Skip to main content

Co-transplantation Strategies and Combination Therapies for Stroke

  • Chapter
  • First Online:
Bone marrow stem cell therapy for stroke

Abstract

Worldwide cerebrovascular disease (CVD) is increasing in parallel with modernization, changes in lifestyle, and the growing elderly population. The incidence of stroke increases significantly with age both in men and women with incidence rates accelerating above 70 years. Since stroke afflicts mostly the elderly comorbid patients, it is highly desirable to test the efficacy of cell therapies in an appropriate animal stroke model. All monotherapeutic attempts to prevent or ameliorate brain damage following stroke have failed so far. In view of previous findings indicating that stroke impacts a wide range of mechanisms, ranging from central nervous system (CNS) physiology over CNS regeneration and plasticity to the adaptive immune system in an age-dependent manner, the failure of monotherapies is perhaps not unlikely. Bone marrow-derived mesenchymal stem cells (BM MSCs) and hematopoietic stem/progenitor cells (HSPC) are the most frequently cells used in preclinical and clinical neurorestorative studies in stroke therapy. Therefore co-transplantation of BM MSCs with other cells may be a better strategy to improve microenvironment, make the grafting more efficient, and improve functional recovery after stroke. Current knowledge includes: (1) the potential for neurogenesis is also preserved in aged, stroke-injured brains; (2) the environment of the aged brain is not hostile to transplantation of BM MSC; and (3) the extent of recovery is successful in some but not all behavioral tests. However, there remain significant developmental and translational issues to be resolved in future studies such as: (1) Understanding the differentiation into specific phenotypes. Upon transplantation, the differentiated cells often de-differentiate (Kalladka and Muir Stem Cells Cloning 7:31–44, 2014). (2) Tumorigenesis remains a significant concern (Riess et al. J Neurotrauma 24(1):216–225, 2007). (3) Anti-neuroinflammatory therapies are a potential target to promote regeneration and repair in diverse injury and neurodegenerative conditions by stem cell therapy. (iv) Efficacy of cell therapy can be enhanced by physical rehabilitation (Dunnett Clin Neurol 110:43–59, 2013). We recommend that in a real clinical practice involving older poststroke patients, successful regenerative therapies would have to be carried out for a much longer time. The BM MSC therapy in aged rodents warrants further investigation including repeated administrations of therapeutic cells at several time points after stroke and using various combinations with G-CSF or other relevant growth factors/cytokines.

Finally, a better understanding of potential risks of stem cell therapies in strokes shall makes the translation of cell therapies safer. Likewise, awareness of their biology may help improve their efficacy to achieve therapeutic success.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acosta SA, Tajiri N, Hoover J, Kaneko Y, Borlongan CV. Intravenous bone marrow stem cell grafts preferentially migrate to spleen and abrogate chronic inflammation in stroke. Stroke. 2015;46(9):2616–27. doi:10.1161/strokeaha.115.009854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ahlenius H, Visan V, Kokaia M, Lindvall O, Kokaia Z. Neural stem and progenitor cells retain their potential for proliferation and differentiation into functional neurons despite lower number in aged brain. J Neurosci. 2009;29(14):4408–19. doi:10.1523/jneurosci.6003-08.2009.

    Article  CAS  PubMed  Google Scholar 

  3. Akiyama H, Chaboissier MC, Martin JF, Schedl A, de Crombrugghe B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev. 2002;16(21):2813–28. doi:10.1101/gad.1017802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ankeny DP, McTigue DM, Jakeman LB. Bone marrow transplants provide tissue protection and directional guidance for axons after contusive spinal cord injury in rats. Exp Neurol. 2004;190(1):17–31. doi:10.1016/j.expneurol.2004.05.045.

    Article  PubMed  Google Scholar 

  5. Appelros P, Nydevik I, Viitanen M. Poor outcome after first-ever stroke: predictors for death, dependency, and recurrent stroke within the first year. Stroke. 2003;34(1):122–6.

    Article  PubMed  Google Scholar 

  6. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med. 2002;8(9):963–70. doi:10.1038/nm747.

    Article  CAS  PubMed  Google Scholar 

  7. Ay H, Koroshetz WJ, Vangel M, Benner T, Melinosky C, Zhu M, Menezes N, Lopez CJ, Sorensen AG. Conversion of ischemic brain tissue into infarction increases with age. Stroke. 2005;36(12):2632–6. doi:10.1161/01.str.0000189991.23918.01.

    Article  PubMed  Google Scholar 

  8. Bacigaluppi M, Pluchino S, Peruzzotti-Jametti L, Kilic E, Kilic U, Salani G, Brambilla E, West MJ, Comi G, Martino G, Hermann DM. Delayed post-ischaemic neuroprotection following systemic neural stem cell transplantation involves multiple mechanisms. Brain. 2009;132(Pt 8):2239–51. doi:10.1093/brain/awp174.

    Article  PubMed  Google Scholar 

  9. Badan I, Buchhold B, Hamm A, Gratz M, Walker LC, Platt D, Kessler C, Popa-Wagner A. Accelerated glial reactivity to stroke in aged rats correlates with reduced functional recovery. J Cereb Blood Flow Metab. 2003;23(7):845–54. doi:10.1097/01.wcb.0000071883.63724.a7.

    Article  CAS  PubMed  Google Scholar 

  10. Balseanu AT, Buga AM, Catalin B, Wagner DC, Boltze J, Zagrean AM, Reymann K, Schaebitz W, Popa-Wagner A. Multimodal approaches for regenerative stroke therapies: combination of granulocyte colony-stimulating factor with bone marrow mesenchymal stem cells is not superior to G-CSF alone. Front Aging Neurosci. 2014;6:130. doi:10.3389/fnagi.2014.00130.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Baltan S. Excitotoxicity and mitochondrial dysfunction underlie age-dependent ischemic white matter injury. Adv Neurobiol. 2014;11:151–70. doi:10.1007/978-3-319-08894-5_8.

    Article  PubMed  Google Scholar 

  12. Bao X, Wei J, Feng M, Lu S, Li G, Dou W, Ma W, Ma S, An Y, Qin C, Zhao RC, Wang R. Transplantation of human bone marrow-derived mesenchymal stem cells promotes behavioral recovery and endogenous neurogenesis after cerebral ischemia in rats. Brain Res. 2011;1367:103–13. doi:10.1016/j.brainres.2010.10.063.

    Article  CAS  PubMed  Google Scholar 

  13. Beck H, Raab S, Copanaki E, Heil M, Scholz A, Shibuya M, Deller T, Machein M, Plate KH. VEGFR-1 signaling regulates the homing of bone marrow-derived cells in a mouse stroke model. J Neuropathol Exp Neurol. 2010;69(2):168–75. doi:10.1097/NEN.0b013e3181c9c05b.

    Article  CAS  PubMed  Google Scholar 

  14. Bedi SS, Walker PA, Shah SK, Jimenez F, Thomas CP, Smith P, Hetz RA, Xue H, Pati S, Dash PK, Cox Jr CS. Autologous bone marrow mononuclear cells therapy attenuates activated microglial/macrophage response and improves spatial learning after traumatic brain injury. J Trauma Acute Care Surg. 2013;75(3):410–6. doi:10.1097/TA.0b013e31829617c6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bejot Y, Catteau A, Caillier M, Rouaud O, Durier J, Marie C, Di Carlo A, Osseby GV, Moreau T, Giroud M. Trends in incidence, risk factors, and survival in symptomatic lacunar stroke in Dijon, France, from 1989 to 2006: a population-based study. Stroke. 2008;39(7):1945–51. doi:10.1161/strokeaha.107.510933.

    Article  PubMed  Google Scholar 

  16. Bergerat A, Decano J, Wu CJ, Choi H, Nesvizhskii AI, Moran AM, Ruiz-Opazo N, Steffen M, Herrera VL. Prestroke proteomic changes in cerebral microvessels in stroke-prone, transgenic[hCETP]-Hyperlipidemic, Dahl salt-sensitive hypertensive rats. Mol Med. 2011;17(7–8):588–98. doi:10.2119/molmed.2010.00228.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bergmann O, Liebl J, Bernard S, Alkass K, Yeung MS, Steier P, Kutschera W, Johnson L, Landen M, Druid H, Spalding KL, Frisen J. The age of olfactory bulb neurons in humans. Neuron. 2012;74(4):634–9. doi:10.1016/j.neuron.2012.03.030.

    Article  CAS  PubMed  Google Scholar 

  18. Bingham D, Martin SJ, Macrae IM, Carswell HV. Watermaze performance after middle cerebral artery occlusion in the rat: the role of sensorimotor versus memory impairments. J Cereb Blood Flow Metab. 2012;32(6):989–99. doi:10.1038/jcbfm.2012.16.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Blasi A, Martino C, Balducci L, Saldarelli M, Soleti A, Navone SE, Canzi L, Cristini S, Invernici G, Parati EA, Alessandri G. Dermal fibroblasts display similar phenotypic and differentiation capacity to fat-derived mesenchymal stem cells, but differ in anti-inflammatory and angiogenic potential. Vasc Cell. 2011;3(1):5. doi:10.1186/2045-824x-3-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Boltze J, Arnold A, Walczak P, Jolkkonen J, Cui L, Wagner DC. The dark side of the force – constraints and complications of cell therapies for stroke. Front Neurol. 2015;6:155. doi:10.3389/fneur.2015.00155.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Boltze J, Nitzsche B, Geiger KD, Schoon HA. Histopathological investigation of different MCAO modalities and impact of autologous bone marrow mononuclear cell administration in an ovine stroke model. Transl Stroke Res. 2011;2(3):279–93. doi:10.1007/s12975-011-0101-5.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bonita R, Beaglehole R. Recovery of motor function after stroke. Stroke. 1988;19(12):1497–500.

    Article  CAS  PubMed  Google Scholar 

  23. Borlongan CV, Glover LE, Sanberg PR, Hess DC. Permeating the blood brain barrier and abrogating the inflammation in stroke: implications for stroke therapy. Curr Pharm Des. 2012;18(25):3670–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bratane BT, Bouley J, Schneider A, Bastan B, Henninger N, Fisher M. Granulocyte-colony stimulating factor delays PWI/DWI mismatch evolution and reduces final infarct volume in permanent-suture and embolic focal cerebral ischemia models in the rat. Stroke. 2009;40(9):3102–6. doi:10.1161/strokeaha.109.553958.

    Article  CAS  PubMed  Google Scholar 

  25. Brazelton TR, Rossi FM, Keshet GI, Blau HM. From marrow to brain: expression of neuronal phenotypes in adult mice. Science. 2000;290(5497):1775–9.

    Article  CAS  PubMed  Google Scholar 

  26. Brenneman M, Sharma S, Harting M, Strong R, Cox Jr CS, Aronowski J, Grotta JC, Savitz SI. Autologous bone marrow mononuclear cells enhance recovery after acute ischemic stroke in young and middle-aged rats. J Cereb Blood Flow Metab. 2010;30(1):140–9. doi:10.1038/jcbfm.2009.198.

    Article  PubMed  Google Scholar 

  27. Bronckaers A, Hilkens P, Martens W, Gervois P, Ratajczak J, Struys T, Lambrichts I. Mesenchymal stem/stromal cells as a pharmacological and therapeutic approach to accelerate angiogenesis. Pharmacol Ther. 2014;143(2):181–96. doi:10.1016/j.pharmthera.2014.02.013.

    Article  CAS  PubMed  Google Scholar 

  28. Buchhold B, Mogoanta L, Suofu Y, Hamm A, Walker L, Kessler C, Popa-Wagner A. Environmental enrichment improves functional and neuropathological indices following stroke in young and aged rats. Restor Neurol Neurosci. 2007;25(5–6):467–84.

    CAS  PubMed  Google Scholar 

  29. Buga AM, Di Napoli M, Popa-Wagner A. Preclinical models of stroke in aged animals with or without comorbidities: role of neuroinflammation. Biogerontology. 2013;14(6):651–62. doi:10.1007/s10522-013-9465-0.

    Article  CAS  PubMed  Google Scholar 

  30. Buga AM, Margaritescu C, Scholz CJ, Radu E, Zelenak C, Popa-Wagner A. Transcriptomics of post-stroke angiogenesis in the aged brain. Front Aging Neurosci. 2014;6:44. doi:10.3389/fnagi.2014.00044.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Burn J, Dennis M, Bamford J, Sandercock P, Wade D, Warlow C. Long-term risk of recurrent stroke after a first-ever stroke. The Oxfordshire Community Stroke Project. Stroke. 1994;25(2):333–7.

    Article  CAS  PubMed  Google Scholar 

  32. Cai D, Liu T. Inflammatory cause of metabolic syndrome via brain stress and NF-kappaB. Aging (Albany NY). 2012;4(2):98–115.

    Article  CAS  Google Scholar 

  33. Cai Q, Chen Z, Song P, Wu L, Wang L, Deng G, Liu B, Chen Q. Co-transplantation of hippocampal neural stem cells and astrocytes and microvascular endothelial cells improve the memory in ischemic stroke rat. Int J Clin Exp Med. 2015;8(8):13109–17.

    PubMed  PubMed Central  Google Scholar 

  34. Capilla-Gonzalez V, Herranz-Perez V, Garcia-Verdugo JM. The aged brain: genesis and fate of residual progenitor cells in the subventricular zone. Front Cell Neurosci. 2015;9:365. doi:10.3389/fncel.2015.00365.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Carlson ME, Conboy MJ, Hsu M, Barchas L, Jeong J, Agrawal A, Mikels AJ, Agrawal S, Schaffer DV, Conboy IM. Relative roles of TGF-beta1 and Wnt in the systemic regulation and aging of satellite cell responses. Aging Cell. 2009;8(6):676–89. doi:10.1111/j.1474-9726.2009.00517.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Carlson ME, Suetta C, Conboy MJ, Aagaard P, Mackey A, Kjaer M, Conboy I. Molecular aging and rejuvenation of human muscle stem cells. EMBO Mol Med. 2009;1(8–9):381–91. doi:10.1002/emmm.200900045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Carpentier PA, Palmer TD. Immune influence on adult neural stem cell regulation and function. Neuron. 2009;64(1):79–92. doi:10.1016/j.neuron.2009.08.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007;25(11):2739–49. doi:10.1634/stemcells.2007-0197.

    Article  CAS  PubMed  Google Scholar 

  39. Chen J, Zhang ZG, Li Y, Wang L, Xu YX, Gautam SC, Lu M, Zhu Z, Chopp M. Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res. 2003;92(6):692–9. doi:10.1161/01.res.0000063425.51108.8d.

    Article  CAS  PubMed  Google Scholar 

  40. Chen Y, Ai Y, Slevin JR, Maley BE, Gash DM. Progenitor proliferation in the adult hippocampus and substantia nigra induced by glial cell line-derived neurotrophic factor. Exp Neurol. 2005;196(1):87–95. doi:10.1016/j.expneurol.2005.07.010.

    Article  CAS  PubMed  Google Scholar 

  41. Conboy IM, Conboy MJ, Rebo J. Systemic problems: a perspective on stem cell aging and rejuvenation. Aging (Albany NY). 2015;7(10):754–65.

    Article  Google Scholar 

  42. Crigler L, Robey RC, Asawachaicharn A, Gaupp D, Phinney DG. Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol. 2006;198(1):54–64. doi:10.1016/j.expneurol.2005.10.029.

    Article  CAS  PubMed  Google Scholar 

  43. Darsalia V, Heldmann U, Lindvall O, Kokaia Z. Stroke-induced neurogenesis in aged brain. Stroke. 2005;36(8):1790–5. doi:10.1161/01.STR.0000173151.36031.be.

    Article  PubMed  Google Scholar 

  44. De Coppi P, Bartsch Jr G, Siddiqui MM, Xu T, Santos CC, Perin L, Mostoslavsky G, Serre AC, Snyder EY, Yoo JJ, Furth ME, Soker S, Atala A. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol. 2007;25(1):100–6. doi:10.1038/nbt1274.

    Article  PubMed  CAS  Google Scholar 

  45. De Vocht N, Lin D, Praet J, Hoornaert C, Reekmans K, Le Blon D, Daans J, Pauwels P, Goossens H, Hens N, Berneman Z, Van der Linden A, Ponsaerts P. Quantitative and phenotypic analysis of mesenchymal stromal cell graft survival and recognition by microglia and astrocytes in mouse brain. Immunobiology. 2013;218(5):696–705. doi:10.1016/j.imbio.2012.08.266.

    Article  PubMed  CAS  Google Scholar 

  46. dela Pena IC, Yoo A, Tajiri N, Acosta SA, Ji X, Kaneko Y, Borlongan CV. Granulocyte colony-stimulating factor attenuates delayed tPA-induced hemorrhagic transformation in ischemic stroke rats by enhancing angiogenesis and vasculogenesis. J Cereb Blood Flow Metab. 2015;35(2):338–46. doi:10.1038/jcbfm.2014.208.

    Article  CAS  Google Scholar 

  47. Deng J, Petersen BE, Steindler DA, Jorgensen ML, Laywell ED. Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation. Stem Cells. 2006;24(4):1054–64. doi:10.1634/stemcells.2005-0370.

    Article  CAS  PubMed  Google Scholar 

  48. Dharmasaroja P. Bone marrow-derived mesenchymal stem cells for the treatment of ischemic stroke. J Clin Neurosci. 2009;16(1):12–20. doi:10.1016/j.jocn.2008.05.006.

    Article  PubMed  Google Scholar 

  49. Dimmeler S, Burchfield J, Zeiher AM. Cell-based therapy of myocardial infarction. Arterioscler Thromb Vasc Biol. 2008;28(2):208–16. doi:10.1161/atvbaha.107.155317.

    Article  CAS  PubMed  Google Scholar 

  50. DiNapoli VA, Huber JD, Houser K, Li X, Rosen CL. Early disruptions of the blood-brain barrier may contribute to exacerbated neuronal damage and prolonged functional recovery following stroke in aged rats. Neurobiol Aging. 2008;29(5):753–64. doi:10.1016/j.neurobiolaging.2006.12.007.

    Article  CAS  PubMed  Google Scholar 

  51. Donnan GA, Davis SM. Breaking the 3 h barrier for treatment of acute ischaemic stroke. Lancet Neurol. 2008;7(11):981–2. doi:10.1016/s1474-4422(08)70230-8.

    Article  PubMed  Google Scholar 

  52. Dooley D, Vidal P, Hendrix S. Immunopharmacological intervention for successful neural stem cell therapy: new perspectives in CNS neurogenesis and repair. Pharmacol Ther. 2014;141(1):21–31. doi:10.1016/j.pharmthera.2013.08.001.

    Article  CAS  PubMed  Google Scholar 

  53. dos Santos AP, Milatovic D, Au C, Yin Z, Batoreu MC, Aschner M. Rat brain endothelial cells are a target of manganese toxicity. Brain Res. 2010;1326:152–61. doi:10.1016/j.brainres.2010.02.016.

    Article  PubMed  CAS  Google Scholar 

  54. Duncan K, Gonzales-Portillo GS, Acosta SA, Kaneko Y, Borlongan CV, Tajiri N. Stem cell-paved biobridges facilitate stem transplant and host brain cell interactions for stroke therapy. Brain Res. 2015;1623:160–5. doi:10.1016/j.brainres.2015.03.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dunnett SB. Neural tissue transplantation, repair, and rehabilitation. Handb Clin Neurol. 2013;110:43–59. doi:10.1016/b978-0-444-52901-5.00004-6.

    Article  PubMed  Google Scholar 

  56. Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O. Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci U S A. 2003;100(23):13632–7. doi:10.1073/pnas.2234031100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Enwere E, Shingo T, Gregg C, Fujikawa H, Ohta S, Weiss S. Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination. J Neurosci. 2004;24(38):8354–65. doi:10.1523/jneurosci.2751-04.2004.

    Article  CAS  PubMed  Google Scholar 

  58. Ernst A, Alkass K, Bernard S, Salehpour M, Perl S, Tisdale J, Possnert G, Druid H, Frisen J. Neurogenesis in the striatum of the adult human brain. Cell. 2014;156(5):1072–83. doi:10.1016/j.cell.2014.01.044.

    Article  CAS  PubMed  Google Scholar 

  59. Feng N, Han Q, Li J, Wang S, Li H, Yao X, Zhao RC. Generation of highly purified neural stem cells from human adipose-derived mesenchymal stem cells by Sox1 activation. Stem Cells Dev. 2014;23(5):515–29. doi:10.1089/scd.2013.0263.

    Article  CAS  PubMed  Google Scholar 

  60. Foteinos G, Hu Y, Xiao Q, Metzler B, Xu Q. Rapid endothelial turnover in atherosclerosis-prone areas coincides with stem cell repair in apolipoprotein E-deficient mice. Circulation. 2008;117(14):1856–63. doi:10.1161/circulationaha.107.746008.

    Article  PubMed  Google Scholar 

  61. Freret T, Gaudreau P, Schumann-Bard P, Billard JM, Popa-Wagner A. Mechanisms underlying the neuroprotective effect of brain reserve against late life depression. J Neural Transm (Vienna). 2015;122 Suppl 1:S55–61. doi:10.1007/s00702-013-1154-2.

    Article  Google Scholar 

  62. Gajera CR, Emich H, Lioubinski O, Christ A, Beckervordersandforth-Bonk R, Yoshikawa K, Bachmann S, Christensen EI, Gotz M, Kempermann G, Peterson AS, Willnow TE, Hammes A. LRP2 in ependymal cells regulates BMP signaling in the adult neurogenic niche. J Cell Sci. 2010;123(Pt 11):1922–30. doi:10.1242/jcs.065912.

    Article  CAS  PubMed  Google Scholar 

  63. Gauberti M, Montagne A, Marcos-Contreras OA, Le Behot A, Maubert E, Vivien D. Ultra-sensitive molecular MRI of vascular cell adhesion molecule-1 reveals a dynamic inflammatory penumbra after strokes. Stroke. 2013;44(7):1988–96. doi:10.1161/strokeaha.111.000544.

    Article  CAS  PubMed  Google Scholar 

  64. Gokcay F, Arsava EM, Baykaner T, Vangel M, Garg P, Wu O, Singhal AB, Furie KL, Sorensen AG, Ay H. Age-dependent susceptibility to infarct growth in women. Stroke. 2011;42(4):947–51. doi:10.1161/strokeaha.110.603902.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Goldstein LB, Samsa GP, Matchar DB, Horner RD. Charlson Index comorbidity adjustment for ischemic stroke outcome studies. Stroke. 2004;35(8):1941–5. doi:10.1161/01.STR.0000135225.80898.1c.

    Article  PubMed  Google Scholar 

  66. Guzman R, Choi R, Gera A, De Los Angeles A, Andres RH, Steinberg GK. Intravascular cell replacement therapy for stroke. Neurosurg Focus. 2008;24(3–4):E15. doi:10.3171/foc/2008/24/3-4/e14.

    Article  PubMed  Google Scholar 

  67. Hallett M. Plasticity of the human motor cortex and recovery from stroke. Brain Res Brain Res Rev. 2001;36(2–3):169–74.

    Article  CAS  PubMed  Google Scholar 

  68. Hayase M, Kitada M, Wakao S, Itokazu Y, Nozaki K, Hashimoto N, Takagi Y, Dezawa M. Committed neural progenitor cells derived from genetically modified bone marrow stromal cells ameliorate deficits in a rat model of stroke. J Cereb Blood Flow Metab. 2009;29(8):1409–20. doi:10.1038/jcbfm.2009.62.

    Article  CAS  PubMed  Google Scholar 

  69. Hermann DM, Chopp M. Promoting brain remodelling and plasticity for stroke recovery: therapeutic promise and potential pitfalls of clinical translation. Lancet Neurol. 2012;11(4):369–80. doi:10.1016/s1474-4422(12)70039-x.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Herz J, Hagen SI, Bergmuller E, Sabellek P, Gothert JR, Buer J, Hansen W, Hermann DM, Doeppner TR. Exacerbation of ischemic brain injury in hypercholesterolemic mice is associated with pronounced changes in peripheral and cerebral immune responses. Neurobiol Dis. 2014;62:456–68. doi:10.1016/j.nbd.2013.10.022.

    Article  CAS  PubMed  Google Scholar 

  71. Hess DC, Hill WD, Martin-Studdard A, Carothers J, Brailer J, Carroll J. Blood into brain after stroke. Trends Mol Med. 2002;8(9):452–3.

    Article  PubMed  Google Scholar 

  72. Hicks AU, Hewlett K, Windle V, Chernenko G, Ploughman M, Jolkkonen J, Weiss S, Corbett D. Enriched environment enhances transplanted subventricular zone stem cell migration and functional recovery after stroke. Neuroscience. 2007;146(1):31–40. doi:10.1016/j.neuroscience.2007.01.020.

    Article  CAS  PubMed  Google Scholar 

  73. Hill QA, Buxton D, Pearce R, Gesinde MO, Smith GM, Cook G. An analysis of the optimal timing of peripheral blood stem cell harvesting following priming with cyclophosphamide and G-CSF. Bone Marrow Transplant. 2007;40(10):925–30. doi:10.1038/sj.bmt.1705847.

    Article  CAS  PubMed  Google Scholar 

  74. Hofstetter CP, Schwarz EJ, Hess D, Widenfalk J, El Manira A, Prockop DJ, Olson L. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci U S A. 2002;99(4):2199–204. doi:10.1073/pnas.042678299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Honmou O, Onodera R, Sasaki M, Waxman SG, Kocsis JD. Mesenchymal stem cells: therapeutic outlook for stroke. Trends Mol Med. 2012;18(5):292–7. doi:10.1016/j.molmed.2012.02.003.

    Article  CAS  PubMed  Google Scholar 

  76. Horie N, Pereira MP, Niizuma K, Sun G, Keren-Gill H, Encarnacion A, Shamloo M, Hamilton SA, Jiang K, Huhn S, Palmer TD, Bliss TM, Steinberg GK. Transplanted stem cell-secreted vascular endothelial growth factor effects poststroke recovery, inflammation, and vascular repair. Stem Cells. 2011;29(2):274–85. doi:10.1002/stem.584.

    Article  CAS  PubMed  Google Scholar 

  77. Hosseini SM, Farahmandnia M, Kazemi S, Shakibajahromi B, Sarvestani FS, Khodabande Z. A novel cell therapy method for recovering after brain stroke in rats. Int J Stem Cells. 2015;8(2):191–9. 10.15283/ijsc.2015.8.2.191.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Hsieh JY, Wang HW, Chang SJ, Liao KH, Lee IH, Lin WS, Wu CH, Lin WY, Cheng SM. Mesenchymal stem cells from human umbilical cord express preferentially secreted factors related to neuroprotection, neurogenesis, and angiogenesis. PLoS One. 2013;8(8):e72604. doi:10.1371/journal.pone.0072604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ishizaka S, Horie N, Satoh K, Fukuda Y, Nishida N, Nagata I. Intra-arterial cell transplantation provides timing-dependent cell distribution and functional recovery after stroke. Stroke. 2013;44(3):720–6. doi:10.1161/strokeaha.112.677328.

    Article  PubMed  Google Scholar 

  80. Iso H, Jacobs Jr DR, Wentworth D, Neaton JD, Cohen JD. Serum cholesterol levels and six-year mortality from stroke in 350,977 men screened for the multiple risk factor intervention trial. N Engl J Med. 1989;320(14):904–10. doi:10.1056/nejm198904063201405.

    Article  CAS  PubMed  Google Scholar 

  81. Jeong J, Conboy MJ, Conboy IM. Pharmacological inhibition of myostatin/TGF-beta receptor/pSmad3 signaling rescues muscle regenerative responses in mouse model of type 1 diabetes. Acta Pharmacol Sin. 2013;34(8):1052–60. doi:10.1038/aps.2013.67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jiang Q, Thiffault C, Kramer BC, Ding GL, Zhang L, Nejad-Davarani SP, Li L, Arbab AS, Lu M, Navia B, Victor SJ, Hong K, Li QJ, Wang SY, Li Y, Chopp M. MRI detects brain reorganization after human umbilical tissue-derived cells (hUTC) treatment of stroke in rat. PLoS One. 2012;7(8):e42845. doi:10.1371/journal.pone.0042845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jin K, Wang X, Xie L, Mao XO, Zhu W, Wang Y, Shen J, Mao Y, Banwait S, Greenberg DA. Evidence for stroke-induced neurogenesis in the human brain. Proc Natl Acad Sci U S A. 2006;103(35):13198–202. doi:10.1073/pnas.0603512103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Joseph C, Buga AM, Vintilescu R, Balseanu AT, Moldovan M, Junker H, Walker L, Lotze M, Popa-Wagner A. Prolonged gaseous hypothermia prevents the upregulation of phagocytosis-specific protein annexin 1 and causes low-amplitude EEG activity in the aged rat brain after cerebral ischemia. J Cereb Blood Flow Metab. 2012;32(8):1632–42. doi:10.1038/jcbfm.2012.65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kalladka D, Muir KW. Brain repair: cell therapy in stroke. Stem Cells Cloning. 2014;7:31–44. doi:10.2147/sccaa.s38003.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kamiya N, Ueda M, Igarashi H, Nishiyama Y, Suda S, Inaba T, Katayama Y. Intra-arterial transplantation of bone marrow mononuclear cells immediately after reperfusion decreases brain injury after focal ischemia in rats. Life Sci. 2008;83(11–12):433–7. doi:10.1016/j.lfs.2008.07.018.

    Article  CAS  PubMed  Google Scholar 

  87. Katsman D, Zheng J, Spinelli K, Carmichael ST. Tissue microenvironments within functional cortical subdivisions adjacent to focal stroke. J Cereb Blood Flow Metab. 2003;23(9):997–1009. doi:10.1097/01.wcb.0000084252.20114.be.

    Article  PubMed  Google Scholar 

  88. Kawada H. Cell therapy using bone marrow-derived stem cells; the possibility of its application in regenerative medicine. Rinsho Ketsueki. 2006;47(6):431–8.

    PubMed  Google Scholar 

  89. Keimpema E, Fokkens MR, Nagy Z, Agoston V, Luiten PG, Nyakas C, Boddeke HW, Copray JC. Early transient presence of implanted bone marrow stem cells reduces lesion size after cerebral ischaemia in adult rats. Neuropathol Appl Neurobiol. 2009;35(1):89–102. doi:10.1111/j.1365-2990.2008.00961.x.

    Article  CAS  PubMed  Google Scholar 

  90. Kocsis JD, Honmou O. Bone marrow stem cells in experimental stroke. Prog Brain Res. 2012;201:79–98. doi:10.1016/b978-0-444-59544-7.00005-6.

    Article  PubMed  Google Scholar 

  91. Kojima T, Hirota Y, Ema M, Takahashi S, Miyoshi I, Okano H, Sawamoto K. Subventricular zone-derived neural progenitor cells migrate along a blood vessel scaffold toward the post-stroke striatum. Stem Cells. 2010;28(3):545–54. doi:10.1002/stem.306.

    PubMed  Google Scholar 

  92. Kokaia Z, Lindvall O. Stem cell repair of striatal ischemia. Prog Brain Res. 2012;201:35–53. doi:10.1016/b978-0-444-59544-7.00003-2.

    Article  PubMed  Google Scholar 

  93. Komatsu K, Honmou O, Suzuki J, Houkin K, Hamada H, Kocsis JD. Therapeutic time window of mesenchymal stem cells derived from bone marrow after cerebral ischemia. Brain Res. 2010;1334:84–92. doi:10.1016/j.brainres.2010.04.006.

    Article  CAS  PubMed  Google Scholar 

  94. Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A. 1999;96(19):10711–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Kobune M, Hirai S, Uchida H, Sasaki K, Ito Y, Kato K, Honmou O, Houkin K, Date I, Hamada H. BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model. Mol Ther. 2004;9(2):189–97. doi:10.1016/j.ymthe.2003.10.012.

    Article  CAS  PubMed  Google Scholar 

  96. Lee JS, Hong JM, Moon GJ, Lee PH, Ahn YH, Bang OY. A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells. 2010;28(6):1099–106. doi:10.1002/stem.430.

    Article  PubMed  Google Scholar 

  97. Li J, Tang Y, Wang Y, Tang R, Jiang W, Yang GY, Gao WQ. Neurovascular recovery via co-transplanted neural and vascular progenitors leads to improved functional restoration after ischemic stroke in rats. Stem Cell Rep. 2014;3(1):101–14. doi:10.1016/j.stemcr.2014.05.012.

    Article  CAS  Google Scholar 

  98. Lie DC, Colamarino SA, Song HJ, Desire L, Mira H, Consiglio A, Lein ES, Jessberger S, Lansford H, Dearie AR, Gage FH. Wnt signalling regulates adult hippocampal neurogenesis. Nature. 2005;437(7063):1370–5. doi:10.1038/nature04108.

    Article  CAS  PubMed  Google Scholar 

  99. Liebner S, Corada M, Bangsow T, Babbage J, Taddei A, Czupalla CJ, Reis M, Felici A, Wolburg H, Fruttiger M, Taketo MM, von Melchner H, Plate KH, Gerhardt H, Dejana E. Wnt/beta-catenin signaling controls development of the blood-brain barrier. J Cell Biol. 2008;183(3):409–17. doi:10.1083/jcb.200806024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Liepert J, Hamzei F, Weiller C. Lesion-induced and training-induced brain reorganization. Restor Neurol Neurosci. 2004;22(3–5):269–77.

    CAS  PubMed  Google Scholar 

  101. Lim JY, Jeong CH, Jun JA, Kim SM, Ryu CH, Hou Y, Oh W, Chang JW, Jeun SS. Therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells after intrathecal administration by lumbar puncture in a rat model of cerebral ischemia. Stem Cell Res Ther. 2011;2(5):38. doi:10.1186/scrt79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lindvall O, Kokaia Z. Neurogenesis following stroke affecting the adult brain. Cold Spring Harb Perspect Biol 7 (11). 2015. doi:10.1101/cshperspect.a019034

  103. Liu Q, Cheng G, Wang Z, Zhan S, Xiong B, Zhao X. Bone marrow-derived mesenchymal stem cells differentiate into nerve-like cells in vitro after transfection with brain-derived neurotrophic factor gene. In Vitro Cell Dev Biol Anim. 2015;51(3):319–27. doi:10.1007/s11626-015-9875-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Liu X, Ye R, Yan T, Yu SP, Wei L, Xu G, Fan X, Jiang Y, Stetler RA, Liu G, Chen J. Cell based therapies for ischemic stroke: from basic science to bedside. Prog Neurobiol. 2014;115:92–115. doi:10.1016/j.pneurobio.2013.11.007.

    Article  PubMed  Google Scholar 

  105. Liu Z, Li Y, Zhang X, Savant-Bhonsale S, Chopp M. Contralesional axonal remodeling of the corticospinal system in adult rats after stroke and bone marrow stromal cell treatment. Stroke. 2008;39(9):2571–7. doi:10.1161/strokeaha.107.511659.

    Article  PubMed  PubMed Central  Google Scholar 

  106. London A, Cohen M, Schwartz M. Microglia and monocyte-derived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair. Front Cell Neurosci. 2013;7:34. doi:10.3389/fncel.2013.00034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lowenthal RM, Ragg SJ, Anderson J, Nicholson L, Harrup RA, Tuck D. A randomized controlled clinical trial to determine the optimum duration of G-CSF priming prior to BM stem cell harvesting. Cytotherapy. 2007;9(2):158–64. doi:10.1080/14653240601182820.

    Article  CAS  PubMed  Google Scholar 

  108. Lu L, Chen X, Zhang CW, Yang WL, Wu YJ, Sun L, Bai LM, Gu XS, Ahmed S, Dawe GS, Xiao ZC. Morphological and functional characterization of predifferentiation of myelinating glia-like cells from human bone marrow stromal cells through activation of F3/Notch signaling in mouse retina. Stem Cells. 2008;26(2):580–90. doi:10.1634/stemcells.2007-0106.

    Article  CAS  PubMed  Google Scholar 

  109. Lu P, Jones LL, Tuszynski MH. BDNF-expressing marrow stromal cells support extensive axonal growth at sites of spinal cord injury. Exp Neurol. 2005;191(2):344–60. doi:10.1016/j.expneurol.2004.09.018.

    Article  CAS  PubMed  Google Scholar 

  110. Macas J, Nern C, Plate KH, Momma S. Increased generation of neuronal progenitors after ischemic injury in the aged adult human forebrain. J Neurosci. 2006;26(50):13114–9. doi:10.1523/jneurosci.4667-06.2006.

    Article  CAS  PubMed  Google Scholar 

  111. Macleod MR, van der Worp HB, Sena ES, Howells DW, Dirnagl U, Donnan GA. Evidence for the efficacy of NXY-059 in experimental focal cerebral ischaemia is confounded by study quality. Stroke. 2008;39(10):2824–9.

    Google Scholar 

  112. Macrez R, Ali C, Toutirais O, Le Mauff B, Defer G, Dirnagl U, Vivien D. Stroke and the immune system: from pathophysiology to new therapeutic strategies. Lancet Neurol. 2011;10(5):471–80. doi:10.1016/s1474-4422(11)70066-7.

    Article  CAS  PubMed  Google Scholar 

  113. Mahmood A, Lu D, Lu M, Chopp M. Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells. Neurosurgery. 2003;53(3):697–702. discussion 702–693.

    Article  PubMed  Google Scholar 

  114. Marti-Fabregas J, Romaguera-Ros M, Gomez-Pinedo U, Martinez-Ramirez S, Jimenez-Xarrie E, Marin R, Marti-Vilalta JL, Garcia-Verdugo JM. Proliferation in the human ipsilateral subventricular zone after ischemic stroke. Neurology. 2010;74(5):357–65. doi:10.1212/WNL.0b013e3181cbccec.

    Article  CAS  PubMed  Google Scholar 

  115. Martino G, Pluchino S. The therapeutic potential of neural stem cells. Nat Rev Neurosci. 2006;7(5):395–406. doi:10.1038/nrn1908.

    Article  CAS  PubMed  Google Scholar 

  116. McCabe C, Gallagher L, Gsell W, Graham D, Dominiczak AF, Macrae IM. Differences in the evolution of the ischemic penumbra in stroke-prone spontaneously hypertensive and Wistar-Kyoto rats. Stroke. 2009;40(12):3864–8. doi:10.1161/strokeaha.109.559021.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Menon LG, Kelly K, Yang HW, Kim SK, Black PM, Carroll RS. Human bone marrow-derived mesenchymal stromal cells expressing S-TRAIL as a cellular delivery vehicle for human glioma therapy. Stem Cells. 2009;27(9):2320–30. doi:10.1002/stem.136.

    Article  CAS  PubMed  Google Scholar 

  118. Mine Y, Tatarishvili J, Oki K, Monni E, Kokaia Z, Lindvall O. Grafted human neural stem cells enhance several steps of endogenous neurogenesis and improve behavioral recovery after middle cerebral artery occlusion in rats. Neurobiol Dis. 2013;52:191–203. doi:10.1016/j.nbd.2012.12.006.

    Article  CAS  PubMed  Google Scholar 

  119. Minger SL, Ekonomou A, Carta EM, Chinoy A, Perry RH, Ballard CG. Endogenous neurogenesis in the human brain following cerebral infarction. Regen Med. 2007;2(1):69–74. doi:10.2217/17460751.2.1.69.

    Article  PubMed  Google Scholar 

  120. Minnerup J, Heidrich J, Wellmann J, Rogalewski A, Schneider A, Schabitz WR. Meta-analysis of the efficacy of granulocyte-colony stimulating factor in animal models of focal cerebral ischemia. Stroke. 2008;39(6):1855–61. doi:10.1161/strokeaha.107.506816.

    Article  CAS  PubMed  Google Scholar 

  121. Mitkari B, Kerkela E, Nystedt J, Korhonen M, Mikkonen V, Huhtala T, Jolkkonen J. Intra-arterial infusion of human bone marrow-derived mesenchymal stem cells results in transient localization in the brain after cerebral ischemia in rats. Exp Neurol. 2013;239:158–62. doi:10.1016/j.expneurol.2012.09.018.

    Article  CAS  PubMed  Google Scholar 

  122. Moisan A, Pannetier N, Grillon E, Richard MJ, de Fraipont F, Remy C, Barbier EL, Detante O. Intracerebral injection of human mesenchymal stem cells impacts cerebral microvasculature after experimental stroke: MRI study. NMR Biomed. 2012;25(12):1340–8. doi:10.1002/nbm.2806.

    Article  CAS  PubMed  Google Scholar 

  123. Molofsky AV, Slutsky SG, Joseph NM, He S, Pardal R, Krishnamurthy J, Sharpless NE, Morrison SJ. Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature. 2006;443(7110):448–52. doi:10.1038/nature05091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Moniche F, Gonzalez A, Gonzalez-Marcos JR, Carmona M, Pinero P, Espigado I, Garcia-Solis D, Cayuela A, Montaner J, Boada C, Rosell A, Jimenez MD, Mayol A, Gil-Peralta A. Intra-arterial bone marrow mononuclear cells in ischemic stroke: a pilot clinical trial. Stroke. 2012;43(8):2242–4. doi:10.1161/strokeaha.112.659409.

    Article  PubMed  Google Scholar 

  125. Monje ML, Toda H, Palmer TD. Inflammatory blockade restores adult hippocampal neurogenesis. Science. 2003;302(5651):1760–5. doi:10.1126/science.1088417.

    Article  CAS  PubMed  Google Scholar 

  126. Nakagomi N, Nakagomi T, Kubo S, Nakano-Doi A, Saino O, Takata M, Yoshikawa H, Stern DM, Matsuyama T, Taguchi A. Endothelial cells support survival, proliferation, and neuronal differentiation of transplanted adult ischemia-induced neural stem/progenitor cells after cerebral infarction. Stem Cells. 2009;27(9):2185–95. doi:10.1002/stem.161.

    Article  PubMed  Google Scholar 

  127. Omori Y, Honmou O, Harada K, Suzuki J, Houkin K, Kocsis JD. Optimization of a therapeutic protocol for intravenous injection of human mesenchymal stem cells after cerebral ischemia in adult rats. Brain Res. 2008;1236:30–8. doi:10.1016/j.brainres.2008.07.116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, Nadal-Ginard B, Bodine DM, Leri A, Anversa P. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A. 2001;98(18):10344–9. doi:10.1073/pnas.181177898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Otero-Ortega L, Gutierrez-Fernandez M, Ramos-Cejudo J, Rodriguez-Frutos B, Fuentes B, Sobrino T, Hernanz TN, Campos F, Lopez JA, Cerdan S, Vazquez J, Diez-Tejedor E. White matter injury restoration after stem cell administration in subcortical ischemic stroke. Stem Cell Res Ther. 2015;6:121. doi:10.1186/s13287-015-0111-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Ott HC, McCue J, Taylor DA. Cell-based cardiovascular repair – the hurdles and the opportunities. Basic Res Cardiol. 2005;100(6):504–17. doi:10.1007/s00395-004-0558-z.

    Article  CAS  PubMed  Google Scholar 

  131. Pankratz MT, Li XJ, Lavaute TM, Lyons EA, Chen X, Zhang SC. Directed neural differentiation of human embryonic stem cells via an obligated primitive anterior stage. Stem Cells. 2007;25(6):1511–20. doi:10.1634/stemcells.2006-0707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Parent JM, Vexler ZS, Gong C, Derugin N, Ferriero DM. Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann Neurol. 2002;52(6):802–13. doi:10.1002/ana.10393.

    Article  PubMed  Google Scholar 

  133. Perry VH. Contribution of systemic inflammation to chronic neurodegeneration. Acta Neuropathol. 2010;120(3):277–86. doi:10.1007/s00401-010-0722-x.

    Article  CAS  PubMed  Google Scholar 

  134. Polentes J, Jendelova P, Cailleret M, Braun H, Romanyuk N, Tropel P, Brenot M, Itier V, Seminatore C, Baldauf K, Turnovcova K, Jirak D, Teletin M, Come J, Tournois J, Reymann K, Sykova E, Viville S, Onteniente B. Human induced pluripotent stem cells improve stroke outcome and reduce secondary degeneration in the recipient brain. Cell Transplant. 2012;21(12):2587–602. doi:10.3727/096368912x653228.

    Article  PubMed  Google Scholar 

  135. Popa-Wagner A, Buga AM, Doeppner TR, Hermann DM. Stem cell therapies in preclinical models of stroke associated with aging. Front Cell Neurosci. 2014;8:347. doi:10.3389/fncel.2014.00347.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Popa-Wagner A, Buga AM, Kokaia Z. Perturbed cellular response to brain injury during aging. Ageing Res Rev. 2011;10(1):71–9. doi:10.1016/j.arr.2009.10.008.

    Article  PubMed  Google Scholar 

  137. Popa-Wagner A, Carmichael ST, Kokaia Z, Kessler C, Walker LC. The response of the aged brain to stroke: too much, too soon? Curr Neurovasc Res. 2007;4(3):216–27.

    Article  CAS  PubMed  Google Scholar 

  138. Popa-Wagner A, Dinca I, Yalikun S, Walker L, Kroemer H, Kessler C. Accelerated delimitation of the infarct zone by capillary-derived nestin-positive cells in aged rats. Curr Neurovasc Res. 2006;3(1):3–13.

    Article  PubMed  Google Scholar 

  139. Popa-Wagner A, Mitran S, Sivanesan S, Chang E, Buga AM. ROS and brain diseases: the good, the bad, and the ugly. Oxidative Med Cell Longev. 2013;2013:963520. doi:10.1155/2013/963520.

    Article  CAS  Google Scholar 

  140. Popa-Wagner A, Schroder E, Walker LC, Kessler C. beta-Amyloid precursor protein and ss-amyloid peptide immunoreactivity in the rat brain after middle cerebral artery occlusion: effect of age. Stroke. 1998;29(10):2196–202.

    Article  CAS  PubMed  Google Scholar 

  141. Popa-Wagner A, Stocker K, Balseanu AT, Rogalewski A, Diederich K, Minnerup J, Margaritescu C, Schabitz WR. Effects of granulocyte-colony stimulating factor after stroke in aged rats. Stroke. 2010;41(5):1027–31. doi:10.1161/strokeaha.109.575621.

    Article  CAS  PubMed  Google Scholar 

  142. Porritt MJ, Chen M, Rewell SS, Dean RG, Burrell LM, Howells DW. ACE inhibition reduces infarction in normotensive but not hypertensive rats: correlation with cortical ACE activity. J Cereb Blood Flow Metab. 2010;30(8):1520–6. doi:10.1038/jcbfm.2010.57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Posel C, Scheibe J, Kranz A, Bothe V, Quente E, Frohlich W, Lange F, Schabitz WR, Minnerup J, Boltze J, Wagner DC. Bone marrow cell transplantation time-dependently abolishes efficacy of granulocyte colony-stimulating factor after stroke in hypertensive rats. Stroke. 2014;45(8):2431–7. doi:10.1161/strokeaha.113.004460.

    Article  PubMed  CAS  Google Scholar 

  144. Prasad K, Mohanty S, Bhatia R, Srivastava MV, Garg A, Srivastava A, Goyal V, Tripathi M, Kumar A, Bal C, Vij A, Mishra NK. Autologous intravenous bone marrow mononuclear cell therapy for patients with subacute ischaemic stroke: a pilot study. Indian J Med Res. 2012;136(2):221–8.

    PubMed  PubMed Central  Google Scholar 

  145. Prasad K, Sharma A, Garg A, Mohanty S, Bhatnagar S, Johri S, Singh KK, Nair V, Sarkar RS, Gorthi SP, Hassan KM, Prabhakar S, Marwaha N, Khandelwal N, Misra UK, Kalita J, Nityanand S. Intravenous autologous bone marrow mononuclear stem cell therapy for ischemic stroke: a multicentric, randomized trial. Stroke. 2014;45(12):3618–24. doi:10.1161/strokeaha.114.007028.

    Article  CAS  PubMed  Google Scholar 

  146. Priller J, Persons DA, Klett FF, Kempermann G, Kreutzberg GW, Dirnagl U. Neogenesis of cerebellar Purkinje neurons from gene-marked bone marrow cells in vivo. J Cell Biol. 2001;155(5):733–8. doi:10.1083/jcb.200105103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Prockop DJ, Oh JY. Medical therapies with adult stem/progenitor cells (MSCs): a backward journey from dramatic results in vivo to the cellular and molecular explanations. J Cell Biochem. 2012;113(5):1460–9. doi:10.1002/jcb.24046.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Qin L, Jing D, Parauda S, Carmel J, Ratan RR, Lee FS, Cho S. An adaptive role for BDNF Val66Met polymorphism in motor recovery in chronic stroke. J Neurosci. 2014;34(7):2493–502. doi:10.1523/jneurosci.4140-13.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ramos-Cabrer P, Justicia C, Wiedermann D, Hoehn M. Stem cell mediation of functional recovery after stroke in the rat. PLoS One. 2010;5(9):e12779. doi:10.1371/journal.pone.0012779.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Reitmeir R, Kilic E, Reinboth BS, Guo Z, ElAli A, Zechariah A, Kilic U, Hermann DM. Vascular endothelial growth factor induces contralesional corticobulbar plasticity and functional neurological recovery in the ischemic brain. Acta Neuropathol. 2012;123(2):273–84. doi:10.1007/s00401-011-0914-z.

    Article  CAS  PubMed  Google Scholar 

  151. Renault VM, Rafalski VA, Morgan AA, Salih DA, Brett JO, Webb AE, Villeda SA, Thekkat PU, Guillerey C, Denko NC, Palmer TD, Butte AJ, Brunet A. FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell. 2009;5(5):527–39. doi:10.1016/j.stem.2009.09.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Rewell SS, Fernandez JA, Cox SF, Spratt NJ, Hogan L, Aleksoska E, van Raay L, Liberatore GT, Batchelor PE, Howells DW. Inducing stroke in aged, hypertensive, diabetic rats. J Cereb Blood Flow Metab. 2010;30(4):729–33. doi:10.1038/jcbfm.2009.273.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Riess P, Molcanyi M, Bentz K, Maegele M, Simanski C, Carlitscheck C, Schneider A, Hescheler J, Bouillon B, Schafer U, Neugebauer E. Embryonic stem cell transplantation after experimental traumatic brain injury dramatically improves neurological outcome, but may cause tumors. J Neurotrauma. 2007;24(1):216–25. doi:10.1089/neu.2006.0141.

    Article  PubMed  Google Scholar 

  154. Ringelstein EB, Thijs V, Norrving B, Chamorro A, Aichner F, Grond M, Saver J, Laage R, Schneider A, Rathgeb F, Vogt G, Charisse G, Fiebach JB, Schwab S, Schabitz WR, Kollmar R, Fisher M, Brozman M, Skoloudik D, Gruber F, Serena Leal J, Veltkamp R, Kohrmann M, Berrouschot J. Granulocyte colony-stimulating factor in patients with acute ischemic stroke: results of the AX200 for Ischemic Stroke trial. Stroke. 2013;44(10):2681–7. doi:10.1161/strokeaha.113.001531.

    Article  CAS  PubMed  Google Scholar 

  155. Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Makuc DM, Marcus GM, Marelli A, Matchar DB, Moy CS, Mozaffarian D, Mussolino ME, Nichol G, Paynter NP, Soliman EZ, Sorlie PD, Sotoodehnia N, Turan TN, Virani SS, Wong ND, Woo D, Turner MB. Heart disease and stroke statistics – 2012 update: a report from the American Heart Association. Circulation. 2012;125(1):e2–220. doi:10.1161/CIR.0b013e31823ac046.

    Article  PubMed  Google Scholar 

  156. Rosado-de-Castro PH, Schmidt Fda R, Battistella V, Lopes de Souza SA, Gutfilen B, Goldenberg RC, Kasai-Brunswick TH, Vairo L, Silva RM, Wajnberg E, Alvarenga Americano do Brasil PE, Gasparetto EL, Maiolino A, Alves-Leon SV, Andre C, Mendez-Otero R, Rodriguezde Freitas G, Barbosa da Fonseca LM. Biodistribution of bone marrow mononuclear cells after intra-arterial or intravenous transplantation in subacute stroke patients. Regen Med. 2013;8(2):145–55. doi:10.2217/rme.13.2.

    Article  CAS  PubMed  Google Scholar 

  157. Rosenblum S, Wang N, Smith TN, Pendharkar AV, Chua JY, Birk H, Guzman R. Timing of intra-arterial neural stem cell transplantation after hypoxia-ischemia influences cell engraftment, survival, and differentiation. Stroke. 2012;43(6):1624–31. doi:10.1161/strokeaha.111.637884.

    Article  CAS  PubMed  Google Scholar 

  158. Rothrock JF, Clark WM, Lyden PD. Spontaneous early improvement following ischemic stroke. Stroke. 1995;26(8):1358–60.

    Article  CAS  PubMed  Google Scholar 

  159. Salgado AJ, Sousa JC, Costa BM, Pires AO, Mateus-Pinheiro A, Teixeira FG, Pinto L, Sousa N. Mesenchymal stem cells secretome as a modulator of the neurogenic niche: basic insights and therapeutic opportunities. Front Cell Neurosci. 2015;9:249. doi:10.3389/fncel.2015.00249.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Sanai N, Tramontin AD, Quinones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S, Lawton MT, McDermott MW, Parsa AT, Manuel-Garcia Verdugo J, Berger MS, Alvarez-Buylla A. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature. 2004;427(6976):740–4. doi:10.1038/nature02301.

    Article  CAS  PubMed  Google Scholar 

  161. Savitz SI, Misra V, Kasam M, Juneja H, Cox Jr CS, Alderman S, Aisiku I, Kar S, Gee A, Grotta JC. Intravenous autologous bone marrow mononuclear cells for ischemic stroke. Ann Neurol. 2011;70(1):59–69. doi:10.1002/ana.22458.

    Article  PubMed  Google Scholar 

  162. Scheibe F, Klein O, Klose J, Priller J. Mesenchymal stromal cells rescue cortical neurons from apoptotic cell death in an in vitro model of cerebral ischemia. Cell Mol Neurobiol. 2012;32(4):567–76. doi:10.1007/s10571-012-9798-2.

    Article  CAS  PubMed  Google Scholar 

  163. Schneider A, Kruger C, Steigleder T, Weber D, Pitzer C, Laage R, Aronowski J, Maurer MH, Gassler N, Mier W, Hasselblatt M, Kollmar R, Schwab S, Sommer C, Bach A, Kuhn HG, Schabitz WR. The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis. J Clin Invest. 2005;115(8):2083–98. doi:10.1172/jci23559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Sharma S, Yang B, Strong R, Xi X, Brenneman M, Grotta JC, Aronowski J, Savitz SI. Bone marrow mononuclear cells protect neurons and modulate microglia in cell culture models of ischemic stroke. J Neurosci Res. 2010;88(13):2869–76. doi:10.1002/jnr.22452.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Shen LH, Li Y, Chen J, Cui Y, Zhang C, Kapke A, Lu M, Savant-Bhonsale S, Chopp M. One-year follow-up after bone marrow stromal cell treatment in middle-aged female rats with stroke. Stroke. 2007;38(7):2150–6. doi:10.1161/strokeaha.106.481218.

    Article  PubMed  Google Scholar 

  166. Shen LH, Li Y, Chen J, Zhang J, Vanguri P, Borneman J, Chopp M. Intracarotid transplantation of bone marrow stromal cells increases axon-myelin remodeling after stroke. Neuroscience. 2006;137(2):393–9. doi:10.1016/j.neuroscience.2005.08.092.

    Article  CAS  PubMed  Google Scholar 

  167. Shen Q, Goderie SK, Jin L, Karanth N, Sun Y, Abramova N, Vincent P, Pumiglia K, Temple S. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science. 2004;304(5675):1338–40. doi:10.1126/science.1095505.

    Article  CAS  PubMed  Google Scholar 

  168. Sherman W, Martens TP, Viles-Gonzalez JF, Siminiak T. Catheter-based delivery of cells to the heart. Nat Clin Pract Cardiovasc Med. 2006;3 Suppl 1:S57–64. doi:10.1038/ncpcardio0446.

    Article  PubMed  Google Scholar 

  169. Shinozuka K, Dailey T, Tajiri N, Ishikawa H, Kaneko Y, Borlongan CV. Stem cell transplantation for neuroprotection in stroke. Brain Sci. 2013;3(1):239–61. doi:10.3390/brainsci3010239.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Shyu WC, Lin SZ, Yang HI, Tzeng YS, Pang CY, Yen PS, Li H. Functional recovery of stroke rats induced by granulocyte colony-stimulating factor-stimulated stem cells. Circulation. 2004;110(13):1847–54. doi:10.1161/01.cir.0000142616.07367.66.

    Article  CAS  PubMed  Google Scholar 

  171. Sleight P. The role of angiotensin-converting enzyme inhibitors in the treatment of hypertension. Curr Cardiol Rep. 2001;3(6):511–8.

    Article  CAS  PubMed  Google Scholar 

  172. Soleman S, Yip P, Leasure JL, Moon L. Sustained sensorimotor impairments after endothelin-1 induced focal cerebral ischemia (stroke) in aged rats. Exp Neurol. 2010;222(1):13–24. doi:10.1016/j.expneurol.2009.11.007.

    Article  CAS  PubMed  Google Scholar 

  173. Spaeth E, Klopp A, Dembinski J, Andreeff M, Marini F. Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther. 2008;15(10):730–8. doi:10.1038/gt.2008.39.

    Article  CAS  PubMed  Google Scholar 

  174. Sutherland GR, Dix GA, Auer RN. Effect of age in rodent models of focal and forebrain ischemia. Stroke. 1996;27:1663–7. doi:10.1161/01.STR.27.9.1663.

  175. Tacutu R, Budovsky A, Fraifeld VE. The NetAge database: a compendium of networks for longevity, age-related diseases and associated processes. Biogerontology. 2010;11(4):513–22. doi:10.1007/s10522-010-9265-8.

    Article  CAS  PubMed  Google Scholar 

  176. Taguchi A, Kasahara Y, Matsuyama T. Letter by Taguchi et al regarding article, “Granulocyte colony-stimulating factor in patients with acute ischemic stroke: results of the AX200 for Ischemic Stroke Trial”. Stroke. 2014;45(1):e8. doi:10.1161/strokeaha.113.003683.

    Article  PubMed  Google Scholar 

  177. Taguchi A, Ohtani M, Soma T, Watanabe M, Kinosita N. Therapeutic angiogenesis by autologous bone-marrow transplantation in a general hospital setting. Eur J Vasc Endovasc Surg. 2003;25(3):276–8. doi:10.1053/ejvs.2002.1831.

    Article  CAS  PubMed  Google Scholar 

  178. Tajiri N, Quach DM, Kaneko Y, Wu S, Lee D, Lam T, Hayama KL, Hazel TG, Johe K, Wu MC, Borlongan CV. Behavioral and histopathological assessment of adult ischemic rat brains after intracerebral transplantation of NSI-566RSC cell lines. PLoS One. 2014;9(3):e91408. doi:10.1371/journal.pone.0091408.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Tatarishvili J, Oki K, Monni E, Koch P, Memanishvili T, Buga AM, Verma V, Popa-Wagner A, Brustle O, Lindvall O, Kokaia Z. Human induced pluripotent stem cells improve recovery in stroke-injured aged rats. Restor Neurol Neurosci. 2014;32(4):547–58. doi:10.3233/rnn-140404.

    CAS  PubMed  Google Scholar 

  180. Tfilin M, Sudai E, Merenlender A, Gispan I, Yadid G, Turgeman G. Mesenchymal stem cells increase hippocampal neurogenesis and counteract depressive-like behavior. Mol Psychiatry. 2010;15(12):1164–75. doi:10.1038/mp.2009.110.

    Article  CAS  PubMed  Google Scholar 

  181. Toth ZE, Leker RR, Shahar T, Pastorino S, Szalayova I, Asemenew B, Key S, Parmelee A, Mayer B, Nemeth K, Bratincsak A, Mezey E. The combination of granulocyte colony-stimulating factor and stem cell factor significantly increases the number of bone marrow-derived endothelial cells in brains of mice following cerebral ischemia. Blood. 2008;111(12):5544–52. doi:10.1182/blood-2007-10-119073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Toyoshima A, Yasuhara T, Kameda M, Morimoto J, Takeuchi H, Wang F, Sasaki T, Sasada S, Shinko A, Wakamori T, Okazaki M, Kondo A, Agari T, Borlongan CV, Date I. Intra-arterial transplantation of allogeneic mesenchymal stem cells mounts neuroprotective effects in a transient ischemic stroke model in rats: analyses of therapeutic time window and its mechanisms. PLoS One. 2015;10(6):e0127302. doi:10.1371/journal.pone.0127302.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Trueman RC, Harrison DJ, Dwyer DM, Dunnett SB, Hoehn M, Farr TD. A critical re-examination of the intraluminal filament MCAO model: impact of external carotid artery transection. Transl Stroke Res. 2011;2(4):651–61. doi:10.1007/s12975-011-0102-4.

    Article  PubMed  Google Scholar 

  184. Vendrame M, Gemma C, Pennypacker KR, Bickford PC, Davis Sanberg C, Sanberg PR, Willing AE. Cord blood rescues stroke-induced changes in splenocyte phenotype and function. Exp Neurol. 2006;199(1):191–200. doi:10.1016/j.expneurol.2006.03.017.

    Article  CAS  PubMed  Google Scholar 

  185. Wagner DC, Bojko M, Peters M, Lorenz M, Voigt C, Kaminski A, Hasenclever D, Scholz M, Kranz A, Weise G, Boltze J. Impact of age on the efficacy of bone marrow mononuclear cell transplantation in experimental stroke. Exp Transl Stroke Med. 2012;4(1):17. doi:10.1186/2040-7378-4-17.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Walczak P, Zhang J, Gilad AA, Kedziorek DA, Ruiz-Cabello J, Young RG, Pittenger MF, van Zijl PC, Huang J, Bulte JW. Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia. Stroke. 2008;39(5):1569–74. doi:10.1161/strokeaha.107.502047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Wallenquist U, Holmqvist K, Hanell A, Marklund N, Hillered L, Forsberg-Nilsson K. Ibuprofen attenuates the inflammatory response and allows formation of migratory neuroblasts from grafted stem cells after traumatic brain injury. Restor Neurol Neurosci. 2012;30(1):9–19. doi:10.3233/rnn-2011-0606.

    CAS  PubMed  Google Scholar 

  188. Wang F, Yasuhara T, Shingo T, Kameda M, Tajiri N, Yuan WJ, Kondo A, Kadota T, Baba T, Tayra JT, Kikuchi Y, Miyoshi Y, Date I. Intravenous administration of mesenchymal stem cells exerts therapeutic effects on parkinsonian model of rats: focusing on neuroprotective effects of stromal cell-derived factor-1alpha. BMC Neurosci. 2010;11:52. doi:10.1186/1471-2202-11-52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Wang LC, Futrell N, Wang DZ, Chen FJ, Zhai QH, Schultz LR. A reproducible model of middle cerebral infarcts, compatible with long-term survival, in aged rats. Stroke. 1995;26(11):2087–90.

    Article  CAS  PubMed  Google Scholar 

  190. Wang LQ, Lin ZZ, Zhang HX, Shao B, Xiao L, Jiang HG, Zhuge QC, Xie LK, Wang B, Su DM, Jin KL. Timing and dose regimens of marrow mesenchymal stem cell transplantation affect the outcomes and neuroinflammatory response after ischemic stroke. CNS Neurosci Ther. 2014;20(4):317–26. doi:10.1111/cns.12216.

    Article  CAS  PubMed  Google Scholar 

  191. Weise G, Lorenz M, Posel C, Maria Riegelsberger U, Storbeck V, Kamprad M, Kranz A, Wagner DC, Boltze J. Transplantation of cryopreserved human umbilical cord blood mononuclear cells does not induce sustained recovery after experimental stroke in spontaneously hypertensive rats. J Cereb Blood Flow Metab. 2014;34(1):e1–9. doi:10.1038/jcbfm.2013.185.

    Article  PubMed  CAS  Google Scholar 

  192. Wolfson M, Budovsky A, Tacutu R, Fraifeld V. The signaling hubs at the crossroad of longevity and age-related disease networks. Int J Biochem Cell Biol. 2009;41(3):516–20. doi:10.1016/j.biocel.2008.08.026.

    Article  CAS  PubMed  Google Scholar 

  193. Yilmaz G, Granger DN. Cell adhesion molecules and ischemic stroke. Neurol Res. 2008;30(8):783–93. doi:10.1179/174313208x341085.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Yousef H, Conboy MJ, Morgenthaler A, Schlesinger C, Bugaj L, Paliwal P, Greer C, Conboy IM, Schaffer D. Systemic attenuation of the TGF-beta pathway by a single drug simultaneously rejuvenates hippocampal neurogenesis and myogenesis in the same old mammal. Oncotarget. 2015;6(14):11959–78. 10.18632/oncotarget.3851.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Yusuf S. After the HOPE Study. ACE inhibitor now for every diabetic patient? Interview by Dr. Dirk Einecke. MMW Fortschr Med. 2000;142(44):10.

    CAS  PubMed  Google Scholar 

  196. Zechariah A, ElAli A, Doeppner TR, Jin F, Hasan MR, Helfrich I, Mies G, Hermann DM. Vascular endothelial growth factor promotes pericyte coverage of brain capillaries, improves cerebral blood flow during subsequent focal cerebral ischemia, and preserves the metabolic penumbra. Stroke. 2013;44(6):1690–7. doi:10.1161/strokeaha.111.000240.

    Article  CAS  PubMed  Google Scholar 

  197. Zhang C, Harder DR. Cerebral capillary endothelial cell mitogenesis and morphogenesis induced by astrocytic epoxyeicosatrienoic acid. Stroke. 2002;33(12):2957–64.

    Article  CAS  PubMed  Google Scholar 

  198. Zhang SC. Neural subtype specification from embryonic stem cells. Brain Pathol. 2006;16(2):132–42. doi:10.1111/j.1750-3639.2006.00008.x.

    Article  CAS  PubMed  Google Scholar 

  199. Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D. Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell. 2008;135(1):61–73. doi:10.1016/j.cell.2008.07.043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Zhang ZG, Zhang L, Ding G, Jiang Q, Zhang RL, Zhang X, Gan WB, Chopp M. A model of mini-embolic stroke offers measurements of the neurovascular unit response in the living mouse. Stroke. 2005;36(12):2701–4. doi:10.1161/01.STR.0000190007.18897.e3.

    Article  PubMed  Google Scholar 

  201. Zhao C, Deng W, Gage FH. Mechanisms and functional implications of adult neurogenesis. Cell. 2008;132(4):645–60. doi:10.1016/j.cell.2008.01.033.

    Article  CAS  PubMed  Google Scholar 

  202. Zhao CS, Puurunen K, Schallert T, Sivenius J, Jolkkonen J. Behavioral effects of photothrombotic ischemic cortical injury in aged rats treated with the sedative-hypnotic GABAergic drug zopiclone. Behav Brain Res. 2005;160(2):260–6. doi:10.1016/j.bbr.2004.12.007.

    Article  CAS  PubMed  Google Scholar 

  203. Zhao LR, Duan WM, Reyes M, Keene CD, Verfaillie CM, Low WC. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol. 2002;174(1):11–20. doi:10.1006/exnr.2001.7853.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurel Popa-Wagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Popa-Wagner, A., Sandu, R.E., Ciobanu, O. (2017). Co-transplantation Strategies and Combination Therapies for Stroke. In: Jin, K., Ji, X., Zhuge, Q. (eds) Bone marrow stem cell therapy for stroke. Springer, Singapore. https://doi.org/10.1007/978-981-10-2929-5_8

Download citation

Publish with us

Policies and ethics