Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 336 Accesses

Abstract

TEM images of the nanosilver are shown in Fig. 4.1. It is noted that the com-AgNPs had severe aggregation with size ranging from 70 nm (inset of Fig. 4.1a) to several hundred nanometres (Fig. 4.1a) while chem-AgNPs had smaller size, ranging from 20 to 100 nm (Fig. 4.1b). Compared with study of Pal et al. (2007), chem-AgNPs used in this study were successfully synthesized as they had same size and shape.

TEM images of a com-AgNPs, b chem-AgNPs and c, d bio-AgNPs. Insets are respective single particle with the same scale bar of 20 nm

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • De Gusseme B, Sintubin L, Baert L, Thibo E, Hennebel T, Vermeulen G, Uyttendaele M, Verstraete W, Boon N (2009) Biogenic silver for disinfection of water contaminated with viruses. Appl Environ Microbiol 76:1082–1087

    Article  Google Scholar 

  • Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:6

    Article  Google Scholar 

  • Fabrega J, Fawcett SR, Renshaw JC, Lead JR (2009) Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environ Sci Technol 43:7285–7290

    Article  CAS  Google Scholar 

  • Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668

    Article  CAS  Google Scholar 

  • Floyd R, Sharp DG (1978) Viral aggregation—effects of salts on aggregation of poliovirus and reovirus at low-Ph. Appl Environ Microbiol 35:1084–1094

    CAS  Google Scholar 

  • Ho C-M, Yau SK-W, Lok C-N, So M-H, Che C-M (2010) Oxidative dissolution of silver nanoparticles by biologically relevant oxidants: a kinetic and mechanistic study. Chem Asian J 5:285–293

    Article  CAS  Google Scholar 

  • Hwang ET, Lee JH, Chae YJ, Kim YS, Kim BC, Sang B-I, Gu MB (2008) Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small 4:746–750

    Article  CAS  Google Scholar 

  • Jin X, Li MH, Wang JW, Marambio-Jones C, Peng FB, Huang XF, Damoiseaux R, Hoek EMV (2010) High-throughput screening of silver nanoparticle stability and bacterial inactivation in aquatic media: influence of specific ions. Environ Sci Technol 44:7321–7328

    Article  CAS  Google Scholar 

  • Kim JY, Lee C, Love DC, Sedlak DL, Yoon J, Nelson KL (2011) Inactivation of MS2 coliphage by ferrous ion and zero-valent iron nanoparticles. Environ Sci Technol 45:6978–6984

    Article  CAS  Google Scholar 

  • Kohn T, Nelson KL (2007) Sunlight-mediated inactivation of MS2 coliphage via exogenous singlet oxygen produced by sensitizers in natural waters. Environ Sci Technol 41:192–197

    Article  CAS  Google Scholar 

  • Levard C, Michel FM, Wang Y, Choi Y, Eng P, Brown GE Jr (2011) Probing Ag nanoparticle surface oxidation in contact with (in)organics: an X-ray scattering and fluorescence yield approach. J Synchrotron Radiat 18:871–878

    Article  CAS  Google Scholar 

  • Lok C-N, Ho C-M, Chen R, He Q-Y, Yu W-Y, Sun H, Tam PK-H, Chiu J-F, Che C-M (2007) Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 12:527–534

    Article  CAS  Google Scholar 

  • Matsumura Y, Yoshikata K, Kunisaki S, Tsuchido T (2003) Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 69:4278–4281

    Article  CAS  Google Scholar 

  • Mattle MJ, Crouzy B, Brennecke M, Wigginton KR, Perona P, Kohn T (2011) Impact of virus aggregation on inactivation by peracetic acid and implications for other disinfectants. Environ Sci Technol 45:7710–7717

    Article  CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  CAS  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? a study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720

    Article  CAS  Google Scholar 

  • Park H-J, Kim JY, Kim J, Lee J-H, Hahn J-S, Gu MB, Yoon J (2009) Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res 43:1027–1032

    Article  CAS  Google Scholar 

  • Ratte HT (1999) Bioaccumulation and toxicity of silver compounds: a review. Environ Toxicol Chem 18:89–108

    Article  CAS  Google Scholar 

  • Romero OC, Straub AP, Kohn T, Nguyen TH (2011) Role of temperature and Suwannee River natural organic matter on inactivation kinetics of rotavirus and bacteriophage MS2 by solar irradiation. Environ Sci Technol 45:10385–10393

    Article  CAS  Google Scholar 

  • Sintubin L, De Gusseme B, Van der Meeren P, Pycke BFG, Verstraete W, Boon N (2011) The antibacterial activity of biogenic silver and its mode of action. Appl Microbiol Biot 91:153–162

    Article  CAS  Google Scholar 

  • Sintubin L, De Windt W, Dick J, Mast J, van der Ha D, Verstraete W, Boon N (2009) Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biot 84:741–749

    Article  CAS  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182

    Article  CAS  Google Scholar 

  • Yin L, Cheng Y, Espinasse B, Colman BP, Auffan M, Wiesner M, Rose J, Liu J, Bernhardt ES (2011) More than the Ions: the effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol 45:2360–2367

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Yang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Yang, X. (2017). Results and Discussion. In: A Study on Antimicrobial Effects of Nanosilver for Drinking Water Disinfection. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-2902-8_4

Download citation

Publish with us

Policies and ethics