Photofunctional Rare Earth Hybrid Materials Based on Functionalized Microporous Zeolites

  • Bing Yan
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 251)

Abstract

This chapter mainly focuses on recent research progress in photofunctional rare earth hybrid materials based on functionalized microporous zeolites. It covers photofunctional rare earth hybrid materials based on zeolite X, zeolite A, and zeolite L, respectively. Among them the emphasis is put on the hybrid systems based on zeolite L because they are most intensively studied.

Keywords

Rare earth ion Photofunctional hybrid material Functionalized zeolite Luminescence 

References

  1. 1.
    Flanigen EM, Broach RW, Wilson ST (2010) Introduction, zeolites and molecular sieves. 1: zeolites in industrial separation and catalysis. Edited by Santi Kulprathipanja WILEY-VCH Verlag GmbH & co. KGaA, WeinheimGoogle Scholar
  2. 2.
    Breck DW (1974) Zeolite molecular sieves, structure, chemistry and use. Wiley, New York; Reprinted by Krieger, Malabar, Florida, 1984Google Scholar
  3. 3.
    Flanigen EM (2001) Zeolites and molecular sieves. An historical perspective, in Introduction to zeolite science and practice, 2nd edn (eds H. Van Bekkum, E.M. Flanigen, Jacobs PA, Jensen JC). Stud Surf Sci Catal 137:11–35CrossRefGoogle Scholar
  4. 4.
    Devaux A, Minkowski C, Calzaferri G (2004) Electronic and vibrational properties of fluorenone in the channels of zeolite L. Chem Eur J 10:2391–2408Google Scholar
  5. 5.
    Baugis GL, Brito HF, de Oliveira W, de Castro FR, Sousa-Aguiar EF (2001) The luminescent behavior of the steamed EuY zeolite incorporated with vanadium and rare earth passivators. Microp Mesop Mater 49:179–187CrossRefGoogle Scholar
  6. 6.
    Nakamura Y, Hasaegawa M, Katsuki K (2005) Microenvironments in faujasite-type Fe-al zeolites probed by europium luminescence. Chem Lett 34:490–491CrossRefGoogle Scholar
  7. 7.
    Abry S, Lux F, Albela B, Artigas-Miquel A, Nicolas S, Jarry B, Perriat P, Lemercier G, Bonneviot L (2009) Europium(III) complex probing distribution of functions grafted using molecular stencil patterning in 2D hexagonal mesostructured porous silica. Chem Mater 21:2349–2359CrossRefGoogle Scholar
  8. 8.
    Chen SH, Chao KJ, Lee TY (1990) Lanthanum-NaY zeolite ion exchange. 1. Thermodynamics and thermochemistry. Ind Eng Chem Res 29:2020–2023CrossRefGoogle Scholar
  9. 9.
    Lee TY, TS L, Chen SH, Chao KJ (1990) Lanthanum-NaY zeolite ion exchange. 2. Kinetics. Ind Eng Chem Res 29:2024–2027CrossRefGoogle Scholar
  10. 10.
    Atienzar P, Corma A, Garcia H, Serra JM (2004) High-throughput characterisation of materials by photoluminescence spectroscopy. Chem Eur J 10:6043–6047CrossRefGoogle Scholar
  11. 11.
    Chen W, Sammynaiken R, Huang Y (2000) Photoluminescence and photostimulated luminescence of Tb3+ and Eu3+ in zeolite-Y. J Appl Phys 88:1424–1431CrossRefGoogle Scholar
  12. 12.
    Justel T, Wiechert DU, Lau C, Sendor D, Kynast U (2001) Optically functional zeolites: evaluation of UV and VUV stimulated photoluminescence properties of Ce3+- and Tb3+-doped zeolite X. Adv Funct Mater 11:105–110CrossRefGoogle Scholar
  13. 13.
    Mech A, Monguzzi A, Cucinotta F, Meinardi F, Mezyk J, De Cola L, Tubino R (2011) White light excitation of the near infrared Er3+ emission in exchanged zeolite sensitised by oxygen vacancies. Phys Chem Chem Phys 13:5605–5608CrossRefGoogle Scholar
  14. 14.
    Li HR, Ding YX, Wang Y (2012) Photoluminescence properties of Eu3+-exchanged zeolite L crystals annealed at 700 °C. CrystEngComm 14:4767–4771CrossRefGoogle Scholar
  15. 15.
    Zhang HH, Li HR (2011) Efficient visible and near-infrared photoluminescence from lanthanide and bismuth functionalized zeolite L. J Mater Chem 21:13576–13580CrossRefGoogle Scholar
  16. 16.
    Duan TW, Yan B (2014) Photophysical properties of metal ion functionalized NaY zeolite. Photochem Photobiol 90:503–510CrossRefGoogle Scholar
  17. 17.
    Wada Y, Okubo T, Ryo M, Nakazawa T, Hasegawa Y, Yanagida S (2000) High efficiency near-IR emission of Nd(III) based on low-vibrational environment in cages of nanosized zeolites. J Am Chem Soc 122:8583–8584CrossRefGoogle Scholar
  18. 18.
    Wada Y, Sato M, Tsukahara Y (2006) Fine control of red–green–blue photoluminescence in zeolites incorporated with rare-earth ions and a photosensitizer. Angew Chem Int Ed 45:1925–1928CrossRefGoogle Scholar
  19. 19.
    Duan TW, Yan B (2014) Novel luminescent hybrids by incorporating a rare earth ternary complex into CdS QDs loaded zeolite Y crystals through coordination reaction. CrystEngComm 16:3395–3402CrossRefGoogle Scholar
  20. 20.
    Sendor D, Kynast U (2002) Efficient red-emitting hybrid materials based on zeolites. Adv Mater 14:1570–1574CrossRefGoogle Scholar
  21. 21.
    Hao JN, Yan B (2014) Photofunctional host-guest hybrid materials and thin film of lanthanide complexes covalently linked to functionalized zeolite a. Dalton Trans 43:2810–2818CrossRefGoogle Scholar
  22. 22.
    Chen L, Yan B (2015) Photofunctional hybrid materials with polyoxometalates and benzoate modified mesoporous silica through double functional imidazolium ionic liquid linkage. Coll Polym Sci 293:1847–1853CrossRefGoogle Scholar
  23. 23.
    Hao JN, Yan B (2014) Hybrid polymer thin films with a lanthanide-zeolite a host-guest system: coordination bonding assembly and photo-integration. New J Chem 38:3540–3547CrossRefGoogle Scholar
  24. 24.
    Chen L, Yan B (2015) Multi-component lanthanide hybrids based on zeolite a/L and zeolite a/L-polymer for tunable luminescence. Photochem Photobiol Sci 14:358–365CrossRefGoogle Scholar
  25. 25.
    Chen L, Yan B (2015) Multi-component assembly and luminescence tuning of lanthanide hybrids through the inside-outside double modification of zeolite A/L. New J Chem 39:4154–4161Google Scholar
  26. 26.
    Calzaferri G, Huber S, Maas H (2002) Host–guest antenna materials. Angew Chem Int Ed 42:3732–3758CrossRefGoogle Scholar
  27. 27.
    Monguzzi A, Macchi G, Meinardi F, Tubino R, Calzaferri G (2008) Sensitized near infrared emission from lanthanide-exchanged zeolites. Appl Phys Lett 92:123301CrossRefGoogle Scholar
  28. 28.
    Mech A, Monguzzi A, Meinardi F, Mezyk J, Macchi G, Tubino R (2010) Sensitized NIR erbium(III) emission in confined geometries: a new strategy for light emitters in telecom applications. J Am Chem Soc 132:4574–4576CrossRefGoogle Scholar
  29. 29.
    Li HR, Wang Y, Cao PP, Ding YX, Zhang HH, Hu XJ, Wen TT (2012) Recent progress in host–guest luminescent functional materials based on lanthanide/zeolite L. Sci Chin-Chem (in Chinese) 42:1–18Google Scholar
  30. 30.
    Wang YG, Li HR, Zhang WJ, Liu BY (2008) Luminescence properties of nanozeolite L grafted with terbium organic complex. Mater Lett 62:3167–3170CrossRefGoogle Scholar
  31. 31.
    Wang YG, Li HR, LJ G, Gan QY, Li YN, Calzaferri G (2009) Thermally stable luminescent lanthanide complexes in zeolite L. Microp Mesop Mater 121:1–6CrossRefGoogle Scholar
  32. 32.
    Li HR, Cheng WJ, Wang Y, Liu BY, Zhang WJ, Zhang HJ (2010) Surface modification and functionalization of microporous hybrid material for luminescence sensing. Chem Eur J 16:2125–2130CrossRefGoogle Scholar
  33. 33.
    Wang Y, Li HR, Feng Y, Zhang HJ, Calzaferri G, Ren TZ (2010) Orienting zeolite L microcrystals with a functional linker. Angew Chem Int Ed 49:1434–1438CrossRefGoogle Scholar
  34. 34.
    Cao PP, Li HR, Zhang PM, Calzaferri GA (2011) Self-assembling zeolite crystals into uniformly oriented layers. Langmuir 27:12614–12620CrossRefGoogle Scholar
  35. 35.
    Ding YX, Wang YG, Li HR, Duan ZY, Zhang HH, Zheng YX (2011) Photostable and efficient red-emitters based on zeolite L crystals. J Mater Chem 21:14755–14759CrossRefGoogle Scholar
  36. 36.
    Wen TT, Zhang WJ, Hu XJ, He L, Li HR (2013) Insight into the luminescence behavior of europium(III) β-diketonate complexes encapsulated in zeolite L crystals. ChemPlusChem 78:438–442CrossRefGoogle Scholar
  37. 37.
    Li HR, Zhang HH, Wang LY, Mu D, Qi ST, Hu XJ, Zhang L, Yu JS (2012) Highly luminescent Eu3+-exchanged zeolite L crystals resulting from modification with silylated β-diketone. J Mater Chem 22:9338–9342CrossRefGoogle Scholar
  38. 38.
    Li P, Wang YG, Li HR, Calzaferri G (2014) Luminescence enhancement after adding stoppers to europium(III) nanozeolite L. Angew Chem Int Ed 53:2904–2909CrossRefGoogle Scholar
  39. 39.
    Li HR, Ding YX, Cao PP, Liu HH, Zheng YX (2012) Preparation and luminescence of transparent zeolite L-polymer hybrid materials. J Mater Chem 22:4056–4059CrossRefGoogle Scholar
  40. 40.
    Liu HH, Song HW, Li SW, Ren XG, Lv SZ, Yu HQ, Pan GH, Zhang H, Hu LY, Dai QL, Qin RF, Yu JH, Wang GM, Jiang JX (2008) Preparation, characterization and photoluminescence properties of ternary europium complexes Eu(DBM)3bath encapsulated into aluminosilicate zeolites. J Nanosci Nanotechnol 8:3959–3966CrossRefGoogle Scholar
  41. 41.
    Chen L, Yan B (2014) Novel cool-white luminescent hybrids through host-guest assembly of 6-hydroxybenz[de]anthracen-7-one and europium ion exchanged zeolite L. Inorg Chem Comm 43:75–77CrossRefGoogle Scholar
  42. 42.
    Chen L, Yan B (2014) Luminescent hybrid materials based on zeolite L crystals and lanthanide complexes: host-guest assembly and ultraviolet-visible excitation. Spectrochim Acta A 131:1–8CrossRefGoogle Scholar
  43. 43.
    Chen L, Yan B (2015) Novel multi-component hybrids through of double luminescent lanthanide unit functionalized zeolite L and titania. Spectrochim Acta A 151:1001–1003Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Bing Yan
    • 1
  1. 1.School of Chemical Science and EngineeringTongji UniversityShanghaiChina

Personalised recommendations