Skip to main content

Review of Studies on Earthquake-Induced Landslides

  • Chapter
  • First Online:
Earthquake-Induced Landslides

Part of the book series: Springer Natural Hazards ((SPRINGERNAT))

Abstract

This chapter reviews two aspects of existing studies on earthquake-induced landslides: slope stability analysis and landslide movement simulation. The merits and demerits of each method are stated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambraseys, N., & Sarma, S. (1967). The response of earth dams to strong earthquakes. Geotechnique, 17(3), 181–213.

    Article  Google Scholar 

  • Ambraseys, N., & Menu, J. (1988). Earthquake-induced ground displacements. Earthquake Engineering & Structural Dynamics, 16(7), 985–1006.

    Article  Google Scholar 

  • Ambraseys, N., & Srbulov, M. (1994). Attenuation of earthquake-induced ground displacements. Earthquake Engineering & Structural Dynamics, 23(5), 467–487.

    Article  Google Scholar 

  • Anderson, D., & Kavazanjian Jr, E. (1995). Performance of landfills under seismic loading. In Proc., 3rd Int. Conf. on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. (Vol.3, pp. 277–306) Rolla, MO: Univ. of Missouri.

    Google Scholar 

  • Azzoni, A., La Barbera, G., & Zaninetti, A. (1995). Analysis and prediction of rockfalls using a mathematical model. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Elsevier, 32, 709–724.

    Google Scholar 

  • Bakun-Mazor, D., Hatzor, Y., & Glaser, S. (2012). Dynamic sliding of tetrahedral wedge: the role of interface friction. International Journal for Numerical and Analytical Methods in Geomechanics, 36(3), 327–343.

    Article  Google Scholar 

  • Bhasin, R., & Kaynia, A. M. (2004). Static and dynamic simulation of a 700-m high rock slope in western Norway. Engineering Geology, 71(3–4), 213–226.

    Article  Google Scholar 

  • Bozzolo, D., & Pamini, R. (1986). Simulation of rock falls down a valley side. Acta Mechanica, 63(1–4), 113–130.

    Article  Google Scholar 

  • Bray, J. D., & Rathje, E. M. (1998). Earthquake-induced displacements of solid-waste landfills. Journal of Geotechnical and Geoenvironmental Engineering, 124(3), 242–253.

    Article  Google Scholar 

  • Bray, J. D., & Travasarou, T. (2007). Simplified procedure for estimating earthquake-induced deviatoric slope displacements. Journal of Geotechnical and Geoenvironmental Engineering, 133(4), 381–392.

    Article  Google Scholar 

  • Brebbia, C.A., & Wrobel, L. (1980). The boundary element method. Computer methods in fluids. (A 81-28303 11-34) (pp. 26–48). London: Pentech Press, Ltd..

    Google Scholar 

  • Cannon, S.H. (1993). An empirical model for the volume-change behavior of debris flows. In Hydraulic Engineering ’93. San Francisco.

    Google Scholar 

  • CDCDMG: California Department of Conversation, Division of Mines and Geology. (1997). Guidelines for evaluating and mitigating seismic hazards in California. CDMG Special Publication.

    Google Scholar 

  • Chau, K., Wong, R., & Lee, C. (1996). Rockfall problems in Hong Kong and some new experimental results for coefficients of restitution. In International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts. Elsevier, 35, 662–663.

    Google Scholar 

  • Chen, G., & Ohnishi, Y. (1999). Slope stability analysis using discontinuous deformation Analysis method. Rock Mecganics for Industry (pp. 535–541).

    Google Scholar 

  • Chen, H., & Lee, C. (2000). Numerical simulation of debris flows. Canadian Geotechnical Journal, 37(1), 146–160.

    Article  Google Scholar 

  • Cheng, Y. M. (1998). Advancements and improvement in discontinuous deformation analysis. Computers and Geotechnics, 22(2), 153–163.

    Article  Google Scholar 

  • Chopra, A. K. (1966). The importance of the vertical component of earthquake motions. Bulletin of the Seismological Society of America, 56(5), 1163–1175.

    Google Scholar 

  • Chowdhury, R., Flentje, P., & Bhattacharya, G. (2010). Geotechnical slope analysis. CRC PressI Llc.

    Google Scholar 

  • Clough, R.W. (1960). The finite element method in plane stress analysis. In 2nd Conference on Electronic Computation. Pittsburgh, PA.

    Google Scholar 

  • Constantinou, M., & Gazetas, G. (1987). Probabilistic seismic sliding deformations of earth dams and slopes. In Probabilistic Mechanics and Structural Reliability (1984) (pp. 318–321). ASCE.

    Google Scholar 

  • Copons, R., & Vilaplana, J. M. (2008). Rockfall susceptibility zoning at a large scale: From geomorphological inventory to preliminary land use planning. Engineering Geology, 102(3), 142–151.

    Article  Google Scholar 

  • Copons, R., Vilaplana, J.M., Corominas, J., Altimir, J., & Amigó, J. (2004). Rockfall risk management in high-density urban areas. The andorran experience. Landslide Hazard and Risk, 675–698.

    Google Scholar 

  • Corominas, J. (1996). The angle of reach as a mobility index for small and large landslides. Canadian Geotechnical Journal, 33(2), 260–271.

    Article  Google Scholar 

  • Costa, J.E. (1984). Physical geomorphology of debris flows. In Developments and applications of geomorphology (pp. 268–317). Springer.

    Google Scholar 

  • Courant, R. (1943). Variational methods for the solution of problems of equilibrium and vibrations. Bulletin American Mathematics Society, 49(1), 23.

    Article  Google Scholar 

  • Crosta, G., & Agliardi, F. (2003). A methodology for physically based rockfall hazard assessment. Natural Hazards and Earth System Science, 3(5), 407–422.

    Article  Google Scholar 

  • Crosta, G., & Frattini, P. (2003). Distributed modelling of shallow landslides triggered by intense rainfall. Natural Hazards and Earth System Science, 3(1/2), 81–93.

    Article  Google Scholar 

  • Crosta, G.B., Frattini, P., & Fusi, N. (2007). Fragmentation in the Val Pola rock avalanche, italian alps. Journal of Geophysical Research: Earth Surface (2003–2012), 112(F1).

    Google Scholar 

  • Crosta, G., Imposimato, S., Roddeman, D., Chiesa, S., & Moia, F. (2005). Small fast-moving flow-like landslides in volcanic deposits: the 2001 Las Colinas Landslide (El Salvador). Engineering Geology, 79(3), 185–214.

    Article  Google Scholar 

  • Cundall, P. (1971). A computer model for simulating progressive, large scale movements in blocky rock system. In Symposium of International Society of Rock Mechanics (pp. 11–18). France: Nancy.

    Google Scholar 

  • Danay, A., & Adeghe, L. (1993). Seismic-induced slip of concrete gravity dams. Journal of Structural Engineering, 119(1), 108–129.

    Article  Google Scholar 

  • Davies, T. R. (1982). Spreading of rock avalanche debris by mechanical fluidization. Rock Mechanics, 15(1), 9–24.

    Article  Google Scholar 

  • Del Gaudio, V., Pierri, P., & Wasowski, J. (2003). An approach to time-probabilistic evaluation of seismically induced landslide hazard. Bulletin of the Seismological Society of America, 93(2), 557–569.

    Article  Google Scholar 

  • Denlinger, R.P., & Iverson, R.M. (2001). Flow of variably fluidized granular masses across three-dimensional terrain: 2. Numerical predictions and experimental tests. Journal of Geophysical Research: Solid Earth (1978–2012), 106(B1): 553–566.

    Google Scholar 

  • Descoeudres, F., & Zimmermann, T. (1987). Three-dimensional dynamic calculation of rockfalls. In 6th ISRM Congress.

    Google Scholar 

  • Domaas, U. (1994). Geometrical methods of calculating rockfall range (NGI Report: 585910–585911).

    Google Scholar 

  • Doolin, D. M. (2005). Unified displacement boundary constraint formulation for discontinuous deformation analysis (DDA). International Journal for Numerical and Analytical Methods in Geomechanics, 29(12), 1199–1207.

    Article  Google Scholar 

  • Doolin, D. M., & Sitar, N. (2004). Time integration in discontinuous deformation analysis. Journal of Engineering Mechanics, 130(3), 249–258.

    Article  Google Scholar 

  • Dorren, L., & Heuvelink, G. B. (2004). Effect of support size on the accuracy of a distributed rockfall model. International Journal of Geographical Information Science, 18(6), 595–609.

    Article  Google Scholar 

  • Elgamal, A.-W. M., Scott, R. F., Succarieh, M. F., & Yan, L. (1990). La Villita dam response during five earthquakes including permanent deformation. Journal of Geotechnical Engineering, 116(10), 1443–1462.

    Article  Google Scholar 

  • Evans, S., & Hungr, O. (1993). The assessment of rockfall hazard at the base of talus slopes. Canadian Geotechnical Journal, 30(4), 620–636.

    Article  Google Scholar 

  • Evans, S., Hungr, O., & Enegren, E. (1994). The Avalanche Lake rock avalanche, Mackenzie mountains, northwest territories, Canada: description, dating, and dynamics. Canadian Geotechnical Journal, 31(5), 749–768.

    Google Scholar 

  • Fardis, M.N. (2009). Seismic design, assessment and retrofitting of concrete buildings: based on EN-Eurocode 8. Springer.

    Google Scholar 

  • Favreau, P., Mangeney, A., Lucas, A., Crosta, G., & Bouchut, F. (2010). Numerical modeling of landquakes. Geophysical Research Letters, 37(15), L15305.

    Google Scholar 

  • Fenves, G., & Chopra, A.K. (1986). Simplified analysis for earthquake resistant design of concrete gravity dams. Earthquake Engineering Research Center, University of California.

    Google Scholar 

  • Franklin, A.G., & Chang, F.K. (1977). Permanent displacements of earth embankments by Newmark sliding block analysis.

    Google Scholar 

  • Garini, E., Gazetas, G., & Anastasopoulos, I. (2011). Asymmetric ‘Newmark’ sliding caused by motions containing severe ‘directivity’ and ‘fling’ pulses. Geotechnique 61, 733–756.

    Google Scholar 

  • Gazetas, G., & Uddin, N. (1994). Permanent deformation on preexisting sliding surfaces in dams. Journal of Geotechnical Engineering, 120(11), 2041–2061.

    Google Scholar 

  • Griffiths, D., & Prevost, J. H. (1988). Two-and three-dimensional dynamic finite element analyses of the Long Valley Dam. Geotechnique, 38(3), 367–388.

    Google Scholar 

  • Guzzetti, F., Malamud, B. D., Turcotte, D. L., & Reichenbach, P. (2002). Power-law correlations of landslide areas in central Italy. Earth and Planetary Science Letters, 195(3), 169–183.

    Google Scholar 

  • Hamajima, R., Kawai, T., Yamashita, K., & Kusabuka, M. (1985). Numerical analysis of cracked and jointed rock mass. In the 5th International Conference on Numerical Methods in Geomechanics (pp. 207–214). Nagoya, Japan.

    Google Scholar 

  • Harp, E. L., & Jibson, R. W. (1995). Inventory of landslides triggered by the 1994 Northridge. US Geological Survey: California earthquake.

    Google Scholar 

  • Hatzor, Y. H. (2003). Fully dynamic stability analysis of jointed rock slopes. In Proceedings of the 10th ISRM Congress, (pp. 503–514).

    Google Scholar 

  • Hatzor, Y. H., & Feintuch, A. (2001). The validity of dynamic block displacement prediction using DDA. International Journal of Rock Mechanics & Mining Sciences.

    Google Scholar 

  • Hatzor, Y. H., Arzi, A. A., & Tsesarsky, M. (2002). Realistic dynamic analysis of jointed rock slopes using DDA. In 5th Int. Conf. on Analysis of Discontinuous Deformation—Stability of rock structures, Abingdon (pp. 47–56). Rotterdam, The Netherlands: Balkema.

    Google Scholar 

  • Hatzor, Y., Arzi, A. A., Zaslavsky, Y., & Shapira, A. (2004). Dynamic stability analysis of jointed rock slopes using the DDA method: King Herod’s Palace, Masada, Israel. International Journal of Rock Mechanics and Mining Sciences, 41(5), 813–832.

    Article  Google Scholar 

  • Heim, A. (1932). Bergsturz und Menschenleben. Zurich: Fretz and Wasmuth Verlag.

    Google Scholar 

  • Hsieh, S.-Y., & Lee, C.-T. (2011). Empirical estimation of the Newmark displacement from the Arias intensity and critical acceleration. Engineering Geology, 122(1–2), 34–42.

    Article  Google Scholar 

  • Hsü, K. J. (1975). Catastrophic debris streams (sturzstroms) generated by rockfalls. Geological Society of America Bulletin, 86(1), 129–140.

    Article  Google Scholar 

  • Hungr, O. (1995). A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Canadian Geotechnical Journal, 32(4), 610–623.

    Article  Google Scholar 

  • Hungr, O., & Evans, S. (1988). Engineering evaluation of fragmental rockfall hazards. In Proceedings of the Fifth International Symposium on Landslides, Lausanne (pp. 685–690). Rotterdam, Netherlands: AA Balkema.

    Google Scholar 

  • Hungr, O., & Evans, S. (2004). Entrainment of debris in rock avalanches: an analysis of a long run-out mechanism. Geological Society of America Bulletin, 116(9–10), 1240–1252.

    Article  Google Scholar 

  • Hungr, O., Corominas, J., & Eberhardt, E. (2004). Estimating landslide motion mechanism, travel distance and velocity.

    Google Scholar 

  • Hürlimann, M., Rickenmann, D., Medina, V., & Bateman, A. (2008). Evaluation of approaches to calculate debris-flow parameters for hazard assessment. Engineering Geology, 102(3), 152–163.

    Article  Google Scholar 

  • Hynes-Griffin, M. E., & Franklin, A. G. (1984). Rationalizing the seismic coefficient method. Defense Technical Information Center.

    Google Scholar 

  • Ishikawa, T., Sekine, E., & Ohnishi, Y. (2002). Shaking table tests of coarse granular materials with discontinuous analysis. In Proc. of ICADD-5, BALKEMA, (pp. 181–187).

    Google Scholar 

  • Jakob, M., & Hungr, O. (2005). Debris-flow hazards and related phenomena. Springer.

    Google Scholar 

  • Jibson, R.W. (1993). Predicting earthquake-induced landslide displacements using Newmark’s sliding block analysis. Transportation Research Record, 9–9.

    Google Scholar 

  • Jibson, R. (2000). A method for producing digital probabilistic seismic landslide hazard maps. Engineering Geology.

    Google Scholar 

  • Jibson, R. W. (2007). Regression models for estimating coseismic landslide displacement. Engineering Geology, 91(2–4), 209–218.

    Article  Google Scholar 

  • Jibson, R. W. (2011). Methods for assessing the stability of slopes during earthquakes—a retrospective. Engineering Geology, 122(1–2), 43–50.

    Article  Google Scholar 

  • Jibson, R. W., & Jibson, M. W. (2003). Java programs for using Newmark’s method and simplified decoupled analysis to model slope performance during earthquakes. US Geological Survey: US Department of the Interior.

    Google Scholar 

  • Jibson, R. W., Harp, E. L., & Michael, J. A. (1998). A Method for Producing Digital Probabilistic Seismic Landslide Hazard Maps: An Example from the Los Angeles, California, Area.

    Google Scholar 

  • Kavazanjian, E., & Consultants, G. (1997). Design Guidance: Geotechnical Earthquake Engineering for Highways. Federal Highway Administration: Design Principles.

    Google Scholar 

  • Kawai, T. (1977). A new discrete analysis of nonlinear solid mechanics problems involving stability, plasticity and crack. In the Symposium on Applications of Computer Methods in Engineering, Los Angeles, USA, (pp. 1029–1038).

    Google Scholar 

  • Kawai, T. (1978). New discrete models and their application to seismic response analysis of structures. Nuclear Engineering and Design, 48(1), 207–229.

    Article  Google Scholar 

  • Kawai, T., Kawabata, Y., Kumagai, K., & Kondou, K. (1978). A new discrete model for analysis of solid mechanics problems. Numerical methods in fracture mechanics, 26–37.

    Google Scholar 

  • Kawai, T., Takeuchi, N., & Kumeta, T. (1981). New discrete models and their application to rock mechanics. In ISRM International Symposium.

    Google Scholar 

  • Ke, T. C. (1996). The issues of rigid-body rotation in DDA. In First international forum on discontinuous deformation analysis (DDA) and simulations of discontinuous media, (pp. 318–325). Berkeley, USA.

    Google Scholar 

  • Keefer, D. K. (2000). Statistical analysis of an earthquake-induced landslide distribution—the 1989 Loma Prieta California event. Engineering Geology, 58(3), 231–249.

    Article  Google Scholar 

  • Keylock, C., & Domaas, U. (1999). Evaluation of topographic models of rockfall travel distance for use in hazard applications. Arctic, Antarctic, and Alpine Research, 312–320.

    Google Scholar 

  • Kirby, M. J., & Statham, I. (1975). Surface stone movement and screen formation. Journal of Geology, 83(3), 349–362.

    Article  Google Scholar 

  • Kobayashi, Y., Harp, E., & Kagawa, T. (1990). Simulation of rockfalls triggered by earthquakes. Rock Mechanics and Rock Engineering, 23(1), 1–20.

    Article  Google Scholar 

  • Komodromos, P., Papaloizou, L., & Polycarpou, P. (2008). Simulation of the response of ancient columns under harmonic and earthquake excitations. Engineering Structures, 30(8), 2154–2164.

    Article  Google Scholar 

  • Kong, X., & Liu, J. (2002). Dynamic failure numeric simulations of model concrete-faced rock-fill dam. Soil Dynamics and Earthquake Engineering, 22(9–12), 1131–1134.

    Article  Google Scholar 

  • Koo, C. Y., & Chern, J. C. (1998). Modification of the DDA method for rigid block problems. International Journal of Rock Mechanics & Mining Sciences, 35, 683–693.

    Article  Google Scholar 

  • Körner, H. (1980). The energy-line method in the mechanics of avalanches. Journal of Glaciology, 26, 501–505.

    Article  Google Scholar 

  • Kostaschuk, R. (1987). Identification of debris flow hazard on alluvial fans in the Canadian Rocky Mountains. Debris flows/avalanches: process, recognition, and mitigation, 7, 115.

    Article  Google Scholar 

  • Kramer, S.L. (1996). Geotechnical earthquake engineering. Prentice-Hall Civil Engineering and Engineering Mechanics Series, Upper Saddle River, NJ: Prentice Hall,| c1996, 1.

    Google Scholar 

  • Kramer, S. L., & Smith, M. W. (1997). Modified Newmark model for seismic displacements of compliant slopes. Journal of Geotechnical and Geoenvironmental Engineering, 123(7), 635–644.

    Article  Google Scholar 

  • Krinitzsky, E.L. (1993). Fundamentals of earthquake-resistant construction. Wiley. com.

    Google Scholar 

  • Lan, H., Derek Martin, C., & Lim, C. (2007). RockFall analyst: a GIS extension for three-dimensional and spatially distributed rockfall hazard modeling. Computers & Geosciences, 33(2), 262–279.

    Article  Google Scholar 

  • Latha, G. M., & Garaga, A. (2010). Seismic stability analysis of a himalayan rock slope. Rock Mechanics and Rock Engineering, 43(6), 831–843.

    Article  Google Scholar 

  • Lee, K. L. (1974). Seismic permanent deformation in earth dams. Los Angeles, CA: University of California.

    Google Scholar 

  • Leger, P., & Katsouli, M. (1989). Seismic stability of concrete gravity dams. Earthquake Engineering & Structural Dynamics, 18(6), 889–902.

    Article  Google Scholar 

  • Li, T. (1983). A mathematical model for predicting the extent of a major rockfall. Zeitschrift Fur Geomorphologie, 24, 473–482.

    Google Scholar 

  • Lied, K. (1977). Rockfall problems in Norway. Rockfall dynamics and protective work effectiveness. ISMES publ, 90, 51–53.

    Google Scholar 

  • Lin, J. S., & Whitman, R. V. (1983). Decoupling approximation to the evaluation of earthquake-induced plastic slip in earth dams. Earthquake Engineering & Structural Dynamics, 11(5), 667–678.

    Article  Google Scholar 

  • Lin, C.T., Amadei, B., Jung, J., & Dwyer, J. (1996). Extensions of discontinuous deformation analysis for jointed rock masses. international Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 33(7), 671–694.

    Google Scholar 

  • Ling, H. I. (2001). Recent applications of sliding block theory to geotechnical design. Soil Dynamics and Earthquake Engineering, 21, 189–197.

    Article  Google Scholar 

  • Ling, H., & Leshchinsky, D. (1998). Effects of vertical acceleration on seismic design of geosynthetic-reinforced soil structures. Geotechnique, 48(3), 347–373.

    Article  Google Scholar 

  • Luan, M., Li, Y., & Yang, Q. (2000). Discontinuous deformation computational mechanics model and its application in stability analysis of rock slope. Chinese Journal of Rock Mechanics and Engineering, 3, 006.

    Google Scholar 

  • Makdisi, F.I., & Seed, H.B. (1977). Simplified procedure for estimating dam and embankment earthquake-induced deformations. In ASAE Publication No. 4-77. Proceedings of the National Symposium on Soil Erosion and Sediment by Water, Chicago, Illinois, December 12–13.

    Google Scholar 

  • Makdisi, F. I., & Seed, H. B. (1978). Simplified procedure for estimating dam and embankment earthquake-induced failures. Journal of the Geotechnical Division, ASCE, 104, 849–861.

    Google Scholar 

  • Makris, N., & Roussos, Y. (2000). Rocking response of rigid blocks under near-source ground motions. Geotechnique, 50(3), 243–262.

    Article  Google Scholar 

  • Mankelow, J.M., & MURPHY, W. (1998). Using GIS in the probabilistic assessment of earthquake triggered landslide hazards. Journal of Earthquake Engineering, 2(4), 593–623.

    Google Scholar 

  • Marcuson, W. (1981). Moderator’s report for session on Earth Dams and Stability of Slopes under Dynamic Loads. In Proceedings, International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics (Vol.3, p. 1175).

    Google Scholar 

  • Marcuson III, W.F., & Franklin, A.G. (1983). Seismic Design, Analysis, and Remedial Measures to Improve Stability of Existing Earth Dams. DTIC Document.

    Google Scholar 

  • Masuya, H., Amanuma, K., Nishikawa, Y., & Tsuji, T. (2009). Basic rockfall simulation with consideration of vegetation and application to protection measure. Natural Hazards and Earth System Science, 9(6), 1835–1843.

    Article  Google Scholar 

  • McClung, D. M., & Lied, K. (1987). Statistical and geometrical definition of snow avalanche runout. Cold Regions Science and Technology, 13(2), 107–119.

    Article  Google Scholar 

  • McDougall, S. (2006a). A new continuum dynamic model for the analysis of extremely rapid landslide motion across complex 3D terrain. University of British Columbia.

    Google Scholar 

  • McDougall, D. (2006b). The distributed criterion design. Journal of Behavioral Education, 15(4), 236–246.

    Article  Google Scholar 

  • McDougall, S., & Hungr, O. (2004). A model for the analysis of rapid landslide motion across three-dimensional terrain. Canadian Geotechnical Journal, 41(6), 1084–1097.

    Article  Google Scholar 

  • Meunier, P., Hovius, N., & Haines, A.J. (2007). Regional patterns of earthquake-triggered landslides and their relation to ground motion. Geophysical Research Letters, 34(20).

    Google Scholar 

  • Miles, S. B., & Ho, C. L. (1999). Applications and issues of GIS as tool for civil engineering modeling. Journal of Computing in Civil Engineering, 13(3), 144–152.

    Article  Google Scholar 

  • Miles, S. B., & Keefer, D. K. (2000). Evaluation of seismic slope-performance models using a regional case study. Environmental & Engineering Geoscience, 6(1), 25–39.

    Article  Google Scholar 

  • Mitchell, A.R., & Griffiths, D.F. (1980). The finite difference method in partial differential equations. Wiley-Interscience: Chichester, Sussex, England and New York. p. 281.

    Google Scholar 

  • Moretti, L., Mangeney, A., Capdeville, Y., Stutzmann, E., Christian Huggel, C., Schneider, D., & Francois Bouchut, F. (2012). Numerical modeling of the mount steller landslide flow history and of the generated long period seismic waves. Geophysical Research Letters, 39(L16402).

    Google Scholar 

  • Moriwaki, H., Yazaki, S., & Oyagi, N. (1985). A gigantic debris avalanche and its dynamics at Mount Ontake caused by the Nagano-ken-seibu earthquake, 1984. In Proc. 4th Int. Conf. Field Workshop on Landslides, (pp. 359–364).

    Google Scholar 

  • Newmark, N. M. (1965). Effects of earthquakes on dams and embankments. Géotechnique, 15, 139–159.

    Article  Google Scholar 

  • Ning, Y., & Zhao, Z. (2012). A detailed investigation of block dynamic sliding by the discontinuous deformation analysis. International Journal for Numerical and Analytical Methods in Geomechanics, 1–21.

    Google Scholar 

  • Niwa, K., Kawai, T., Ikeda, M., & Takeda, T. (1984). Application of a new discrete method to fracture analysis of brittle materials. In The 3rd International Conference on Numerical Methods in Fracture Mechanics, Swansea, U.K. (pp. 13–27).

    Google Scholar 

  • Ochiai, H., Okada, Y., Furuya, G., Okura, Y., Matsui, T., Sammori, T., et al. (2004). A fluidized landslide on a natural slope by artificial rainfall. Landslides, 1(3), 211–219.

    Article  Google Scholar 

  • Ohnishi, Y., Chen, G., & Miki, S. (1995). Recent development of DDA in rock mechanics. Proc. ICADD, 1, 26–47.

    Google Scholar 

  • Okura, Y., Kitahara, H., & Sammori, T. (2000a). Fluidization in dry landslides. Engineering Geology, 56(3), 347–360.

    Article  Google Scholar 

  • Okura, Y., Kitahara, H., Sammori, T., & Kawanami, A. (2000b). The effects of rockfall volume on runout distance. Engineering Geology, 58(2), 109–124.

    Article  Google Scholar 

  • Okura, Y., Kitahara, H., Ochiai, H., Sammori, T., & Kawanami, A. (2002). Landslide fluidization process by flume experiments. Engineering Geology, 66(1), 65–78.

    Article  Google Scholar 

  • Pal, S., Kaynia, A.M., Bhasin, R.K., and Paul, D.K. (2011). Earthquake Stability Analysis of Rock Slopes: a Case Study. Rock Mechanics and Rock Engineering.

    Google Scholar 

  • Papaloizou, L., & Komodromos, P. (2009). Planar investigation of the seismic response of ancient columns and colonnades with epistyles using a custom-made software. Soil Dynamics and Earthquake Engineering, 29(11–12), 1437–1454.

    Article  Google Scholar 

  • Papantonopoulos, C., Psycharis, I. N., Papastamatiou, D. Y., Lemos, J. V., & Mouzakis, H. P. (2002). Numerical prediction of the earthquake response of classical columns using the distinct element method. Earthquake Engineering & Structural Dynamics, 31(9), 1699–1717.

    Article  Google Scholar 

  • Pekau, O. A., & Cui, Y. (2004). Failure analysis of fractured dams during earthquakes by DEM. Engineering Structures, 26(10), 1483–1502.

    Article  Google Scholar 

  • Pfeiffer, T. J., & Bowen, T. (1989). Computer simulation of rockfalls. Bulletin of the Association of Engineering, 26(1), 135–146.

    Google Scholar 

  • Pirulli, M. (2005). Numerical modelling of landslide runout. A continuum mechanics approach, Politecnico di Torino.

    Google Scholar 

  • Poisel, R., Preh, A., & Hungr, O. (2008). Run out of landslides-continuum mechanics versus discontinuum mechanics models. Geomechanics and Tunnelling, 1(5), 358–366.

    Article  Google Scholar 

  • Prevost, J.H. (1981). DYNA-FLOW: a nonlinear transient finite element analysis program. Princeton University, Department of Civil Engineering, School of Engineering and Applied Science.

    Google Scholar 

  • Psycharis, I., Lemos, J., Papastamatiou, D., Zambas, C., & Papantonopoulos, C. (2003). Numerical study of the seismic behaviour of a part of the parthenon pronaos. Earthquake Engineering & Structural Dynamics, 32(13), 2063–2084.

    Article  Google Scholar 

  • Pyke, R. (1991). Selection of Seismic Coefficients for Use in Pseudo-Static Slope Stability Analyses. http://www.tagasoft.com/Discussion/article2_html

  • Rathje, E. M., & Bray, J. D. (1999). An examination of simplified earthquake-induced displacement procedures for earth structures. Canadian Geotechnical Journal, 36(1), 72–87.

    Article  Google Scholar 

  • Rathje, E. M., & Bray, J. D. (2000). Nonlinear coupled seismic sliding analysis of earth structures. Journal of Geotechnical and Geoenvironmental Engineering, 126(11), 1002–1014.

    Article  Google Scholar 

  • Richards, R., & Elms, D. G. (1979). Seismic behavior of gravity retaining walls. Journal of the Geotechnical Engineering Division, 105(4), 449–464.

    Google Scholar 

  • Richards, J., Elms, D., & Budhu, M. (1993). Seismic bearing capacity and settlements of foundations. Journal of Geotechnical Engineering, 119(4), 662–674.

    Article  Google Scholar 

  • Rickenmann, D. (1999). Empirical relationships for debris flows. Natural Hazards, 19(1), 47–77.

    Article  Google Scholar 

  • Rodriguez, C.E., Bommer, J., & Chandler, R.J. (1999). Earthquake-induced landslides 1980–1997. Soil Dynamics and Earthquake Engineering, 18, 325–346.

    Google Scholar 

  • Sarma, S. K. (1975). Seismic stability of earth dams and embankments. Geotechnique, 25(4), 743–761.

    Article  Google Scholar 

  • Sarma, S. K. (1981). Seismic displacement analysis of earth dams. Journal of the Geotechnical Engineering Division, 107(12), 1735–1739.

    Google Scholar 

  • Sasaki, T., Hagiwara, I., Sasaki, K., Yoshinaka, R., Ohnishi, Y., & Nishiyama, S. (2004). Earthquake response analysis of rock-fall models by discontinuous deformation analysis. In In Proceedings of the ISRM international symposium 3rd ARMS (pp. 1267–1272). Kyoto, Japan.

    Google Scholar 

  • Sasaki, T., Hagiwara, I., Sasaki, K., Ohnishi, Y., & Ito, H. (2007). Fundamental studies for dynamic response of simple block structures by DDA. In In Proceedings of the eighth international conference on analysis of discontinuous deformation: fundamentals and applications to mining & civil engineering (pp. 141–146). Beijing, China.

    Google Scholar 

  • Sassa, K. (1988). Motion of Landslides and Debris Flows: Prediction of Hazard Area: Report for Grant-in-aid for Scientific Research by Japanese Ministry on Education, Science and Culture (project No. 61480062). Disaster Prevention Research Institute.

    Google Scholar 

  • Savage, S., & Hutter, K. (1989). The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics, 199(1), 177–215.

    Article  Google Scholar 

  • Sawada, T., Chen, W. F., & Nomachi, S. G. (1993). Assessment of seismic displacements of slopes. Soil Dynamics and Earthquake Engineering, 12, 357–362.

    Article  Google Scholar 

  • Saygili, G., & Rathje, E. M. (2009). Probabilistically based seismic landslide hazard maps: an application in southern California. Engineering Geology, 109(3), 183–194.

    Article  Google Scholar 

  • Scheidegger, A. E. (1973). On the prediction of the reach and velocity of catastrophic landslides. Rock Mechanics, 5(4), 231–236.

    Article  Google Scholar 

  • Seed, H.B. 1973. Analysis of the Slides in the San Fernando Dams During the Earthquake of Feb. 9. (1971). Report to State of California Department of Water Resources, Los Angeles Department of Water and Power. National Science Foundation: College of Engineering, University of California.

    Google Scholar 

  • Seed, H. B. (1979). Considerations in the earthquake-resistant design of earth and rockfill dams. Geotechnique, 29(3), 13–41.

    Article  Google Scholar 

  • Seed, H.B., & Martin, G.R. (1966). The seismic coefficient in earth dam design. Journal of Soil Mechanics & Foundations Div, 92(Proc. Paper 4824).

    Google Scholar 

  • Serff, N. (1976). Earthquake induced deformations of earth dams. College of Engineering, University of California.

    Google Scholar 

  • Shi, G.-H. (1988). Discontinuous deformation analysis a new numerical model for the statics and dynamics of block systems. Berkeley: University of California.

    Google Scholar 

  • Shi, G. (2002). Single and multiple block limit equilibrium of key block method and discontinuous deformation analysis. In Proceedings of the 5th International Conference on Analysis of Discontinuous Deformation (pp. 3–43). Rotterdam: AA Balkema.

    Google Scholar 

  • Shi, G.-H., & Goodman, R. E. (1985). Two dimensional discontinuous deformation analysis. International Journal for Numerical and Analytical Methods in Geomechanics, 9, 541–556.

    Article  Google Scholar 

  • Shi, G.-H., & Goodman, R. E. (1989). Generalization of two-dimensional discontinuous deformation analysis for forward modelling. International Journal for Numerical and Analytical Methods in Geomechanics, 13, 359–380.

    Article  Google Scholar 

  • Sousa, J., & Voight, B. (1991). Continuum simulation of flow failures. Geotechnique, 41(4), 515–538.

    Article  Google Scholar 

  • Stamatopoulos, C. (1996). Sliding system predicting large permanent co-seismic movements of slopes. Earthquake Engineering & Structural Dynamics, 25(10), 1075–1093.

    Article  Google Scholar 

  • Stewart, J. P., Blake, T. F., & Hollingsworth, R. A. (2003). A Screen Analysis Procedure for Seismic Slope Stability. Earthquake Spectra, 19(3), 697.

    Article  Google Scholar 

  • Taiebat, M., Kaynia, A. M., & Dafalias, Y. F. (2011). Application of an anisotropic constitutive model for structured clay to seismic slope stability. Journal of Geotechnical and Geoenvironmental Engineering, 137(5), 492.

    Article  Google Scholar 

  • Takahashi, T., Momiyama, A., Hirai, K., Hishinuma, F., & Akagi, H. (1992). Functional correlation of fetal and adult forms of glycine receptors with developmental changes in inhibitory synaptic receptor channels. Neuron, 9(6), 1155–1161.

    Article  Google Scholar 

  • Terzaghi, K. (1950). Theoretical Soil Mechanics.

    Google Scholar 

  • Tsesarsky, M., Hatzor, Y., & Sitar, N. (2005). Dynamic displacement of a block on an inclined plane: analytical, experimental and DDA results. Rock Mechanics and Rock Engineering, 38(2), 153–167.

    Article  Google Scholar 

  • Varnes, D.J. (1984). Landslides, t.I.A.E.G.C.o., and Slopes, O.M.M.o. Landslide hazard zonation: a review of principles and practice.

    Google Scholar 

  • Wang, F., Sun, P., Highland, L., & Cheng, Q. (2012). Initiation and motion mechanism of the Donghekou rapid and long runout landslide triggered by the 2008 Wenchuan earthquake, China. In The International Symposium on Earthquake-induced landslides (pp. 473–483). Kiryu, Japan: Springer-Verlag Berlin Heidelberg.

    Google Scholar 

  • Wartman, J., Asce, M., Bray, J. D., & Seed, R. B. (2003). Inclined plane studies of the newmark sliding block procedure. Journal of Geotechnical and Geoenvironmental Engineering, 129(8), 673–684.

    Article  Google Scholar 

  • Wasowski, J., Keefer, D. K., & Lee, C.-T. (2011). Toward the next generation of research on earthquake-induced landslides: current issues and future challenges. Engineering Geology, 122(1–2), 1–8.

    Article  Google Scholar 

  • Wilson, R. C., & Keefer, D. K. (1983). Dynamic analysis of a slope failure from the 6 August 1979 Coyote Lake, California, earthquake. Bulletin of the Seismological Society of America, 73(3), 863–877.

    Google Scholar 

  • Wu, J.-H. (2003). Numerical analysis of discontinuous rock masses using discontinuous deformation analysis. Kyoto, Japan: Kyoto University.

    Google Scholar 

  • Wu, J.-H. (2010). Seismic landslide simulations in discontinuous deformation analysis. Computers and Geotechnics, 37(5), 594–601.

    Article  Google Scholar 

  • Wu, J.-H., & Chen, C.-H. (2011). Application of DDA to simulate characteristics of the Tsaoling landslide. Computers and Geotechnics, 38(5), 741–750.

    Article  Google Scholar 

  • Wu, J.-H., & Tsai, P.-H. (2011). New dynamic procedure for back-calculating the shear strength parameters of large landslides. Engineering Geology.

    Google Scholar 

  • Wu, A., Ren, F., & Dong, X. (1997). A study on the numerical model of DDA and its preliminary application to rock engineering. Chinese Journal of Rock Mechanics and Engineering, 16(5), 411–417.

    Google Scholar 

  • Wu, J., Lin, J., & Chen, C. (2009). Dynamic discrete analysis of an earthquake-induced large-scale landslide. International Journal of Rock Mechanics and Mining Sciences, 46(2), 397–407.

    Article  Google Scholar 

  • Yagoda-Biran, G., & Hatzor, Y. H. (2010). Constraining paleo PGA values by numerical analysis of overturned columns. Earthquake Engineering & Structural Dynamics, 39(4), 463–472.

    Google Scholar 

  • Yegian, M.K. (1991). Seismic risk analysis for earth dams. ASCE.

    Google Scholar 

  • Yegian, M. K., Marciano, E. A., & Ghahraman, V. G. (1991). Earthquake-induced permanent deformations: probabilistic approach. Journal of Geotechnical Engineering, 117(1), 35–50.

    Article  Google Scholar 

  • Yegian, M., Harb, J., & Kadakal, U. (1998). Dynamic response analysis procedure for landfills with geosynthetic liners. Journal of Geotechnical and Geoenvironmental Engineering, 124(10), 1027–1033.

    Article  Google Scholar 

  • Zhang, C., Pekau, O.A., Jin, F., & Wang, G. (1997). Application of distinct element method in dynamic analysis of high rock slopes and blocky structures. Soil Dynamics and Earthquake Engineering, 16, 385–394.

    Google Scholar 

  • Zhang, Y., Chen, G., Zheng, L., Wu, J., & Zhuang, X. (2012a). Effects of vertical seismic force on the initiation of the Da-guangbao landslide induced by the Wenchuan earthquake. In The 8th Annual Conference of International Institute for Infrastructure, Renewal and Reconstruction (pp. 530–539). Kumamoto, Japan.

    Google Scholar 

  • Zhang, Y., Chen, G., Zheng, L., & Li, Y. (2012b). Numerical analysis of the largest landslide induced by the Wenchuan earthquake, May 12, 2008 using DDA. In International Symposium on Earthquake-induced Landslides. Kiryu, Japan.

    Google Scholar 

  • Zhang, Y., Chen, G., Zheng, L., Li, Y., & Zhuang, X. (2013). Effects of geometries on three-dimensional slope stability. Canadian Geotechnical Journal, 50(3), 233–249.

    Article  Google Scholar 

  • Zhao, S.L., Salami, M.R., & Rahman, M.S. (1997). Discontinuous De-formation Analysis Simulation of Rock Slope Failure Processes. In 9th International Conference on Computer Methods and Advances in Geomechanics (pp. 473–477), Wuhan, China.

    Google Scholar 

  • Zheng, L. (2010). Development of new models for landslide simulation based on discontinuous deformation analysis. Fukuoka, Japan: Kyushu University.

    Google Scholar 

  • Zheng, Y. R., Tang, X., Zhao, S., Deng, C., & Lei, W. (2009). Strength reduction and step-loading finite element approaches in geotechnical engineering. Journal of Rock Mechanics and Geotechnical Engineering, 1(1), 21–30.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingbin Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Science Press, Beijing and Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Zhang, Y. (2018). Review of Studies on Earthquake-Induced Landslides. In: Earthquake-Induced Landslides. Springer Natural Hazards. Springer, Singapore. https://doi.org/10.1007/978-981-10-2935-6_2

Download citation

Publish with us

Policies and ethics