Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 351 Accesses

Abstract

Silver nanoparticles (AgNPs or nanosilver) material has been receiving increasing attention in the recent decade. For example, AgNPs and its application has been studied and exploited to a large extent. In fact, it was reported that nanosilver had a history of approximately 120 years of usage, mainly under the term ‘colloidal silver’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloid Surf B 28:313–318

    Article  CAS  Google Scholar 

  • Baalousha M, Manciulea A, Cumberland S, Kendall K, Lead JR (2008) Aggregation and surface properties of iron oxide nanoparticles: influence of pH and natural organic matter. Environ Toxicol Chem 27:1875–1882

    Article  CAS  Google Scholar 

  • Basavaraja S, Balaji SD, Lagashetty A, Rajasab AH, Venkataraman A (2008) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 43:1164–1170

    Article  CAS  Google Scholar 

  • Bfilainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloid Surf B 47:160–164

    Article  Google Scholar 

  • Butkus MA, Labare MP, Starke JA, Moon K, Talbot M (2004) Use of aqueous silver to enhance inactivation of coliphage MS-2 by UV disinfection. Appl Environ Microbiol 70:2848–2853

    Article  CAS  Google Scholar 

  • Butkus M, Talbot M, Labare M (2005) Feasibility of the silver-UV process for drinking water disinfection. Water Res 39:4925–4932

    Article  CAS  Google Scholar 

  • Chen SH, Carroll DL (2002) Synthesis and characterization of truncated triangular silver nanoplates. Nano Lett 2:1003–1007

    Article  CAS  Google Scholar 

  • Chen N, Zheng Y, Yin J, Li X, Zheng C (2013) Inhibitory effects of silver nanoparticles against adenovirus type 3 in vitro. J Virol Methods 193:470–477

    Article  CAS  Google Scholar 

  • Choi O, Deng KK, Kim N-J, Ross L Jr, Surampalli RY, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:3066–3074

    Article  CAS  Google Scholar 

  • Dankovich TA, Gray DG (2011) Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment. Environ Sci Technol 45:1992–1998

    Article  CAS  Google Scholar 

  • De Gusseme B, Sintubin L, Baert L, Thibo E, Hennebel T, Vermeulen G, Uyttendaele M, Verstraete W, Boon N (2009) Biogenic silver for disinfection of water contaminated with viruses. Appl Environ Microbiol 76:1082–1087

    Article  Google Scholar 

  • De Gusseme B, Hennebel T, Christiaens E, Saveyn H, Verbeken K, Fitts JP, Boon N, Verstraete W (2011) Virus disinfection in water by biogenic silver immobilized in polyvinylidene fluoride membranes. Water Res 45:1856–1864

    Article  Google Scholar 

  • Diegoli S, Manciulea AL, Begum S, Jones IP, Lead JR, Preece JA (2008) Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules. Sci Total Environ 402:51–61

    Article  CAS  Google Scholar 

  • El Badawy AM, Luxton TP, Silva RG, Scheckel KG, Suidan MT, Tolaymat TM (2010) Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol 44:1260–1266

    Article  Google Scholar 

  • El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45:283–287

    Article  Google Scholar 

  • Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:6

    Article  Google Scholar 

  • Fabrega J, Fawcett SR, Renshaw JC, Lead JR (2009) Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environ Sci Technol 43:7285–7290

    Article  CAS  Google Scholar 

  • Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668

    Article  CAS  Google Scholar 

  • Gaikwad S, Ingle A, Gade A, Rai M, Falanga A, Incoronato N, Russo L, Galdiero S, Galdiero M (2013) Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int J Nanomed 8:4303–4314

    Google Scholar 

  • Gong P, Li H, He X, Wang K, Hu J, Tan W, Zhang S, Yang X (2007) Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology 18:285604

    Article  Google Scholar 

  • Govindaraju K, Basha SK, Kumar VG, Singaravelu G (2008) Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. J Mater Sci 43:5115–5122

    Article  CAS  Google Scholar 

  • Gupta A, Maynes M, Silver S (1998) Effects of halides on plasmid-mediated silver resistance in Escherichia coli. Appl Environ Microbiol 64:5042–5045

    CAS  Google Scholar 

  • Hwang ET, Lee JH, Chae YJ, Kim YS, Kim BC, Sang B-I, Gu MB (2008) Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small 4:746–750

    Article  CAS  Google Scholar 

  • Jain P, Pradeep T (2005) Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol Bioeng 90:59–63

    Article  CAS  Google Scholar 

  • Jin RC, Cao YW, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) Photoinduced conversion of silver nanospheres to nanoprisms. Science 294:1901–1903

    Article  CAS  Google Scholar 

  • Jin X, Li MH, Wang JW, Marambio-Jones C, Peng FB, Huang XF, Damoiseaux R, Hoek EMV (2010) High-throughput screening of silver nanoparticle stability and bacterial inactivation in aquatic media: influence of specific ions. Environ Sci Technol 44:7321–7328

    Article  CAS  Google Scholar 

  • Juibari MM, Abbasalizadeh S, Jouzani GS, Noruzi M (2011) Intensified biosynthesis of silver nanoparticles using a native extremophilic Ureibacillus thermosphaericus strain. Mater Lett 65:1014–1017

    Article  CAS  Google Scholar 

  • Kalishwaralal K, Deepak V, Ram Kumar Pandian S, Kottaisamy M, BarathmaniKanth S, Kartikeyan B, Gurunathan S (2010) Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf B Biointerfaces 77:257–262

    Google Scholar 

  • Kim Y-J, Song JH (2014) Synthesis of multi-walled carbon nanotube-Ag-nanoparticles composite nanomaterials using proton beam irradiation. J Nanosci Nanotechnol 14:5464–5467

    Article  CAS  Google Scholar 

  • Kim J, Kuk E, Yu K, Park S, Lee H, Kim S, Park Y, Hwang C (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3:95–101

    Article  CAS  Google Scholar 

  • Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14:95–100

    Article  CAS  Google Scholar 

  • Lara HH, Ayala-Nunez NV, Ixtepan-Turrent L, Rodriguez-Padilla C (2010) Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnol 8(1):1

    Google Scholar 

  • Levard C, Mitra S, Yang T, Jew AD, Badireddy AR, Lowry GV, Brown GE Jr (2013) Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli. Environ Sci Technol 47:5738–5745

    Article  CAS  Google Scholar 

  • Li Q, Mahendra S, Lyon D, Brunet L, Liga M, Li D, Alvarez P (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42:4591–4602

    Article  CAS  Google Scholar 

  • Li S, Zhou Z, Zhang T, Jiang G, Su R (2014) Synthesis and characterization of Ag/Fe3O4 electromagnetic shielding particles. J Magn Magn Mater 358:27–31

    Article  Google Scholar 

  • Liau SY, Read DC, Pugh WJ, Furr JR, Russell AD (1997) Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett Appl Microbiol 25:279–283

    Article  CAS  Google Scholar 

  • Lu L, Sun RW-Y, Chen R, Hui C-K, Ho C-M, Luk JM, Lau GKK, Che C-M (2008) Silver nanoparticles inhibit hepatitis B virus replication. Antivir Ther 13:253–262

    CAS  Google Scholar 

  • Lukman AI, Gong B, Marjo CE, Roessner U, Harris AT (2011) Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates. J Colloid Interface Sci 353:433–444

    Article  CAS  Google Scholar 

  • Lv YH, Liu H, Wang Z, Liu SJ, Hao LJ, Sang YH, Liu D, Wang JY, Boughton RI (2009) Silver nanoparticle-decorated porous ceramic composite for water treatment. J Membrane Sci 331:50–56

    Article  CAS  Google Scholar 

  • Majdalawieh A, Kanan MC, El-Kadri O, Kanan SM (2014) Recent advances in gold and silver nanoparticles: synthesis and applications. J Nanosci Nanotechnol 14:4757–4780

    Article  CAS  Google Scholar 

  • Metraux GS, Mirkin CA (2005) Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness. Adv Mater 17:412–415

    Google Scholar 

  • Millstone JE, Hurst SJ, Métraux GS, Cutler JI, Mirkin CA (2009) Colloidal gold and silver triangular nanoprisms. Small 5:646–664

    Article  CAS  Google Scholar 

  • Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–976

    Article  CAS  Google Scholar 

  • Mori Y, Ono T, Miyahira Y, Vinh Quang N, Matsui T, Ishihara M (2013) Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus. Nanoscale Res Lett 8

    Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  CAS  Google Scholar 

  • Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Edit 40:4128–4158

    Article  CAS  Google Scholar 

  • Nowack B, Krug HF, Height M (2011) 120 Years of nanosilver history: implications for policy makers. Environ Sci Technol 45:1177–1183

    Article  CAS  Google Scholar 

  • Oyanedel-Craver VA, Smith JA (2008) Sustainable colloidal-silver-impregnated ceramic filter for point-of-use water treatment. Environ Sci Technol 42:927–933

    Article  CAS  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720

    Article  CAS  Google Scholar 

  • Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Sharma VK, Nevecna Tj, Zboril R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253

    Google Scholar 

  • Park H-J, Kim JY, Kim J, Lee J-H, Hahn J-S, Gu MB, Yoon J (2009) Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res 43:1027–1032

    Article  CAS  Google Scholar 

  • Park HH, Park S, Ko G, Woo K (2013) Magnetic hybrid colloids decorated with Ag nanoparticles bite away bacteria and chemisorb viruses. J Mater Chem B 1:2701–2709

    Article  CAS  Google Scholar 

  • Rahn RO, Landry LC (1973) Ultraviolet-irradiation of nucleic-acids complexed with heavy-atoms. 2. Phosphorescence and photodimerization of DNA complexed with Ag. Photochem Photobiol 18:29–38

    Article  CAS  Google Scholar 

  • Rahn RO, Setlow JK, Landry LC (1973) Ultraviolet-irradiation of nucleic-acids complexed with heavy-atoms. 3. Influence of Ag+ and Hg2+ on sensitivity of phage and of transforming DNA to ultraviolet-radiation. Photochem Photobiol 18:39–41

    Article  CAS  Google Scholar 

  • Rajasekharreddy P, Rani PU, Sreedhar B (2010) Qualitative assessment of silver and gold nanoparticle synthesis in various plants: a photobiological approach. J Nanopart Res 12:1711–1721

    Article  CAS  Google Scholar 

  • Rogers JV, Parkinson CV, Choi YW, Speshock JL, Hussain SM (2008) A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation. Nanoscale Res Lett 3:129–133

    Article  Google Scholar 

  • Russell AD, Hugo WB (1994) Antimicrobial activity and action of silver. Prog Med Chem 31:351–370

    Article  CAS  Google Scholar 

  • Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2007) Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18:225103

    Article  Google Scholar 

  • Silver S, Phung LT, Silver G (2006) Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J Ind Microbiol Biotechnol 33:627–634

    Article  CAS  Google Scholar 

  • Sintubin L, De Windt W, Dick J, Mast J, van der Ha D, Verstraete W, Boon N (2009) Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol 84:741–749

    Article  CAS  Google Scholar 

  • Sintubin L, De Gusseme B, Van der Meeren P, Pycke BFG, Verstraete W, Boon N (2011) The antibacterial activity of biogenic silver and its mode of action. Appl Microbiol Biot 91:153–162

    Article  CAS  Google Scholar 

  • Sintubin L, Verstraete W, Boon N (2012) Biologically produced nanosilver: current state and future perspectives. Biotechnol Bioeng 109:2422–2436

    Article  CAS  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182

    Article  CAS  Google Scholar 

  • Sondi I, Goia DV, Matijević E (2003) Preparation of highly concentrated stable dispersions of uniform silver nanoparticles. J Colloid Interface Sci 260:75–81

    Article  CAS  Google Scholar 

  • Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686

    Article  CAS  Google Scholar 

  • Sun YG, Xia YN (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179

    Article  CAS  Google Scholar 

  • Veerasamy R, Xin TZ, Gunasagaran S, Xiang TFW, Yang EFC, Jeyakumar N, Dhanaraj SA (2011) Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J Saudi Chem Soc 15:113–120

    Article  CAS  Google Scholar 

  • WHO (2006) Guidelines for drinking water quality. In: Organization WH (ed). IWA Publishing, London

    Google Scholar 

  • Xia Y, Xiong Y, Lim B, Skrabalak SE (2008) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48:60–103

    Article  Google Scholar 

  • Xiang D, Zheng Y, Duan W, Li X, Yin J, Shigdar S, O’Connor ML, Marappan M, Zhao X, Miao Y, Xiang B, Zheng C (2013) Inhibition of A/Human/Hubei/3/2005 (H3N2) influenza virus infection by silver nanoparticles in vitro and in vivo. Int J Nanomed 8:4103–4113

    Article  Google Scholar 

  • Yin L, Cheng Y, Espinasse B, Colman BP, Auffan M, Wiesner M, Rose J, Liu J, Bernhardt ES (2011) More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol 45:2360–2367

    Article  CAS  Google Scholar 

  • Ziemkowska W, Basiak D, Kurtycz P, Jastrzebska A, Olszyna A, Kunicki A (2014) Nano-titanium oxide doped with gold, silver, and palladium—synthesis and structural characterization. Chem Pap 68:959–968

    Article  CAS  Google Scholar 

  • Zodrow K, Brunet L, Mahendra S, Li D, Zhang A, Li Q, Alvarez PJJ (2009) Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Res 43:715–723

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Yang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Yang, X. (2017). Literature Review. In: A Study on Antimicrobial Effects of Nanosilver for Drinking Water Disinfection. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-2902-8_2

Download citation

Publish with us

Policies and ethics