Skip to main content

Interactivity of Digital Musical Instruments: Implications of Classifying Musical Instruments on Basic Music Research

  • Chapter
  • First Online:
Musical Instruments in the 21st Century

Abstract

The introduction of the computer as musical instrument and the development of interactive musical instruments have led to completely new purposes and questions for music research; as a result, it no longer seems adequate to rely on the traditional classification of musical instruments, which is based on the purpose of instrument design and presentation of instruments in public or private exhibition. Based on insights from the philosophy of science, this paper suggests pursuing another purpose of and approach to instrument classification appropriate for basic music research. We argue that (digital) computing systems, to some extent, have the potential to act as autonomous and artificial social agents. This argument is based on the conceptualization of machines as (abstract) automata. In addition, we exploit concepts from dynamic systems theory in a metaphorical manner to find a more appropriate point of view to develop new research questions. Discussing interactivity, for which embodiment and situatedness are prerequisites, we suggest taking interactivity, agency, and autonomy into account to develop an appropriate classification system of musical instruments and at the same time to rethink the traditional concept of musical instrument. Whether a musical instrument can be defined as broader than a device that has the function of generating sounds, i.e. whether it can be viewed as an embodied, situated or even social agent, remains a challenging question for basic music research. To discuss this question, not only sound generating actions, but also other musically meaningful actions that involve agency should be taken for granted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    However, this was not recognized by Rebecca Wolf, who traces the history of the concepts of the automaton, machine, and clock (Wolf 2014).

  2. 2.

    Translation of Thoben (2014, p. 433, Fig. 1) by the authors: “Der Interpret interagiert mit einem musikalischen Interface, […].”

  3. 3.

    One is reminded of the science-fiction author Isaac Asimov’s well-known “three laws of robotics” indicating the importance of an ethics for machines which is now becoming a real social necessity about 60 years ago. A machine ethics (Anderson and Anderson 2011) or android epistemology (Ford et al. 2006) is not only urgently needed for military, educational, or social applications, but also for the arts.

  4. 4.

    This means that the system does not interrupt to ask for new information during computation.

  5. 5.

    For more on agents as dynamical systems and robotics in music research, see Schmidt (2010).

  6. 6.

    ‘Autonomy’ related to artificial systems is discussed in Vernon (2014).

  7. 7.

    For a detailed comparison of different agent concepts see Schmidt (2010, pp. 35–44).

  8. 8.

    In different areas of research on classification or categorization such as developmental psychology or cognitive anthropology natural kinds are distinguished from classification systems that are merely conventional. Natural kinds exist independently of our classificatory activity and are not merely conventional (Kornblith 1999). For example, classifying the world into animate and inanimate objects might be a natural kind whereas classifying the world into different kinds of musical instruments is a conventionally culture-dependent categorization.

  9. 9.

    Note that matrix organization enables the intersection of sets.

  10. 10.

    For more about agents as dynamical systems and robotics in music research, see Schmidt (2010).

References

  • Anderson, M., & Anderson, S. L. (Eds.). (2011). Machine ethics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Axelrod, R., & Tesfatsion, L. (2006). Appendix A: A guide for newcomers to agent-based modeling in the social sciences. In L. Tesfatsion & K. Judd (Eds.), Handbook of computational economics, Vol. 2: Agent-based computational economics (pp. 1647–1659). Amsterdam: Elsevier.

    Google Scholar 

  • Beer, R. D. (1996). A dynamical systems perspective on agent-environment interaction. In P. E. Agre & S. J. Rosenschein (Eds.), Computational theories of interaction and agency (pp. 173–215). Cambridge, MA: MIT Press.

    Google Scholar 

  • Beer, R. D. (2014). Dynamical systems and embedded cognition. In K. Frankish & W. M. Ramsey (Eds.), The Cambridge handbook of artificial intelligence (pp. 128–150). Camdridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Bharucha, J., Curtis, M., & Paroo, K. (2012). Musical communication as alignment of brain states. In P. M. Rebuschat, M. Rohrmeier, J. A. Hawkins, & I. Cross (Eds.), Language and music as cognitive systems (pp. 139–155). Oxford: Oxford University Press.

    Google Scholar 

  • D’Mello, S., & Franklin, S. (2011). Computational modeling/cognitive robotics complements functional modeling/experimental psychology. New ideas in Psychology, 29, 2017–2027.

    Google Scholar 

  • Davies, H. (2000). Electronic instruments: Classifications and mechanisms. In H. J. Braun (Ed.), ‘I sing the body electric’: Music and technology in the 20th century (pp. 43–58). Hofheim am Taunus: Wolke Verlag.

    Google Scholar 

  • Dodge, C., & Jerse, T. A. (1985). Computer music: Synthesis, composition, and performance. New York: Schirmer.

    Google Scholar 

  • Ford, K. M., Glymour, C., & Hayes, P. J. (Eds.). (2006). Thinking about android epistemology. Menlo Park: AAAI Press.

    Google Scholar 

  • Franklin, S. (1997). Autonomous agents as embodied AI. Cybernetic and Systems, 28(6), 499–520.

    Article  MathSciNet  Google Scholar 

  • Franklin, S., & Graesser, A. (1997). Is it an agent, or just a program? A taxonomy of autonomous agents. In J. Müller, M. J. Wooldridge, & N. R. Jennings (Eds.), Intelligent agents III Agent theories, architectures, and languages—ECAI’96 Workshop (ATAL), Budapest, Hungary, August 12–13, 1996 [=Lecture notes in computer science, Vol. 1193] (pp. 21–35). Berlin: Springer.

    Google Scholar 

  • Hempel, C. G. (1952). Fundamentals of concept formation in empirical science. Chicago: The University of Chicago Press.

    Google Scholar 

  • Kartomi, M. J. (1990). On concepts and classifications of musical instruments. Chicago: The University of Chicago Press.

    Google Scholar 

  • Keller, P. E. (2008). Joint action in music performance. In F. Morganti, A. Carassa, & G. Riva (Eds.), Enacting intersubjectivity: A cognitive and social perspective on the study of interaction (pp. 205–211). Amsterdam: IOS Press.

    Google Scholar 

  • Kim, J. H. (2012). Embodiment in interaktiven Musik- und Medienperformances – unter besonderer Berücksichtigung medientheoretischer und kognitionswissenschaftlicher Perspektiven. Osnabrück: epOs.

    Google Scholar 

  • Kornblith, H. (1999). Natural kinds. In R. A. Wilson & F. C. Keil (Eds.), The MIT encyclopedia of the cognitive sciences (pp. 588–589). Cambridge, MA: MIT Press.

    Google Scholar 

  • Large, E. W., & Kolen, J. F. (1994). Resonance and the perception of musical meter. Connection Science, 6(2–3), 177–208.

    Article  Google Scholar 

  • Leman, M., & Maes, P.-J. (2014). Music perception and embodied music cognition. In L. Shapiro (Ed.), The Routlegde handbook of embodied cognition (pp. 81–89). London: Routledge.

    Google Scholar 

  • Mathews, M. (1963). The digital computer as a musical instrument. Science, 142(3592), 553–557.

    Article  Google Scholar 

  • Minsky, M. (1967). Computation: Finite and infinite machines. London: Prentice-Hall.

    MATH  Google Scholar 

  • Miranda, E. R., & Wanderley, M. M. (2006). New digital musical instruments: Control and interaction beyond the keyboard. Middleton: AR Publications.

    Google Scholar 

  • Montagu, J. (2007). Origins and development of musical instruments. Lanham, Maryland: Scarecrow Press.

    Google Scholar 

  • Nelson, R. J. (1989). The logic of mind (2nd ed.). Dordrecht: Kluwer Academic Publisher.

    Book  Google Scholar 

  • Port, R. F. (2003). Dynamical systems hypothesis in cognitive science. In L. Nadel (Ed.), Encyclopedia of cognitive science (pp. 1027–1032). Chichester, West Sussex: Wiley.

    Google Scholar 

  • Rowe, R. (1993). Interactive music systems: Machine listening and composing. Cambridge, MA: MIT Press.

    Google Scholar 

  • Schmidt, L. (2010). Embodied cognitive science of music: Modeling experience and behavior in musical context (Doctoral dissertation). Universität zu Köln. http://kups.ub.uni-koeln.de/5342/. Accessed February 20, 2016.

  • Seifert, U., & Kim, J. H. (2008). Towards a conceptual framework and an empirical methodology in research on artistic human-computer and human-robot interaction. In I. Pavlidis (Ed.), Human-computer interaction (pp. 177–194). Vienna: In-Tech.

    Google Scholar 

  • Simon, P. (1992). Die Hornbostel/Sachs’sche Systematik und ihre Logik. Instrumentenbau-Zeitschrift—Musik International, 46(7–8), 64–66.

    Google Scholar 

  • Simon, P. (2004). Die Hornbostel/Sachs’sche Systematik der Musikinstrumente: Merkmalarten und Merkmale. Eine Analyse mit zwei Felderdiagrammen. Mönchengladbach: Verlag Peter Simon.

    Google Scholar 

  • Stegmüller, W. (1974). Probleme und Resultate der Wissenschaftstheorie und Analytischen Philosophie, Band II: Theorie und Erfahrung. Erster Halbband: Begriffsformen, Wissenschaftssprache, empirische Signifikanz und theoretische Begriffe. Verbesserter Neudruck. Berlin: Springer.

    Google Scholar 

  • Thoben, W. (2014). Elektronische Musikinstrumente: Interfaces und Controller. In S. Weinzierl (Ed.), Akustische Grundlagen der Musik [=Handbuch der Systematischen Musikwissenschaft, Bd. 5; ed. by H. de la Motte-Haber] (pp. 433–445). Laaber: Laaber.

    Google Scholar 

  • Vernon, D. (2014). Artificial cognitive systems: A primer. Cambridge, MA: MIT Press.

    Google Scholar 

  • Verschure, P. F. M. J., & Manzolli, J. (2013). Computational modeling of music and mind. In M. A. Arbib (Ed.), Language, music, and the brain: A mysterious relationship (pp. 393–414). Cambridge, MA: The MIT Press.

    Google Scholar 

  • von Hornbostel, E. M., & Sachs, C. (1914). Systematik der Musikinstrumente: Ein Versuch. Zeitschrift für Ethnologie, 4–5, 553–590.

    Google Scholar 

  • Wegner, P. (1997). Why interaction is more powerful than algorithms. Communications of the ACM, 40(5), 80–91.

    Article  Google Scholar 

  • Wegner, P., & Goldin, D. (2003). Computation beyond Turing machines. Communications of the ACM, 46(4), 100–102.

    Article  Google Scholar 

  • Wiener, N. (1961). Cybernetics, or control and communication in animal and machine (2nd ed.). Cambridge, MA: MIT Press.

    Book  MATH  Google Scholar 

  • Wolf, R. (2014). Musikautomaten. In S. Weinzierl (Ed.), Akustische Grundlagen der Musik [=Handbuch der Systematischen Musikwissenschaft, Bd. 5; ed. by H. de la Motte-Haber] (pp. 409–431). Laaber: Laaber.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Hyun Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kim, J.H., Seifert, U. (2017). Interactivity of Digital Musical Instruments: Implications of Classifying Musical Instruments on Basic Music Research. In: Bovermann, T., de Campo, A., Egermann, H., Hardjowirogo, SI., Weinzierl, S. (eds) Musical Instruments in the 21st Century. Springer, Singapore. https://doi.org/10.1007/978-981-10-2951-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2951-6_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2950-9

  • Online ISBN: 978-981-10-2951-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics