. Annu Rev Phytopathol 36:415–437

    Google Scholar 

  • Gutierrez-Campos R, Torres-Acosta JA, Saucedo-Arias LJ et al (1999) The use of cysteine proteinase inhibitors to engineer resistance against potyviruses in transgenic tobacco plants. Nat Biotechnol 17(12):1223–1226

    Article  CAS  PubMed  Google Scholar 

  • Hancock RE (1997) Peptide antibiotics. Lancet 349(9049):418–422

    Article  CAS  PubMed  Google Scholar 

  • He P, Warren RF, Zhao T et al (2001) Overexpression of Pti5 in tomato potentiates pathogen-induced defense gene expression and enhances disease resistance to Pseudomonas syringae pv. tomato. Mol Plant-Microbe Interact 14(12):1453–1457

    Article  CAS  PubMed  Google Scholar 

  • Hellwald KH, Palukaitis P (1995) Viral RNA as a potential target for two independent mechanisms of replicase-mediated resistance against cucumber mosaic virus. Cell 83:937–946

    Article  CAS  PubMed  Google Scholar 

  • Hepher A, Atkinson HJ (1992) Nematode control with proteinase inhibitors. European Patent Application Number EP19920301890; publication number EP0502730 A1

    Google Scholar 

  • Hightower R, Baden C, Penzes E et al (1994) The expression of cecropin peptide in transgenic tobacco does not confer resistance to Pseudomonas syringae pv tabaci. Plant Cell Rep 13(5):295–299

    Article  CAS  PubMed  Google Scholar 

  • Horvath H, Rostoks N, Brueggeman R et al (2003) Genetically engineered stem rust resistance in barley using the Rpg1 gene. Proc Natl Acad Sci U S A 100(1):364–369

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim HMM, Hosseini P, Alkharouf NW et al (2011) Analysis of gene expression in soybean (Glycine max) roots in response to the root knot nematode Meloidogyne incognita using microarrays and KEGG pathways. BMC Genomics 12:220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jan PS, Huang HY, Chen HM (2010) Expression of a synthesized gene encoding cationic peptide cecropin B in transgenic tomato plants protects against bacterial diseases. Appl Environ Microbiol 76(3):769–775

    Article  CAS  PubMed  Google Scholar 

  • Janni M, Sella L, Favaron F et al (2008) The expression of a bean PGIP in transgenic wheat confers increased resistance to the fungal pathogen Bipolaris sorokiniana. Mol Plant-Microbe Interact 21(2):171–177

    Article  CAS  PubMed  Google Scholar 

  • Jensen MK, Hagedorn PH, de Torres-Zabala M et al (2008) Transcriptional regulation by an NAC (NAM-ATAF1,2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis. Plant J 56(6):867–880

    Article  CAS  PubMed  Google Scholar 

  • Johnston DJ, Ramanathan V, Williamson B (1993) A protein from immature raspberry fruits which inhibits endopolygalacturonases from Botrytis cinerea and other micro-organisms. J Exp Bot 44(5):971–976

    Article  CAS  Google Scholar 

  • Jones DA, Jones JDG (1997) The role of leucine-rich repeat proteins in plant defenses. In book series: Advances in Botanical Research. Andrews JH, Tommerup IC and Callow JA (eds). Vol 24: pp 89-167

    Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Kachroo P, Yoshioka K, Shah J et al (2000) Resistance to turnip crinkle virus in Arabidopsis is regulated by two host genes and is salicylic acid dependent but NPR1, ethylene, and jasmonate independent. Plant Cell 12(5):677–690

    Google Scholar 

  • Keen NT, Bent A, Staskawicz B (1993) Plant disease resistance genes: interactions with pathogens and their improved utilization to control plant diseases. In Biotechnology in plant disease control. Chet I (ed).Wiley-Liss, New York, pp 65–68

    Google Scholar 

  • Kern MF, Maraschin SF, Vom Endt D et al (2010) Expression of a chitinase gene from Metarhizium anisopliae in tobacco plants confers resistance against Rhizoctonia solani. Appl Biochem Biotechnol 160(7):1933–1946

    Article  CAS  PubMed  Google Scholar 

  • Khush GS, Bacalangco E, Ogawa T (1990) A new gene for resistance to bacterial blight from O. longistaminata. Rice Genetics Newsletter 7:121–122

    Google Scholar 

  • Kim HS, Delaney TP (2002) Over-expression of TGA5, which encodes a bZIP transcription factor that interacts with NIM1/NPR1, confers SAR-independent resistance in Arabidopsis thaliana to Peronospora parasitica. Plant J 32(2):151–163

    Article  CAS  PubMed  Google Scholar 

  • Klas FE, Fuchs M, Gonsalves D (2006) Comparative spatial spread overtime of Zucchini yellow mosaic virus (ZYMV) and Watermelon mosaic virus (WMV) in fields of transgenic squash expressing the coat protein genes of ZYMV and WMV, and in nontransgenic squash. Transgenic Res 15:527–541

    Google Scholar 

  • Klingler J, Creasy R, Gao L et al (2005) Aphid resistance in Medicago truncatula involves antixenosis and phloem-specific, inducible antibiosis, and maps to a single locus flanked by NBS-LRR resistance gene analogs. Plant Physiol 137:1445–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacombe S, Rougon-Cardoso A, Sherwood E et al (2011) Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nat Biotechnol 28(4):365–369

    Article  CAS  Google Scholar 

  • Lanfermeijer FC, Dijkhuis J, Sturre MJG et al (2003) Cloning and characterization of the durable tomato mosaic virus resistance gene Tm-2 2 from Lycopersicon esculentum. Plant Mol Biol 52(5):1037–1049

    Google Scholar 

  • Lapidot M, Gafny R, Ding B et al (1993) A dysfunctional movement protein of tobacco mosaic virus that partially modifies the plasmodesmata and limits virus spread in transgenic plants. Plant J 4(6):959–970

    Article  CAS  Google Scholar 

  • Lellis AD, Kasschau KD, Whitham SA et al (2002) Loss-of-susceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF(iso)4E during potyvirus infection. Curr Biol 12(12):1046–1051

    Article  CAS  PubMed  Google Scholar 

  • Li H, Zhang J, Shi H et al (2008) Engineering Fusarium Head Blight resistance in wheat by expression of a fusion protein containing a Fusarium-specific antibody and an antifungal peptide. Mol Plant-Microbe Interact 21(9):1242–1248

    Article  CAS  PubMed  Google Scholar 

  • Lin WC, Lu CF, Wu JW et al (2004) Transgenic tomato plants expressing the Arabidopsis NPR1 gene display enhanced resistance to a spectrum of fungal and bacterial diseases. Transgenic Res 13(6):567–581

    Article  CAS  PubMed  Google Scholar 

  • Lodge JK, Kaniewski WK, Tumer NE (1993) Broad-spectrum virus resistance in transgenic plants expressing pokeweed antiviral protein. Proc Natl Acad Sci U S A 90(15):7089–7093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenc-Kukuła K, Amarowicz R, Oszmiański J et al (2005) Pleiotropic effect of phenolic compounds content increases in transgenic flax plant. J Agric Food Chem 53(9):3685–3692

    Article  PubMed  CAS  Google Scholar 

  • Lorenc-Kukuła K, Zuk M, Kulma A et al (2009) Engineering Flax with the GT Family 1 Solanum sogarandinum Glycosyltransferase SsGT1 confers increased resistance to Fusarium infection. J Agric Food Chem 57(15):6698–6705

    Article  PubMed  CAS  Google Scholar 

  • Lorito M, Woo SL, Fernandez IG et al (1998) Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proc Natl Acad Sci U S A 95(14):7860–7865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacFarlane SA, Davies JW (1992) Plants transformed with a region of the 201-kilodalton replicase gene from pea early browning virus RNA1 are resistant to virus infection. Proc Natl Acad Sci U S A 89(13):5829–5833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makandar R, Essig JS, Schapaugh MA et al (2006) Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. Mol Plant-Microbe Interact 19(2):123–129

    Article  CAS  PubMed  Google Scholar 

  • Malnoy M, Jin Q, Borejsza-Wysocka EE et al (2007) Overexpression of the apple MpNPR1 gene confers increased disease resistance in Malus x domestica. Mol Plant-Microbe Interact 20(12):1568–1580

    Google Scholar 

  • Malyshenko SI, Kondakova OA, Nazarova Ju V et al (1993) Reduction of tobacco mosaic virus accumulation in transgenic plants producing non-functional viral transport proteins. J Gen Virol 74(6):1149–1156

    Article  CAS  PubMed  Google Scholar 

  • Manshardt RM, Drew RA (1998) Biotechnology of papaya. Acta Hort 461:65–73

    Article  Google Scholar 

  • Martin GB, Brommonschenkel SH, Chunwongse J et al (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262(5138):1432–1436

    Article  CAS  PubMed  Google Scholar 

  • Mendes BMJ, Cardoso SC, Boscariol-Camargo RL et al (2010) Reduction in susceptibility to Xanthomonas axonopodis pv. citri in transgenic Citrus sinensis expressing the rice Xa21 gene. Plant Pathol 59(1):68–75

    Article  CAS  Google Scholar 

  • Milligan SB, Bodeau J, Yaghoobi J et al (1998) The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10(8):1307–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mills D, Hammerschlag FA, Nordeen RO et al (1994) Evidence for the breakdown of cecropin B by proteinases in the intercellular fluid of peach leaves. Plant Sci 104(1):17–22

    Article  CAS  Google Scholar 

  • Mitra A, Higgins DW, Langenberg WG et al (1996) A mammalian 2-5A system functions as an antiviral pathway in transgenic plants. Proc Natl Acad Sci U S A 93(13):6780–6785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakajima H, Muranaka T, Ishige F et al (1997) Fungal and bacterial disease resistance in transgenic plants expressing human lysozyme. Plant Cell Rep 16(10):674–679

    Article  CAS  Google Scholar 

  • Nejidat A, Beachy RN (1990) Transgenic tobacco plants expressing a coat protein gene of tobacco mosaic virus are resistant to some other Tobamoviruses. Mol Plant-Microbe Interact 3(4):247–251

    Article  CAS  PubMed  Google Scholar 

  • Nelson RS, Abel PP, Beachy RN (1987) Lesions and virus accumulation in inoculated transgenic tobacco plants expressing the coat protein gene of tobacco mosaic virus. Virology 158(1):126–132

    Article  CAS  PubMed  Google Scholar 

  • Niu QW, Lin SS, Reyes JL et al (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24(11):1420–1428

    Article  CAS  PubMed  Google Scholar 

  • Nombela G, Williamson VM, Muniz M (2003) The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci. Mol Plant-Microbe Interact 16(7):645–649

    Article  CAS  PubMed  Google Scholar 

  • Norelli JL, Aldwinckle HS, Destéfano-Beltrán L et al (1994) Transgenic ‘Mailing 26’ apple expressing the attacin E gene has increased resistance to Erwinia amylovora. Euphytica 77(1):123–128

    Article  CAS  Google Scholar 

  • Nunes CC, Dean RA (2012) Host-induced gene silencing: a tool for understanding fungal host interaction and for developing novel disease control strategies. Mol Plant Pathol 13(5):519–529

    Article  CAS  PubMed  Google Scholar 

  • Oliver RP, Ipcho SVS (2004) Arabidopsis pathology breathes new life into the necrotrophs-vs.-biotrophs classification of fungal pathogens. Mol Plant Pathol 5:347–352

    Article  CAS  PubMed  Google Scholar 

  • Outchkourov NS, de Kogel WJ, Wiegers GL et al (2004) Engineered multidomain cysteine protease inhibitors yield resistance against western flower thrips (Frankliniella occidentalis) in greenhouse trials. Plant Biotechnol J 2(5):449–458

    Article  CAS  PubMed  Google Scholar 

  • Park JM, Park CJ, Lee SB et al (2001) Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13(5):1035–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauquet J, Burge E, Hagen L et al (2004) Map-based cloning of the Vat gene from melon conferring resistance to both aphid colonization and aphid transmission of several viruses. In: Lebeda A, Paris H (eds) EUCARPIA meeting on Cucurbit genetics and breeding. Palaky University, Olomouc, pp 325–332

    Google Scholar 

  • Periyannan S, Moore J, Ayliffe M et al (2013) The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 341(6147):786–788

    Article  CAS  PubMed  Google Scholar 

  • Piron F, Nicolai M, Minoia S et al (2010) An induced mutation in tomato eIF4E leads to immunity to two potyviruses. PLoS One 5(6), e11313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Powell ALT, van Kan J, ten Have A et al (2000) Transgenic expression of pear PGIP in tomato limits fungal colonization. Mol Plant-Microbe Interact 13(9):942–950

    Article  CAS  PubMed  Google Scholar 

  • Qin J, Zuo K, Zhao J et al (2006) Overexpression of GbERF confers alteration of ethylene-responsive gene expression and enhanced resistance to Pseudomonas syringae in transgenic tobacco. J Biosci 31(2):255–263

    Article  CAS  PubMed  Google Scholar 

  • Ren T, Qu F, Morris TJ (2000) HRT gene function requires interaction between a NAC protein and viral capsid protein to confer resistance to turnip crinkle virus. Plant Cell 12:1917–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren X, Kong Q, Wang H et al (2012) Control of apple blue mold by Pichia pastoris recombinant strains expressing cecropin A. Bioprocess Biosyst Eng 35(5):761–767

    Article  CAS  PubMed  Google Scholar 

  • Roberts PA, May D, Matthews WC (1986) Root-knot nematode resistance in processing tomatoes. Calif Agric 40:24–26

    Google Scholar 

  • Rossi M, Goggin FL, Milligan SB et al (1998) The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc Natl Acad Sci U S A 95(17):9750–9754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosso MN, Dubrana MP, Cimbolini N et al (2005) Application of RNA interference to root-knot nematode genes encoding esophageal gland proteins. Mol Plant-Microbe Interact 18(7):615–620

    Article  CAS  PubMed  Google Scholar 

  • Ruffel S, Gallois JL, Moury B et al (2006) Simultaneous mutations in translation initiation factors eIF4E and eIF(iso)4E are required to prevent pepper veinal mottle virus infection of pepper. J Gen Virol 87(7):2089–2098

    Article  CAS  PubMed  Google Scholar 

  • Sadumpati V, Kalambur M, Vudem DR et al (2013) Transgenic indica rice lines, expressing Brassica juncea Nonexpressor of pathogenesis-related genes 1 (BjNPR1), exhibit enhanced resistance to major pathogens. J Biotechnol 166(3):114–121

    Article  CAS  PubMed  Google Scholar 

  • Saintenac C, Zhang W, Salcedo A et al (2013) Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science 341(6147):783–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shekhawat UKS, Ganapathi TR (2013) MusaWRKY71 overexpression in banana plants leads to altered abiotic and biotic stress responses. PLoS One 8(10):e75506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh RP, Hodson DP, Huerta-Espino J et al (2011) The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu Rev Phytopathol 49:465–481

    Article  CAS  PubMed  Google Scholar 

  • Sobczak M, Avrova A, Jupowicz J et al (2005) Characterization of susceptibility and resistance responses to potato cyst nematode (Globodera spp.) infection of tomato lines in the absence and presence of the broad-spectrum nematode resistance Hero gene. Mol Plant-Microbe Interact 18(2):158–168

    Article  CAS  PubMed  Google Scholar 

  • Song WY, Wang GL, Chen LL et al (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270(5243):1804–1806

    Article  CAS  PubMed  Google Scholar 

  • Song J, Bradeen JM, Naess SK et al (2003) Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proc Natl Acad Sci U S A 100(16):9128–9133

    Google Scholar 

  • Sun ZN, Yin GH, Song YZ et al (2010) Bacterially expressed double-stranded RNAs against hot-spot sequences of tobacco mosaic virus or potato virus Y genome have different ability to protect tobacco from viral infection. Appl Biochem Biotechnol 162:1901–914

    Article  CAS  PubMed  Google Scholar 

  • Swati Anuradha T, Divya K, Jami SK et al (2008) Transgenic tobacco and peanut plants expressing a mustard defensin show resistance to fungal pathogens. Plant Cell Rep 27:1777–1786

    Article  CAS  Google Scholar 

  • Tabashnik BE, Brévault T, Carrière Y (2013) Insect resistance to Bt crops: lessons from the first billion acres. Nat Biotechnol 31:510–521

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Miller J, Nozaki Y et al (2002) RCY1, an Arabidopsis thaliana RPP8/HRT family resistance gene, conferring resistance to cucumber mosaic virus requires salicylic acid, ethylene and a novel signal transduction mechanism. Plant J 32(5):655–667

    Article  CAS  PubMed  Google Scholar 

  • Tavladoraki P, Benvenuto E, Trinca S et al (1993) Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack. Nature 366(6454):469–472

    Article  CAS  PubMed  Google Scholar 

  • Ten Have A, Mulder W, Visser J et al (1998) The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea. Mol Plant-Microbe Interact 11(10):1009–1016

    Article  CAS  PubMed  Google Scholar 

  • Tenllado F, Díaz-Ruíz JR (2001) Double-stranded RNA-mediated interference with plant virus infection. J Virol 75(24):12288–12297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trudel J, Potvin C, Asselin A (1992) Expression of active hen egg white lysozyme in transgenic tobacco. Plant Sci 87:55–67

    Google Scholar 

  • Urwin PE, Lilley CJ, Atkinson HJ (2002) Ingestion of double-stranded RNA by preparasitic juvenile cyst nematodes leads to RNA interference. Mol Plant-Microbe Interact 15(8):747–752

    Article  CAS  PubMed  Google Scholar 

  • Urwin PE, Green J, Atkinson HJ (2003) Expression of a plant cystatin confers partial resistance to Globodera, full resistance is achieved by pyramiding a cystatin with natural resistance. Mol Breed 12(3):263–269

    Article  CAS  Google Scholar 

  • Urwin PE, Troth KM, Zubko EL et al (2001) Effective transgenic resistance to Globodera pallida in potato field trials. Mol Breed 8(1):95–101

    Article  CAS  Google Scholar 

  • Vaeck M, Reynaerts A, Hofte H et al (1987) Transgenic plants protected from insect attack. Nature 328:33–37

    Article  CAS  Google Scholar 

  • Wang GL, Song WY, Ruan DL et al (1996) The cloned gene, Xa21, confers resistance to multiple Xanthomonas oryzae pv. oryzae isolates in transgenic plants. Mol Plant-Microbe Interact 9(9):850–855

    Article  CAS  PubMed  Google Scholar 

  • Whitham S, Dinesh-Kumar SP, Choi D et al (1994) The product of the tobacco mosaic virus resistance gene N: similarity to Toll and the Interleukin-2 receptor. Cell 78:1101–1115

    Article  CAS  PubMed  Google Scholar 

  • Williamson VM (1999) Plant nematode resistance genes. Curr Opin Plant Biol 2:327–331

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Shortt BJ, Lawrence EB et al (1997) Activation of host defense mechanisms by elevated production of H2O2 in transgenic plants. Plant Physiol 115(2):427–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Gao M, Xu C et al (2008) Alfalfa benefits from Medicago truncatula: The RCT1 gene from M. truncatula confers broad-spectrum resistance to anthracnose in alfalfa. Proc Natl Acad Sci U S A 105(34):12164–12169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao B, Lin X, Poland J et al (2005) A maize resistance gene functions against bacterial streak disease in rice. Proc Natl Acad Sci U S A 102(43):15383–15388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuo KJ, Qin J, Zhao JY et al (2007) Over-expression GbERF2 transcription factor in tobacco enhances brown spots disease resistance by activating expression of downstream genes. Gene 39(1–2):80–90

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We sincerely acknowledge National Institute of Plant Genome Research for the financial support. SP acknowledges University Grants Commission, India, for her fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Kumar Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Purayannur, S., Kumar, K., Verma, P.K. (2017). Genetic Engineering to Improve Biotic Stress Tolerance in Plants. In: Abdin, M., Kiran, U., Kamaluddin, Ali, A. (eds) Plant Biotechnology: Principles and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-2961-5_8

Download citation

Publish with us

Policies and ethics