Skip to main content

Interaction of Bone Marrow Stem Cells with Other Cells

  • Chapter
  • First Online:
Bone marrow stem cell therapy for stroke

Abstract

Transplantation of bone marrow stem cells (BMSCs) as a regenerative cell replacement therapy for stroke holds great promise. However, the mechanisms underlying functional recovery after stroke remain unclear. Clearly, BMSCs benefit the neurological dysfunction in either direct or indirect methods through the interaction with other cells. In this chapter, we review the direct and indirect interactions of transplanted BMSCs with HSCs, immune cells, neural stem cells (NSCs), neurons, astrocytes, and endothelial cells for better understanding of the mechanisms underlying BMSC-mediated neurological function improvement after stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970;3(4):393–403.

    CAS  PubMed  Google Scholar 

  2. Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol. 1976;4(5):267–74.

    CAS  PubMed  Google Scholar 

  3. Friedenstein AJ, Deriglasova UF, Kulagina NN, Panasuk AF, Rudakowa SF, Luria EA, Ruadkow IA. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol. 1974;2(2):83–92.

    CAS  PubMed  Google Scholar 

  4. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997;276(5309):71–4.

    Article  CAS  PubMed  Google Scholar 

  5. Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, Deans RJ, Krause DS, Keating A, International Society for Cellular T. Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement. Cytotherapy. 2005;7(5):393–5. doi:10.1080/14653240500319234.

    Article  CAS  PubMed  Google Scholar 

  6. Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F. Muscle regeneration by bone marrow-derived myogenic progenitors. Science. 1998;279(5356):1528–30.

    Article  CAS  PubMed  Google Scholar 

  7. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.

    Article  CAS  PubMed  Google Scholar 

  8. Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A. 1999;96(19):10711–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sanchez-Ramos J, Song S, Cardozo-Pelaez F, Hazzi C, Stedeford T, Willing A, Freeman TB, Saporta S, Janssen W, Patel N, Cooper DR, Sanberg PR. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol. 2000;164(2):247–56. doi:10.1006/exnr.2000.7389.

    Article  CAS  PubMed  Google Scholar 

  10. Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res. 2000;61(4):364–70.

    Article  CAS  PubMed  Google Scholar 

  11. Kohyama J, Abe H, Shimazaki T, Koizumi A, Nakashima K, Gojo S, Taga T, Okano H, Hata J, Umezawa A. Brain from bone: efficient “meta-differentiation” of marrow stroma-derived mature osteoblasts to neurons with Noggin or a demethylating agent. Differentiation. 2001;68(4–5):235–44.

    Article  CAS  PubMed  Google Scholar 

  12. Kwak DH, Yu K, Kim SM, Lee DH, Kim SM, Jung JU, Seo JW, Kim N, Lee S, Jung KY, You HK, Kim HA, Choo YK. Dynamic changes of gangliosides expression during the differentiation of embryonic and mesenchymal stem cells into neural cells. Exp Mol Med. 2006;38(6):668–76. doi:10.1038/emm.2006.79.

    Article  CAS  PubMed  Google Scholar 

  13. Malgieri A, Kantzari E, Patrizi MP, Gambardella S. Bone marrow and umbilical cord blood human mesenchymal stem cells: state of the art. Int J Clin Exp Med. 2010;3(4):248–69.

    PubMed  PubMed Central  Google Scholar 

  14. Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation. 2003;75(3):389–97. doi:10.1097/01.TP.0000045055.63901.A9.

    Article  CAS  PubMed  Google Scholar 

  15. Chen X, Li Y, Wang L, Katakowski M, Zhang L, Chen J, Xu Y, Gautam SC, Chopp M. Ischemic rat brain extracts induce human marrow stromal cell growth factor production. Neuropathology. 2002;22(4):275–9.

    Article  PubMed  Google Scholar 

  16. Dormady SP, Bashayan O, Dougherty R, Zhang XM, Basch RS. Immortalized multipotential mesenchymal cells and the hematopoietic microenvironment. J Hematother Stem Cell Res. 2001;10(1):125–40. doi:10.1089/152581601750098372.

    Article  CAS  PubMed  Google Scholar 

  17. Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Ishii K, Kobune M, Hirai S, Uchida H, Sasaki K, Ito Y, Kato K, Honmou O, Houkin K, Date I, Hamada H. Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol Ther. 2005;11(1):96–104. doi:10.1016/j.ymthe.2004.09.020.

    Article  CAS  PubMed  Google Scholar 

  18. Ito M, Kuroda S, Sugiyama T, Maruichi K, Kawabori M, Nakayama N, Houkin K, Iwasaki Y. Transplanted bone marrow stromal cells protect neurovascular units and ameliorate brain damage in stroke-prone spontaneously hypertensive rats. Neuropathology. 2012;32(5):522–33. doi:10.1111/j.1440-1789.2011.01291.x.

    Article  PubMed  Google Scholar 

  19. Le Blanc K, Rasmusson I, Gotherstrom C, Seidel C, Sundberg B, Sundin M, Rosendahl K, Tammik C, Ringden O. Mesenchymal stem cells inhibit the expression of CD25 (interleukin-2 receptor) and CD38 on phytohaemagglutinin-activated lymphocytes. Scand J Immunol. 2004;60(3):307–15. doi:10.1111/j.0300-9475.2004.01483.x.

    Article  PubMed  Google Scholar 

  20. Gotherstrom C, Ringden O, Westgren M, Tammik C, Le Blanc K. Immunomodulatory effects of human foetal liver-derived mesenchymal stem cells. Bone Marrow Transplant. 2003;32(3):265–72. doi:10.1038/sj.bmt.1704111.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang W, Ge W, Li C, You S, Liao L, Han Q, Deng W, Zhao RC. Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells. Stem Cells Dev. 2004;13(3):263–71. doi:10.1089/154732804323099190.

    Article  CAS  PubMed  Google Scholar 

  22. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med. 2002;8(9):963–70. doi:10.1038/nm747.

    Article  CAS  PubMed  Google Scholar 

  23. Einstein O, Ben-Hur T. The changing face of neural stem cell therapy in neurologic diseases. Arch Neurol. 2008;65(4):452–6. doi:10.1001/archneur.65.4.452.

    Article  PubMed  Google Scholar 

  24. Scadden DT. The stem-cell niche as an entity of action. Nature. 2006;441(7097):1075–9. doi:10.1038/nature04957.

    Article  CAS  PubMed  Google Scholar 

  25. Lo Celso C, Scadden DT. The haematopoietic stem cell niche at a glance. J Cell Sci. 2011;124(Pt 21):3529–35. doi:10.1242/jcs.074112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature. 2014;505(7483):327–34. doi:10.1038/nature12984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Morrison SJ, Spradling AC. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell. 2008;132(4):598–611. doi:10.1016/j.cell.2008.01.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 1978;4(1–2):7–25.

    CAS  PubMed  Google Scholar 

  29. Boulais PE, Frenette PS. Making sense of hematopoietic stem cell niches. Blood. 2015;125(17):2621–9. doi:10.1182/blood-2014-09-570192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell. 2005;121(7):1109–21. doi:10.1016/j.cell.2005.05.026.

    Article  CAS  PubMed  Google Scholar 

  31. Kiel MJ, Radice GL, Morrison SJ. Lack of evidence that hematopoietic stem cells depend on N-cadherin-mediated adhesion to osteoblasts for their maintenance. Cell Stem Cell. 2007;1(2):204–17. doi:10.1016/j.stem.2007.06.001.

    Article  CAS  PubMed  Google Scholar 

  32. Ding L, Saunders TL, Enikolopov G, Morrison SJ. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature. 2012;481(7382):457–62. doi:10.1038/nature10783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sugiyama T, Kohara H, Noda M, Nagasawa T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity. 2006;25(6):977–88. doi:10.1016/j.immuni.2006.10.016.

    Article  CAS  PubMed  Google Scholar 

  34. Omatsu Y, Sugiyama T, Kohara H, Kondoh G, Fujii N, Kohno K, Nagasawa T. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity. 2010;33(3):387–99. doi:10.1016/j.immuni.2010.08.017.

    Article  CAS  PubMed  Google Scholar 

  35. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma’ayan A, Enikolopov GN, Frenette PS. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466(7308):829–34. doi:10.1038/nature09262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Greenbaum A, Hsu YM, Day RB, Schuettpelz LG, Christopher MJ, Borgerding JN, Nagasawa T, Link DC. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature. 2013;495(7440):227–30. doi:10.1038/nature11926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Spangrude GJ, Heimfeld S, Weissman IL. Purification and characterization of mouse hematopoietic stem cells. Science. 1988;241(4861):58–62.

    Article  CAS  PubMed  Google Scholar 

  38. Morrison SJ, Weissman IL. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity. 1994;1(8):661–73.

    Article  CAS  PubMed  Google Scholar 

  39. Osawa M, Hanada K, Hamada H, Nakauchi H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science. 1996;273(5272):242–5.

    Article  CAS  PubMed  Google Scholar 

  40. Nagasawa T, Kikutani H, Kishimoto T. Molecular cloning and structure of a pre-B-cell growth-stimulating factor. Proc Natl Acad Sci U S A. 1994;91(6):2305–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tokoyoda K, Egawa T, Sugiyama T, Choi BI, Nagasawa T. Cellular niches controlling B lymphocyte behavior within bone marrow during development. Immunity. 2004;20(6):707–18. doi:10.1016/j.immuni.2004.05.001.

    Article  CAS  PubMed  Google Scholar 

  42. Ehninger A, Trumpp A. The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in. J Exp Med. 2011;208(3):421–8. doi:10.1084/jem.20110132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mendez-Ferrer S, Frenette PS. Hematopoietic stem cell trafficking: regulated adhesion and attraction to bone marrow microenvironment. Ann N Y Acad Sci. 2007;1116:392–413. doi:10.1196/annals.1402.086.

    Article  CAS  PubMed  Google Scholar 

  44. Kunisaki Y, Bruns I, Scheiermann C, Ahmed J, Pinho S, Zhang D, Mizoguchi T, Wei Q, Lucas D, Ito K, Mar JC, Bergman A, Frenette PS. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature. 2013;502(7473):637–43. doi:10.1038/nature12612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yoo KH, Jang IK, Lee MW, Kim HE, Yang MS, Eom Y, Lee JE, Kim YJ, Yang SK, Jung HL, Sung KW, Kim CW, Koo HH. Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues. Cell Immunol. 2009;259(2):150–6. doi:10.1016/j.cellimm.2009.06.010.

    Article  CAS  PubMed  Google Scholar 

  46. Sun Z, Satomoto M, Makita K. Therapeutic effects of intravenous administration of bone marrow stromal cells on sevoflurane-induced neuronal apoptosis and neuroinflammation in neonatal rats. Kor J Anesthesiol. 2015;68(4):397–401. doi:10.4097/kjae.2015.68.4.397.

    Article  CAS  Google Scholar 

  47. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99(10):3838–43.

    Article  PubMed  Google Scholar 

  48. Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol. 2003;57(1):11–20.

    Article  PubMed  Google Scholar 

  49. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105(4):1815–22. doi:10.1182/blood-2004-04-1559.

    Article  CAS  PubMed  Google Scholar 

  50. Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, Hardy W, Devine S, Ucker D, Deans R, Moseley A, Hoffman R. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol. 2002;30(1):42–8.

    Article  PubMed  Google Scholar 

  51. Sotiropoulou PA, Perez SA, Gritzapis AD, Baxevanis CN, Papamichail M. Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells. 2006;24(1):74–85. doi:10.1634/stemcells.2004-0359.

    Article  PubMed  Google Scholar 

  52. Jiang XX, Zhang Y, Liu B, Zhang SX, Wu Y, Yu XD, Mao N. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood. 2005;105(10):4120–6. doi:10.1182/blood-2004-02-0586.

    Article  CAS  PubMed  Google Scholar 

  53. Ye Z, Wang Y, Xie HY, Zheng SS. Immunosuppressive effects of rat mesenchymal stem cells: involvement of CD4+CD25+ regulatory T cells. Hepatobiliary Pancreat Dis Int. 2008;7(6):608–14.

    PubMed  Google Scholar 

  54. Meisel R, Zibert A, Laryea M, Gobel U, Daubener W, Dilloo D. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood. 2004;103(12):4619–21. doi:10.1182/blood-2003-11-3909.

    Article  CAS  PubMed  Google Scholar 

  55. Sato K, Ozaki K, Oh I, Meguro A, Hatanaka K, Nagai T, Muroi K, Ozawa K. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood. 2007;109(1):228–34. doi:10.1182/blood-2006-02-002246.

    Article  CAS  PubMed  Google Scholar 

  56. Ding Y, Xu D, Feng G, Bushell A, Muschel RJ, Wood KJ. Mesenchymal stem cells prevent the rejection of fully allogenic islet grafts by the immunosuppressive activity of matrix metalloproteinase-2 and -9. Diabetes. 2009;58(8):1797–806. doi:10.2337/db09-0317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Selmani Z, Naji A, Zidi I, Favier B, Gaiffe E, Obert L, Borg C, Saas P, Tiberghien P, Rouas-Freiss N, Carosella ED, Deschaseaux F. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells. 2008;26(1):212–22. doi:10.1634/stemcells.2007-0554.

    Article  CAS  PubMed  Google Scholar 

  58. Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood. 2005;105(7):2821–7. doi:10.1182/blood-2004-09-3696.

    Article  CAS  PubMed  Google Scholar 

  59. Ghannam S, Pene J, Moquet-Torcy G, Jorgensen C, Yssel H. Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. J Immunol. 2010;185(1):302–12. doi:10.4049/jimmunol.0902007.

    Article  CAS  PubMed  Google Scholar 

  60. Jung KH, Song SU, Yi T, Jeon MS, Hong SW, Zheng HM, Lee HS, Choi MJ, Lee DH, Hong SS. Human bone marrow-derived clonal mesenchymal stem cells inhibit inflammation and reduce acute pancreatitis in rats. Gastroenterology. 2011;140(3):998–1008. doi:10.1053/j.gastro.2010.11.047.

    Article  CAS  PubMed  Google Scholar 

  61. Lim JH, Kim JS, Yoon IH, Shin JS, Nam HY, Yang SH, Kim SJ, Park CG. Immunomodulation of delayed-type hypersensitivity responses by mesenchymal stem cells is associated with bystander T cell apoptosis in the draining lymph node. J Immunol. 2010;185(7):4022–9. doi:10.4049/jimmunol.0902723.

    Article  CAS  PubMed  Google Scholar 

  62. Yi T, Song SU. Immunomodulatory properties of mesenchymal stem cells and their therapeutic applications. Arch Pharm Res. 2012;35(2):213–21. doi:10.1007/s12272-012-0202-z.

    Article  CAS  PubMed  Google Scholar 

  63. Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol. 2000;28(8):875–84.

    Article  CAS  PubMed  Google Scholar 

  64. Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringden O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol. 2003;31(10):890–6.

    Article  PubMed  CAS  Google Scholar 

  65. Gu L, Xiong X, Zhang H, Xu B, Steinberg GK, Zhao H. Distinctive effects of T cell subsets in neuronal injury induced by cocultured splenocytes in vitro and by in vivo stroke in mice. Stroke. 2012;43(7):1941–6. doi:10.1161/STROKEAHA.112.656611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Baruch K, Ron-Harel N, Gal H, Deczkowska A, Shifrut E, Ndifon W, Mirlas-Neisberg N, Cardon M, Vaknin I, Cahalon L, Berkutzki T, Mattson MP, Gomez-Pinilla F, Friedman N, Schwartz M. CNS-specific immunity at the choroid plexus shifts toward destructive Th2 inflammation in brain aging. Proc Natl Acad Sci U S A. 2013;110(6):2264–9. doi:10.1073/pnas.1211270110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wan YY, Flavell RA. Identifying Foxp3-expressing suppressor T cells with a bicistronic reporter. Proc Natl Acad Sci U S A. 2005;102(14):5126–31. doi:10.1073/pnas.0501701102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhao E, Wang L, Dai J, Kryczek I, Wei S, Vatan L, Altuwaijri S, Sparwasser T, Wang G, Keller ET, Zou W. Regulatory T cells in the bone marrow microenvironment in patients with prostate cancer. Oncoimmunology. 2012;1(2):152–61. doi:10.4161/onci.1.2.18480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zou L, Barnett B, Safah H, Larussa VF, Evdemon-Hogan M, Mottram P, Wei S, David O, Curiel TJ, Zou W. Bone marrow is a reservoir for CD4+CD25+ regulatory T cells that traffic through CXCL12/CXCR4 signals. Cancer Res. 2004;64(22):8451–5. doi:10.1158/0008-5472.CAN-04-1987.

    Article  CAS  PubMed  Google Scholar 

  70. Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, Dazzi F. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood. 2003;101(9):3722–9. doi:10.1182/blood-2002-07-2104.

    Article  CAS  PubMed  Google Scholar 

  71. Ge W, Jiang J, Arp J, Liu W, Garcia B, Wang H. Regulatory T-cell generation and kidney allograft tolerance induced by mesenchymal stem cells associated with indoleamine 2,3-dioxygenase expression. Transplantation. 2010;90(12):1312–20. doi:10.1097/TP.0b013e3181fed001.

    Article  CAS  PubMed  Google Scholar 

  72. Tipnis S, Viswanathan C, Majumdar AS. Immunosuppressive properties of human umbilical cord-derived mesenchymal stem cells: role of B7-H1 and IDO. Immunol Cell Biol. 2010;88(8):795–806. doi:10.1038/icb.2010.47.

    Article  PubMed  Google Scholar 

  73. Djouad F, Plence P, Bony C, Tropel P, Apparailly F, Sany J, Noel D, Jorgensen C. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood. 2003;102(10):3837–44. doi:10.1182/blood-2003-04-1193.

    Article  CAS  PubMed  Google Scholar 

  74. Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, Rivest S, Giese T, Veltkamp R. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med. 2009;15(2):192–9. doi:10.1038/nm.1927.

    Article  CAS  PubMed  Google Scholar 

  75. English K, Ryan JM, Tobin L, Murphy MJ, Barry FP, Mahon BP. Cell contact, prostaglandin E(2) and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4+CD25(High) forkhead box P3+ regulatory T cells. Clin Exp Immunol. 2009;156(1):149–60. doi:10.1111/j.1365-2249.2009.03874.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang Q, Shi S, Liu Y, Uyanne J, Shi Y, Shi S, Le AD. Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J Immunol. 2009;183(12):7787–98. doi:10.4049/jimmunol.0902318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yang N, Baban B, Isales CM, Shi XM. Crosstalk between bone marrow-derived mesenchymal stem cells and regulatory T cells through a glucocorticoid-induced leucine zipper/developmental endothelial locus-1-dependent mechanism. FASEB J. 2015;29(9):3954–63. doi:10.1096/fj.15-273664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Le Blanc K, Mougiakakos D. Multipotent mesenchymal stromal cells and the innate immune system. Nat Rev Immunol. 2012;12(5):383–96. doi:10.1038/nri3209.

    Article  PubMed  CAS  Google Scholar 

  79. Shichita T, Sugiyama Y, Ooboshi H, Sugimori H, Nakagawa R, Takada I, Iwaki T, Okada Y, Iida M, Cua DJ, Iwakura Y, Yoshimura A. Pivotal role of cerebral interleukin-17-producing gammadelta T cells in the delayed phase of ischemic brain injury. Nat Med. 2009;15(8):946–50. doi:10.1038/nm.1999.

    Article  CAS  PubMed  Google Scholar 

  80. Prigione I, Benvenuto F, Bocca P, Battistini L, Uccelli A, Pistoia V. Reciprocal interactions between human mesenchymal stem cells and gammadelta T cells or invariant natural killer T cells. Stem Cells. 2009;27(3):693–702. doi:10.1634/stemcells.2008-0687.

    Article  CAS  PubMed  Google Scholar 

  81. Wu J, Wang Q, Fu X, Wu X, Gu C, Bi J, Xie F, Kang N, Liu X, Yan L, Cao Y, Xiao R. Influence of immunogenicity of allogeneic bone marrow mesenchymal stem cells on bone tissue engineering. Cell Transplant. 2016;25(2):229–42. doi:10.3727/096368915X687967.

    PubMed  Google Scholar 

  82. Wang LQ, Lin ZZ, Zhang HX, Shao B, Xiao L, Jiang HG, Zhuge QC, Xie LK, Wang B, Su DM, Jin KL. Timing and dose regimens of marrow mesenchymal stem cell transplantation affect the outcomes and neuroinflammatory response after ischemic stroke. CNS Neurosci Ther. 2014;20(4):317–26. doi:10.1111/cns.12216.

    Article  CAS  PubMed  Google Scholar 

  83. Shi M, Liu ZW, Wang FS. Immunomodulatory properties and therapeutic application of mesenchymal stem cells. Clin Exp Immunol. 2011;164(1):1–8. doi:10.1111/j.1365-2249.2011.04327.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Le Blanc K, Ringden O. Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med. 2007;262(5):509–25. doi:10.1111/j.1365-2796.2007.01844.x.

    Article  PubMed  CAS  Google Scholar 

  85. Deng W, Han Q, Liao L, You S, Deng H, Zhao RC. Effects of allogeneic bone marrow-derived mesenchymal stem cells on T and B lymphocytes from BXSB mice. DNA Cell Biol. 2005;24(7):458–63. doi:10.1089/dna.2005.24.458.

    Article  CAS  PubMed  Google Scholar 

  86. Augello A, Tasso R, Negrini SM, Amateis A, Indiveri F, Cancedda R, Pennesi G. Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol. 2005;35(5):1482–90. doi:10.1002/eji.200425405.

    Article  CAS  PubMed  Google Scholar 

  87. Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F, Risso M, Gualandi F, Mancardi GL, Pistoia V, Uccelli A. Human mesenchymal stem cells modulate B-cell functions. Blood. 2006;107(1):367–72. doi:10.1182/blood-2005-07-2657.

    Article  CAS  PubMed  Google Scholar 

  88. Clutter SD, Fortney J, Gibson LF. MMP-2 is required for bone marrow stromal cell support of pro-B-cell chemotaxis. Exp Hematol. 2005;33(10):1192–200. doi:10.1016/j.exphem.2005.06.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Powell RJ, Jenkins JS. Lymphocyte subpopulations. Postgrad Med J. 1987;63(745):931–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L. Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood. 2006;107(4):1484–90. doi:10.1182/blood-2005-07-2775.

    Article  CAS  PubMed  Google Scholar 

  91. Rasmusson I, Ringden O, Sundberg B, Le Blanc K. Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation. 2003;76(8):1208–13. doi:10.1097/01.TP.0000082540.43730.80.

    Article  PubMed  Google Scholar 

  92. Ryan JM, Barry F, Murphy JM, Mahon BP. Interferon-gamma does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clin Exp Immunol. 2007;149(2):353–63. doi:10.1111/j.1365-2249.2007.03422.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Maccario R, Podesta M, Moretta A, Cometa A, Comoli P, Montagna D, Daudt L, Ibatici A, Piaggio G, Pozzi S, Frassoni F, Locatelli F. Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica. 2005;90(4):516–25.

    CAS  PubMed  Google Scholar 

  94. Nauta AJ, Kruisselbrink AB, Lurvink E, Willemze R, Fibbe WE. Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells. J Immunol. 2006;177(4):2080–7.

    Article  CAS  PubMed  Google Scholar 

  95. Spaggiari GM, Abdelrazik H, Becchetti F, Moretta L. MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood. 2009;113(26):6576–83. doi:10.1182/blood-2009-02-203943.

    Article  CAS  PubMed  Google Scholar 

  96. Ramasamy R, Fazekasova H, Lam EW, Soeiro I, Lombardi G, Dazzi F. Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation. 2007;83(1):71–6. doi:10.1097/01.tp.0000244572.24780.54.

    Article  PubMed  Google Scholar 

  97. Wang Y, Tu W, Lou Y, Xie A, Lai X, Guo F, Deng Z. Mesenchymal stem cells regulate the proliferation and differentiation of neural stem cells through Notch signaling. Cell Biol Int. 2009;33(11):1173–9. doi:10.1016/j.cellbi.2009.08.004.

    Article  CAS  PubMed  Google Scholar 

  98. Lou S, Gu P, Chen F, He C, Wang M, Lu C. The effect of bone marrow stromal cells on neuronal differentiation of mesencephalic neural stem cells in Sprague-Dawley rats. Brain Res. 2003;968(1):114–21.

    Article  CAS  PubMed  Google Scholar 

  99. Bai L, Caplan A, Lennon D, Miller RH. Human mesenchymal stem cells signals regulate neural stem cell fate. Neurochem Res. 2007;32(2):353–62. doi:10.1007/s11064-006-9212-x.

    Article  CAS  PubMed  Google Scholar 

  100. Rivera FJ, Kandasamy M, Couillard-Despres S, Caioni M, Sanchez R, Huber C, Weidner N, Bogdahn U, Aigner L. Oligodendrogenesis of adult neural progenitors: differential effects of ciliary neurotrophic factor and mesenchymal stem cell derived factors. J Neurochem. 2008;107(3):832–43. doi:10.1111/j.1471-4159.2008.05674.x.

    Article  CAS  PubMed  Google Scholar 

  101. Rivera FJ, Couillard-Despres S, Pedre X, Ploetz S, Caioni M, Lois C, Bogdahn U, Aigner L. Mesenchymal stem cells instruct oligodendrogenic fate decision on adult neural stem cells. Stem Cells. 2006;24(10):2209–19. doi:10.1634/stemcells.2005-0614.

    Article  CAS  PubMed  Google Scholar 

  102. Li X, Liu T, Song K, Yao L, Ge D, Bao C, Ma X, Cui Z. Culture of neural stem cells in calcium alginate beads. Biotechnol Prog. 2006;22(6):1683–9. doi:10.1021/bp060185z.

    Article  CAS  PubMed  Google Scholar 

  103. Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW, Rueger MA, Bae SK, Kittappa R, McKay RD. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature. 2006;442(7104):823–6. doi:10.1038/nature04940.

    Article  CAS  PubMed  Google Scholar 

  104. Grandbarbe L, Bouissac J, Rand M, Hrabe de Angelis M, Artavanis-Tsakonas S, Mohier E. Delta-Notch signaling controls the generation of neurons/glia from neural stem cells in a stepwise process. Development. 2003;130(7):1391–402.

    Article  CAS  PubMed  Google Scholar 

  105. Chojnacki A, Shimazaki T, Gregg C, Weinmaster G, Weiss S. Glycoprotein 130 signaling regulates Notch1 expression and activation in the self-renewal of mammalian forebrain neural stem cells. J Neurosci. 2003;23(5):1730–41.

    CAS  PubMed  Google Scholar 

  106. Robinson AP, Foraker JE, Ylostalo J, Prockop DJ. Human stem/progenitor cells from bone marrow enhance glial differentiation of rat neural stem cells: a role for transforming growth factor beta and Notch signaling. Stem Cells Dev. 2011;20(2):289–300. doi:10.1089/scd.2009.0444.

    Article  CAS  PubMed  Google Scholar 

  107. Kinnaird T, Stabile E, Burnett MS, Shou M, Lee CW, Barr S, Fuchs S, Epstein SE. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation. 2004;109(12):1543–9. doi:10.1161/01.CIR.0000124062.31102.57.

    Article  CAS  PubMed  Google Scholar 

  108. Mahmood A, Lu D, Chopp M. Intravenous administration of marrow stromal cells (MSCs) increases the expression of growth factors in rat brain after traumatic brain injury. J Neurotrauma. 2004;21(1):33–9. doi:10.1089/089771504772695922.

    Article  PubMed  Google Scholar 

  109. Munoz JR, Stoutenger BR, Robinson AP, Spees JL, Prockop DJ. Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. Proc Natl Acad Sci U S A. 2005;102(50):18171–6. doi:10.1073/pnas.0508945102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Haynesworth SE, Baber MA, Caplan AI. Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1 alpha. J Cell Physiol. 1996;166(3):585–92. doi:10.1002/(SICI)1097-4652(199603)166:3<585::AID-JCP13>3.0.CO;2-6.

    Article  CAS  PubMed  Google Scholar 

  111. Labouyrie E, Dubus P, Groppi A, Mahon FX, Ferrer J, Parrens M, Reiffers J, de Mascarel A, Merlio JP. Expression of neurotrophins and their receptors in human bone marrow. Am J Pathol. 1999;154(2):405–15. doi:10.1016/S0002-9440(10)65287-X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chen J, Li Y, Katakowski M, Chen X, Wang L, Lu D, Lu M, Gautam SC, Chopp M. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res. 2003;73(6):778–86. doi:10.1002/jnr.10691.

    Article  CAS  PubMed  Google Scholar 

  113. Zhao LR, Duan WM, Reyes M, Keene CD, Verfaillie CM, Low WC. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol. 2002;174(1):11–20. doi:10.1006/exnr.2001.7853.

    Article  PubMed  Google Scholar 

  114. Neuhuber B, Gallo G, Howard L, Kostura L, Mackay A, Fischer I. Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype. J Neurosci Res. 2004;77(2):192–204. doi:10.1002/jnr.20147.

    Article  CAS  PubMed  Google Scholar 

  115. Lu P, Blesch A, Tuszynski MH. Induction of bone marrow stromal cells to neurons: differentiation, transdifferentiation, or artifact? J Neurosci Res. 2004;77(2):174–91. doi:10.1002/jnr.20148.

    Article  CAS  PubMed  Google Scholar 

  116. Croft AP, Przyborski SA. Mesenchymal stem cells expressing neural antigens instruct a neurogenic cell fate on neural stem cells. Exp Neurol. 2009;216(2):329–41. doi:10.1016/j.expneurol.2008.12.010.

    Article  CAS  PubMed  Google Scholar 

  117. Sygnecka K, Heider A, Scherf N, Alt R, Franke H, Heine C. Mesenchymal stem cells support neuronal fiber growth in an organotypic brain slice co-culture model. Stem Cells Dev. 2015;24(7):824–35. doi:10.1089/scd.2014.0262.

    Article  CAS  PubMed  Google Scholar 

  118. Bajetto A, Bonavia R, Barbero S, Florio T, Schettini G. Chemokines and their receptors in the central nervous system. Front Neuroendocrinol. 2001;22(3):147–84. doi:10.1006/frne.2001.0214.

    Article  CAS  PubMed  Google Scholar 

  119. Lee H, Kang JE, Lee JK, Bae JS, Jin HK. Bone-marrow-derived mesenchymal stem cells promote proliferation and neuronal differentiation of Niemann-Pick type C mouse neural stem cells by upregulation and secretion of CCL2. Hum Gene Ther. 2013;24(7):655–69. doi:10.1089/hum.2013.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Yoo SW, Kim SS, Lee SY, Lee HS, Kim HS, Lee YD, Suh-Kim H. Mesenchymal stem cells promote proliferation of endogenous neural stem cells and survival of newborn cells in a rat stroke model. Exp Mol Med. 2008;40(4):387–97. doi:10.3858/emm.2008.40.4.387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Li Y, Chen J, Chen XG, Wang L, Gautam SC, Xu YX, Katakowski M, Zhang LJ, Lu M, Janakiraman N, Chopp M. Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology. 2002;59(4):514–23.

    Article  CAS  PubMed  Google Scholar 

  122. Celil AB, Campbell PG. BMP-2 and insulin-like growth factor-I mediate Osterix (Osx) expression in human mesenchymal stem cells via the MAPK and protein kinase D signaling pathways. J Biol Chem. 2005;280(36):31353–9. doi:10.1074/jbc.M503845200.

    Article  CAS  PubMed  Google Scholar 

  123. Esneault E, Pacary E, Eddi D, Freret T, Tixier E, Toutain J, Touzani O, Schumann-Bard P, Petit E, Roussel S, Bernaudin M. Combined therapeutic strategy using erythropoietin and mesenchymal stem cells potentiates neurogenesis after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab. 2008;28(9):1552–63. doi:10.1038/jcbfm.2008.40.

    Article  CAS  PubMed  Google Scholar 

  124. Hosseini SM, Farahmandnia M, Razi Z, Delavarifar S, Shakibajahromi B. 12 hours after cerebral ischemia is the optimal time for bone marrow mesenchymal stem cell transplantation. Neural Regen Res. 2015;10(6):904–8. doi:10.4103/1673-5374.158354.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Andrae J, Afink G, Zhang XQ, Wurst W, Nister M. Forced expression of platelet-derived growth factor B in the mouse cerebellar primordium changes cell migration during midline fusion and causes cerebellar ectopia. Mol Cell Neurosci. 2004;26(2):308–21. doi:10.1016/j.mcn.2004.02.004.

    Article  CAS  PubMed  Google Scholar 

  126. Vasyutina E, Stebler J, Brand-Saberi B, Schulz S, Raz E, Birchmeier C. CXCR4 and Gab1 cooperate to control the development of migrating muscle progenitor cells. Genes Dev. 2005;19(18):2187–98. doi:10.1101/gad.346205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Liu XS, Zhang ZG, Zhang RL, Gregg SR, Wang L, Yier T, Chopp M. Chemokine ligand 2 (CCL2) induces migration and differentiation of subventricular zone cells after stroke. J Neurosci Res. 2007;85(10):2120–5. doi:10.1002/jnr.21359.

    Article  CAS  PubMed  Google Scholar 

  128. Thored P, Arvidsson A, Cacci E, Ahlenius H, Kallur T, Darsalia V, Ekdahl CT, Kokaia Z, Lindvall O. Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells. 2006;24(3):739–47. doi:10.1634/stemcells.2005-0281.

    Article  CAS  PubMed  Google Scholar 

  129. Shen LH, Li Y, Chen J, Zacharek A, Gao Q, Kapke A, Lu M, Raginski K, Vanguri P, Smith A, Chopp M. Therapeutic benefit of bone marrow stromal cells administered 1 month after stroke. J Cereb Blood Flow Metab. 2007;27(1):6–13. doi:10.1038/sj.jcbfm.9600311.

    Article  PubMed  CAS  Google Scholar 

  130. Kim YJ, Park HJ, Lee G, Bang OY, Ahn YH, Joe E, Kim HO, Lee PH. Neuroprotective effects of human mesenchymal stem cells on dopaminergic neurons through anti-inflammatory action. Glia. 2009;57(1):13–23. doi:10.1002/glia.20731.

    Article  PubMed  Google Scholar 

  131. Hosseini SM, Farahmandnia M, Razi Z, Delavari S, Shakibajahromi B, Sarvestani FS, Kazemi S, Semsar M. Combination cell therapy with mesenchymal stem cells and neural stem cells for brain stroke in rats. Int J Stem Cells. 2015;8(1):99–105. doi:10.15283/ijsc.2015.8.1.99.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet. 1987;20(3):263–72.

    CAS  PubMed  Google Scholar 

  133. Bianco P, Gehron Robey P. Marrow stromal stem cells. J Clin Invest. 2000;105(12):1663–8. doi:10.1172/JCI10413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 1968;6(2):230–47.

    Article  CAS  PubMed  Google Scholar 

  135. Kamei N, Tanaka N, Oishi Y, Ishikawa M, Hamasaki T, Nishida K, Nakanishi K, Sakai N, Ochi M. Bone marrow stromal cells promoting corticospinal axon growth through the release of humoral factors in organotypic cocultures in neonatal rats. J Neurosurg Spine. 2007;6(5):412–9. doi:10.3171/spi.2007.6.5.412.

    Article  PubMed  Google Scholar 

  136. Shichinohe H, Kuroda S, Tsuji S, Yamaguchi S, Yano S, Lee JB, Kobayashi H, Kikuchi S, Hida K, Iwasaki Y. Bone marrow stromal cells promote neurite extension in organotypic spinal cord slice: significance for cell transplantation therapy. Neurorehabil Neural Repair. 2008;22(5):447–57. doi:10.1177/1545968308315596.

    Article  PubMed  Google Scholar 

  137. Salomone R, Bento RF, Costa HJ, Azzi-Nogueira D, Ovando PC, Da-Silva CF, Zanatta DB, Strauss BE, Haddad LA. Bone marrow stem cells in facial nerve regeneration from isolated stumps. Muscle Nerve. 2013;48(3):423–9. doi:10.1002/mus.23768.

    Article  CAS  PubMed  Google Scholar 

  138. Gu W, Zhang F, Xue Q, Ma Z, Lu P, Yu B. Bone mesenchymal stromal cells stimulate neurite outgrowth of spinal neurons by secreting neurotrophic factors. Neurol Res. 2012;34(2):172–80. doi:10.1179/1743132811Y.0000000068.

    CAS  PubMed  Google Scholar 

  139. Shichinohe H, Yamauchi T, Saito H, Houkin K, Kuroda S. Bone marrow stromal cell transplantation enhances recovery of motor function after lacunar stroke in rats. Acta Neurobiol Exp (Wars). 2013;73(3):354–63.

    Google Scholar 

  140. Shichinohe H, Kuroda S, Yano S, Ohnishi T, Tamagami H, Hida K, Iwasaki Y. Improved expression of gamma-aminobutyric acid receptor in mice with cerebral infarct and transplanted bone marrow stromal cells: an autoradiographic and histologic analysis. J Nucl Med. 2006;47(3):486–91.

    CAS  PubMed  Google Scholar 

  141. Chen J, Zacharek A, Li Y, Li A, Wang L, Katakowski M, Roberts C, Lu M, Chopp M. N-cadherin mediates nitric oxide-induced neurogenesis in young and retired breeder neurospheres. Neuroscience. 2006;140(2):377–88. doi:10.1016/j.neuroscience.2006.02.064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Weng JS, Liu N, Du HW, Chen RH, Zhang YX, Wang JH, Huang HP. Effects of bone marrow-derived mesenchymal stem cells transplantation on recovery of neurological functions and expression of synaptophysin in focal cerebral infarction in rats. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2008;24(1):34–7.

    CAS  PubMed  Google Scholar 

  143. Huang W, Mo X, Qin C, Zheng J, Liang Z, Zhang C. Transplantation of differentiated bone marrow stromal cells promotes motor functional recovery in rats with stroke. Neurol Res. 2013;35(3):320–8. doi:10.1179/1743132812Y.0000000151.

    Article  PubMed  CAS  Google Scholar 

  144. Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M, Chopp M. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke. 2001;32(4):1005–11.

    Article  CAS  PubMed  Google Scholar 

  145. Tohill M, Mantovani C, Wiberg M, Terenghi G. Rat bone marrow mesenchymal stem cells express glial markers and stimulate nerve regeneration. Neurosci Lett. 2004;362(3):200–3. doi:10.1016/j.neulet.2004.03.077.

    Article  CAS  PubMed  Google Scholar 

  146. Andrews EM, Tsai SY, Johnson SC, Farrer JR, Wagner JP, Kopen GC, Kartje GL. Human adult bone marrow-derived somatic cell therapy results in functional recovery and axonal plasticity following stroke in the rat. Exp Neurol. 2008;211(2):588–92. doi:10.1016/j.expneurol.2008.02.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Shen LH, Li Y, Chen J, Zhang J, Vanguri P, Borneman J, Chopp M. Intracarotid transplantation of bone marrow stromal cells increases axon-myelin remodeling after stroke. Neuroscience. 2006;137(2):393–9. doi:10.1016/j.neuroscience.2005.08.092.

    Article  CAS  PubMed  Google Scholar 

  148. Li Y, Chopp M, Chen J, Wang L, Gautam SC, Xu YX, Zhang Z. Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice. J Cereb Blood Flow Metab. 2000;20(9):1311–9. doi:10.1097/00004647-200009000-00006.

    Article  CAS  PubMed  Google Scholar 

  149. Saito H, Magota K, Zhao S, Kubo N, Kuge Y, Shichinohe H, Houkin K, Tamaki N, Kuroda S. 123I-iomazenil single photon emission computed tomography visualizes recovery of neuronal integrity by bone marrow stromal cell therapy in rat infarct brain. Stroke. 2013;44(10):2869–74. doi:10.1161/STROKEAHA.113.001612.

    Article  PubMed  Google Scholar 

  150. Song M, Mohamad O, Gu X, Wei L, Yu SP. Restoration of intracortical and thalamocortical circuits after transplantation of bone marrow mesenchymal stem cells into the ischemic brain of mice. Cell Transplant. 2013;22(11):2001–15. doi:10.3727/096368912X657909.

    Article  PubMed  Google Scholar 

  151. Liu Z, Li Y, Qu R, Shen L, Gao Q, Zhang X, Lu M, Savant-Bhonsale S, Borneman J, Chopp M. Axonal sprouting into the denervated spinal cord and synaptic and postsynaptic protein expression in the spinal cord after transplantation of bone marrow stromal cell in stroke rats. Brain Res. 2007;1149:172–80. doi:10.1016/j.brainres.2007.02.047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Liu Z, Li Y, Zhang ZG, Cui X, Cui Y, Lu M, Savant-Bhonsale S, Chopp M. Bone marrow stromal cells enhance inter- and intracortical axonal connections after ischemic stroke in adult rats. J Cereb Blood Flow Metab. 2010;30(7):1288–95. doi:10.1038/jcbfm.2010.8.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Liang H, Yin Y, Lin T, Guan D, Ma B, Li C, Wang Y, Zhang X. Transplantation of bone marrow stromal cells enhances nerve regeneration of the corticospinal tract and improves recovery of neurological functions in a collagenase-induced rat model of intracerebral hemorrhage. Mol Cells. 2013;36(1):17–24. doi:10.1007/s10059-013-2306-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wen L, Wen N, Wang Y, Ding Y. Effect of rat endothelial progenitor cell on proliferation and apoptosis of bone marrow mesenchymal stem cell. Zhonghua Kou Qiang Yi Xue Za Zhi. 2014;49(2):106–10.

    PubMed  Google Scholar 

  155. Cui X, Chopp M, Zacharek A, Roberts C, Lu M, Savant-Bhonsale S, Chen J. Chemokine, vascular and therapeutic effects of combination Simvastatin and BMSC treatment of stroke. Neurobiol Dis. 2009;36(1):35–41. doi:10.1016/j.nbd.2009.06.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Wei ZZ, Gu X, Ferdinand A, Lee JH, Ji X, Ji XM, Yu SP, Wei L. Intranasal delivery of bone marrow mesenchymal stem cells improved neurovascular regeneration and rescued neuropsychiatric deficits after neonatal stroke in rats. Cell Transplant. 2015;24(3):391–402. doi:10.3727/096368915X686887.

    Article  PubMed  Google Scholar 

  157. Zacharek A, Shehadah A, Chen J, Cui X, Roberts C, Lu M, Chopp M. Comparison of bone marrow stromal cells derived from stroke and normal rats for stroke treatment. Stroke. 2010;41(3):524–30. doi:10.1161/STROKEAHA.109.568881.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Krupinski J, Kaluza J, Kumar P, Kumar S, Wang JM. Role of angiogenesis in patients with cerebral ischemic stroke. Stroke. 1994;25(9):1794–8.

    Article  CAS  PubMed  Google Scholar 

  159. Hamano K, Li TS, Kobayashi T, Kobayashi S, Matsuzaki M, Esato K. Angiogenesis induced by the implantation of self-bone marrow cells: a new material for therapeutic angiogenesis. Cell Transplant. 2000;9(3):439–43.

    CAS  PubMed  Google Scholar 

  160. Shyu WC, Lin SZ, Yen PS, Su CY, Chen DC, Wang HJ, Li H. Stromal cell-derived factor-1 alpha promotes neuroprotection, angiogenesis, and mobilization/homing of bone marrow-derived cells in stroke rats. J Pharmacol Exp Ther. 2008;324(2):834–49. doi:10.1124/jpet.107.127746.

    Article  CAS  PubMed  Google Scholar 

  161. Cui X, Chen J, Zacharek A, Li Y, Roberts C, Kapke A, Savant-Bhonsale S, Chopp M. Nitric oxide donor upregulation of stromal cell-derived factor-1/chemokine (CXC motif) receptor 4 enhances bone marrow stromal cell migration into ischemic brain after stroke. Stem Cells. 2007;25(11):2777–85. doi:10.1634/stemcells.2007-0169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Lennmyr F, Ata KA, Funa K, Olsson Y, Terent A. Expression of vascular endothelial growth factor (VEGF) and its receptors (Flt-1 and Flk-1) following permanent and transient occlusion of the middle cerebral artery in the rat. J Neuropathol Exp Neurol. 1998;57(9):874–82.

    Article  CAS  PubMed  Google Scholar 

  163. Goldmacher GV, Nasser R, Lee DY, Yigit S, Rosenwasser R, Iacovitti L. Tracking transplanted bone marrow stem cells and their effects in the rat MCAO stroke model. PLoS One. 2013;8(3):e60049. doi:10.1371/journal.pone.0060049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Yan K, Zhang R, Sun C, Chen L, Li P, Liu Y, Peng L, Sun H, Qin K, Chen F, Huang W, Chen Y, Lv B, Du M, Zou Y, Cai Y, Qin L, Tang Y, Jiang X. Bone marrow-derived mesenchymal stem cells maintain the resting phenotype of microglia and inhibit microglial activation. PLoS One. 2013;8(12):e84116. doi:10.1371/journal.pone.0084116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Opydo-Chanek M, Dabrowski Z. Response of astrocytes and microglia/macrophages to brain injury after bone marrow stromal cell transplantation: a quantitative study. Neurosci Lett. 2011;487(2):163–8. doi:10.1016/j.neulet.2010.10.014.

    Article  CAS  PubMed  Google Scholar 

  166. Pirzad Jahromi G, Shabanzadeh Pirsaraei A, Sadr SS, Kaka G, Jafari M, Seidi S, Charish J. Multipotent bone marrow stromal cell therapy promotes endogenous cell proliferation following ischemic stroke. Clin Exp Pharmacol Physiol. 2015;42(11):1158–67. doi:10.1111/1440-1681.12466.

    Article  CAS  PubMed  Google Scholar 

  167. el Gornicka-Pawlak B, Janowski M, Habich A, Jablonska A, Drela K, Kozlowska H, Lukomska B, Sypecka J, Domanska-Janik K. Systemic treatment of focal brain injury in the rat by human umbilical cord blood cells being at different level of neural commitment. Acta Neurobiol Exp (Wars). 2011;71(1):46–64.

    Google Scholar 

  168. Shen LH, Li Y, Chopp M. Astrocytic endogenous glial cell derived neurotrophic factor production is enhanced by bone marrow stromal cell transplantation in the ischemic boundary zone after stroke in adult rats. Glia. 2010;58(9):1074–81. doi:10.1002/glia.20988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Xin H, Li Y, Chen X, Chopp M. Bone marrow stromal cells induce BMP2/4 production in oxygen-glucose-deprived astrocytes, which promotes an astrocytic phenotype in adult subventricular progenitor cells. J Neurosci Res. 2006;83(8):1485–93. doi:10.1002/jnr.20834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Zhang J, Li Y, Zheng X, Gao Q, Liu Z, Qu R, Borneman J, Elias SB, Chopp M. Bone marrow stromal cells protect oligodendrocytes from oxygen-glucose deprivation injury. J Neurosci Res. 2008;86(7):1501–10. doi:10.1002/jnr.21617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Shen Q, Yin Y, Xia QJ, Lin N, Wang YC, Liu J, Wang HP, Lim A, Wang TH. Bone marrow stromal cells promote neuronal restoration in rats with traumatic brain injury: involvement of GDNF regulating BAD and BAX signaling. Cell Physiol Biochem. 2016;38(2):748–62. doi:10.1159/000443031.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunlin Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Zhang, H., Huang, S., Hu, J., Wang, B., Jin, K. (2017). Interaction of Bone Marrow Stem Cells with Other Cells. In: Jin, K., Ji, X., Zhuge, Q. (eds) Bone marrow stem cell therapy for stroke. Springer, Singapore. https://doi.org/10.1007/978-981-10-2929-5_4

Download citation

Publish with us

Policies and ethics