Skip to main content

Photofunctional Rare Earth Hybrid Materials Based on Functionalized Microporous Zeolites

  • Chapter
  • First Online:
Photofunctional Rare Earth Hybrid Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 251))

Abstract

This chapter mainly focuses on recent research progress in photofunctional rare earth hybrid materials based on functionalized microporous zeolites. It covers photofunctional rare earth hybrid materials based on zeolite X, zeolite A, and zeolite L, respectively. Among them the emphasis is put on the hybrid systems based on zeolite L because they are most intensively studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flanigen EM, Broach RW, Wilson ST (2010) Introduction, zeolites and molecular sieves. 1: zeolites in industrial separation and catalysis. Edited by Santi Kulprathipanja WILEY-VCH Verlag GmbH & co. KGaA, Weinheim

    Google Scholar 

  2. Breck DW (1974) Zeolite molecular sieves, structure, chemistry and use. Wiley, New York; Reprinted by Krieger, Malabar, Florida, 1984

    Google Scholar 

  3. Flanigen EM (2001) Zeolites and molecular sieves. An historical perspective, in Introduction to zeolite science and practice, 2nd edn (eds H. Van Bekkum, E.M. Flanigen, Jacobs PA, Jensen JC). Stud Surf Sci Catal 137:11–35

    Article  Google Scholar 

  4. Devaux A, Minkowski C, Calzaferri G (2004) Electronic and vibrational properties of fluorenone in the channels of zeolite L. Chem Eur J 10:2391–2408

    Google Scholar 

  5. Baugis GL, Brito HF, de Oliveira W, de Castro FR, Sousa-Aguiar EF (2001) The luminescent behavior of the steamed EuY zeolite incorporated with vanadium and rare earth passivators. Microp Mesop Mater 49:179–187

    Article  Google Scholar 

  6. Nakamura Y, Hasaegawa M, Katsuki K (2005) Microenvironments in faujasite-type Fe-al zeolites probed by europium luminescence. Chem Lett 34:490–491

    Article  Google Scholar 

  7. Abry S, Lux F, Albela B, Artigas-Miquel A, Nicolas S, Jarry B, Perriat P, Lemercier G, Bonneviot L (2009) Europium(III) complex probing distribution of functions grafted using molecular stencil patterning in 2D hexagonal mesostructured porous silica. Chem Mater 21:2349–2359

    Article  Google Scholar 

  8. Chen SH, Chao KJ, Lee TY (1990) Lanthanum-NaY zeolite ion exchange. 1. Thermodynamics and thermochemistry. Ind Eng Chem Res 29:2020–2023

    Article  Google Scholar 

  9. Lee TY, TS L, Chen SH, Chao KJ (1990) Lanthanum-NaY zeolite ion exchange. 2. Kinetics. Ind Eng Chem Res 29:2024–2027

    Article  Google Scholar 

  10. Atienzar P, Corma A, Garcia H, Serra JM (2004) High-throughput characterisation of materials by photoluminescence spectroscopy. Chem Eur J 10:6043–6047

    Article  Google Scholar 

  11. Chen W, Sammynaiken R, Huang Y (2000) Photoluminescence and photostimulated luminescence of Tb3+ and Eu3+ in zeolite-Y. J Appl Phys 88:1424–1431

    Article  Google Scholar 

  12. Justel T, Wiechert DU, Lau C, Sendor D, Kynast U (2001) Optically functional zeolites: evaluation of UV and VUV stimulated photoluminescence properties of Ce3+- and Tb3+-doped zeolite X. Adv Funct Mater 11:105–110

    Article  Google Scholar 

  13. Mech A, Monguzzi A, Cucinotta F, Meinardi F, Mezyk J, De Cola L, Tubino R (2011) White light excitation of the near infrared Er3+ emission in exchanged zeolite sensitised by oxygen vacancies. Phys Chem Chem Phys 13:5605–5608

    Article  Google Scholar 

  14. Li HR, Ding YX, Wang Y (2012) Photoluminescence properties of Eu3+-exchanged zeolite L crystals annealed at 700 °C. CrystEngComm 14:4767–4771

    Article  Google Scholar 

  15. Zhang HH, Li HR (2011) Efficient visible and near-infrared photoluminescence from lanthanide and bismuth functionalized zeolite L. J Mater Chem 21:13576–13580

    Article  Google Scholar 

  16. Duan TW, Yan B (2014) Photophysical properties of metal ion functionalized NaY zeolite. Photochem Photobiol 90:503–510

    Article  Google Scholar 

  17. Wada Y, Okubo T, Ryo M, Nakazawa T, Hasegawa Y, Yanagida S (2000) High efficiency near-IR emission of Nd(III) based on low-vibrational environment in cages of nanosized zeolites. J Am Chem Soc 122:8583–8584

    Article  Google Scholar 

  18. Wada Y, Sato M, Tsukahara Y (2006) Fine control of red–green–blue photoluminescence in zeolites incorporated with rare-earth ions and a photosensitizer. Angew Chem Int Ed 45:1925–1928

    Article  Google Scholar 

  19. Duan TW, Yan B (2014) Novel luminescent hybrids by incorporating a rare earth ternary complex into CdS QDs loaded zeolite Y crystals through coordination reaction. CrystEngComm 16:3395–3402

    Article  Google Scholar 

  20. Sendor D, Kynast U (2002) Efficient red-emitting hybrid materials based on zeolites. Adv Mater 14:1570–1574

    Article  Google Scholar 

  21. Hao JN, Yan B (2014) Photofunctional host-guest hybrid materials and thin film of lanthanide complexes covalently linked to functionalized zeolite a. Dalton Trans 43:2810–2818

    Article  Google Scholar 

  22. Chen L, Yan B (2015) Photofunctional hybrid materials with polyoxometalates and benzoate modified mesoporous silica through double functional imidazolium ionic liquid linkage. Coll Polym Sci 293:1847–1853

    Article  Google Scholar 

  23. Hao JN, Yan B (2014) Hybrid polymer thin films with a lanthanide-zeolite a host-guest system: coordination bonding assembly and photo-integration. New J Chem 38:3540–3547

    Article  Google Scholar 

  24. Chen L, Yan B (2015) Multi-component lanthanide hybrids based on zeolite a/L and zeolite a/L-polymer for tunable luminescence. Photochem Photobiol Sci 14:358–365

    Article  Google Scholar 

  25. Chen L, Yan B (2015) Multi-component assembly and luminescence tuning of lanthanide hybrids through the inside-outside double modification of zeolite A/L. New J Chem 39:4154–4161

    Google Scholar 

  26. Calzaferri G, Huber S, Maas H (2002) Host–guest antenna materials. Angew Chem Int Ed 42:3732–3758

    Article  Google Scholar 

  27. Monguzzi A, Macchi G, Meinardi F, Tubino R, Calzaferri G (2008) Sensitized near infrared emission from lanthanide-exchanged zeolites. Appl Phys Lett 92:123301

    Article  Google Scholar 

  28. Mech A, Monguzzi A, Meinardi F, Mezyk J, Macchi G, Tubino R (2010) Sensitized NIR erbium(III) emission in confined geometries: a new strategy for light emitters in telecom applications. J Am Chem Soc 132:4574–4576

    Article  Google Scholar 

  29. Li HR, Wang Y, Cao PP, Ding YX, Zhang HH, Hu XJ, Wen TT (2012) Recent progress in host–guest luminescent functional materials based on lanthanide/zeolite L. Sci Chin-Chem (in Chinese) 42:1–18

    Google Scholar 

  30. Wang YG, Li HR, Zhang WJ, Liu BY (2008) Luminescence properties of nanozeolite L grafted with terbium organic complex. Mater Lett 62:3167–3170

    Article  Google Scholar 

  31. Wang YG, Li HR, LJ G, Gan QY, Li YN, Calzaferri G (2009) Thermally stable luminescent lanthanide complexes in zeolite L. Microp Mesop Mater 121:1–6

    Article  Google Scholar 

  32. Li HR, Cheng WJ, Wang Y, Liu BY, Zhang WJ, Zhang HJ (2010) Surface modification and functionalization of microporous hybrid material for luminescence sensing. Chem Eur J 16:2125–2130

    Article  Google Scholar 

  33. Wang Y, Li HR, Feng Y, Zhang HJ, Calzaferri G, Ren TZ (2010) Orienting zeolite L microcrystals with a functional linker. Angew Chem Int Ed 49:1434–1438

    Article  Google Scholar 

  34. Cao PP, Li HR, Zhang PM, Calzaferri GA (2011) Self-assembling zeolite crystals into uniformly oriented layers. Langmuir 27:12614–12620

    Article  Google Scholar 

  35. Ding YX, Wang YG, Li HR, Duan ZY, Zhang HH, Zheng YX (2011) Photostable and efficient red-emitters based on zeolite L crystals. J Mater Chem 21:14755–14759

    Article  Google Scholar 

  36. Wen TT, Zhang WJ, Hu XJ, He L, Li HR (2013) Insight into the luminescence behavior of europium(III) β-diketonate complexes encapsulated in zeolite L crystals. ChemPlusChem 78:438–442

    Article  Google Scholar 

  37. Li HR, Zhang HH, Wang LY, Mu D, Qi ST, Hu XJ, Zhang L, Yu JS (2012) Highly luminescent Eu3+-exchanged zeolite L crystals resulting from modification with silylated β-diketone. J Mater Chem 22:9338–9342

    Article  Google Scholar 

  38. Li P, Wang YG, Li HR, Calzaferri G (2014) Luminescence enhancement after adding stoppers to europium(III) nanozeolite L. Angew Chem Int Ed 53:2904–2909

    Article  Google Scholar 

  39. Li HR, Ding YX, Cao PP, Liu HH, Zheng YX (2012) Preparation and luminescence of transparent zeolite L-polymer hybrid materials. J Mater Chem 22:4056–4059

    Article  Google Scholar 

  40. Liu HH, Song HW, Li SW, Ren XG, Lv SZ, Yu HQ, Pan GH, Zhang H, Hu LY, Dai QL, Qin RF, Yu JH, Wang GM, Jiang JX (2008) Preparation, characterization and photoluminescence properties of ternary europium complexes Eu(DBM)3bath encapsulated into aluminosilicate zeolites. J Nanosci Nanotechnol 8:3959–3966

    Article  Google Scholar 

  41. Chen L, Yan B (2014) Novel cool-white luminescent hybrids through host-guest assembly of 6-hydroxybenz[de]anthracen-7-one and europium ion exchanged zeolite L. Inorg Chem Comm 43:75–77

    Article  Google Scholar 

  42. Chen L, Yan B (2014) Luminescent hybrid materials based on zeolite L crystals and lanthanide complexes: host-guest assembly and ultraviolet-visible excitation. Spectrochim Acta A 131:1–8

    Article  Google Scholar 

  43. Chen L, Yan B (2015) Novel multi-component hybrids through of double luminescent lanthanide unit functionalized zeolite L and titania. Spectrochim Acta A 151:1001–1003

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Yan, B. (2017). Photofunctional Rare Earth Hybrid Materials Based on Functionalized Microporous Zeolites. In: Photofunctional Rare Earth Hybrid Materials. Springer Series in Materials Science, vol 251. Springer, Singapore. https://doi.org/10.1007/978-981-10-2957-8_4

Download citation

Publish with us

Policies and ethics