Skip to main content

Electromagnetic Scattering of Rainfall and Tropical Cyclones over Ocean

  • Chapter
  • First Online:
Hurricane Monitoring With Spaceborne Synthetic Aperture Radar

Part of the book series: Springer Natural Hazards ((SPRINGERNAT))

Abstract

This chapter introduces a physics-based radiative transfer model to capture the scattering behavior of rainfall over a rough sea surface. Raindrops are modeled as Rayleigh scattering nonspherical particles, while the rain-induced rough surface is described by the Log-Gaussian ring-wave spectrum. The model is validated against both empirical models and measurements. A case study of collocated Envisat ASAR data and NEXRAD rain data is presented. To showcase the capability of the developed scattering model in studying cyclones, we use regional WRF weather model to simulate the Hurricane Hermine occurred in North America at September 2016. Finally, numerical analyses suggest that rain-related scattering becomes significant as compared to wind-related scattering when the frequency is above C-band, while the raindrop volumetric scattering becomes significant above X-band.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atlas, D. 1994. Footprints of storms on the sea: A view from spaceborne synthetic aperture radar. Journal of Geophysical Research: Oceans 99 (C4): 7961–7969.

    Article  Google Scholar 

  2. Melsheimer, C., W. Alpers, and M. Gade. 1998. Investigation of multifrequency multipolarization radar signatures of rain cells derived from sir-c/x-sar data. Journal of Geophysical Research 103 (C9): 18867–18884.

    Article  Google Scholar 

  3. Melsheimer, C., W. Alpers, and M. Gade. 2001. Simultaneous observations of rain cells over the ocean by the synthetic aperture radar aboard the ers satellites and by surfacebased weather radars. Journal of Geophysical Research: Oceans 106 (C3): 4665–4677.

    Article  Google Scholar 

  4. Li, X., et al. 2013. Tropical cyclone morphology from spaceborne synthetic aperture radar. Bulletin of the American Meteorological Society 94 (2): 215–230.

    Article  Google Scholar 

  5. Moore, R., et al. 1979. Preliminary study of rain effects on radar scattering from water surfaces. IEEE Journal of Oceanic Engineering 4 (1): 31–32.

    Article  Google Scholar 

  6. Contreras, R.F., et al. 2003. Effects of rain on Ku-band backscatter from the ocean. Journal of Geophysical Research: Oceans 108 (C5).

    Google Scholar 

  7. Weissman, E., M.A. Bourassa, and J. Tongue. 2002. Effects of rain rate and wind magnitude on seawinds scatterometer wind speed errors. Journal of Atmospheric and Oceanic Technology 19: 738–746.

    Article  Google Scholar 

  8. Contreras, R.F., and W.J. Plant. 2004. Ku band backscatter from the Cowlitz river: Bragg scattering with and without rain. IEEE Transactions on Geoscience and Remote Sensing 42 (7): 1444–1449.

    Article  Google Scholar 

  9. Weissman, D.E., and M.A. Bourassa. 2008. Measurements of the effect of rain-induced sea surface roughness on the QuikSCAT scatterometer radar cross section. IEEE Transactions on Geoscience and Remote Sensing 46 (10): 2882–2894.

    Article  Google Scholar 

  10. Stiles, B.W., and S.H. Yueh. 2002. Impact of rain on spaceborne ku-band wind scatterometer data. IEEE Transactions on Geoscience and Remote Sensing 40 (9): 1973–1983.

    Article  Google Scholar 

  11. Draper, D.W., and D.G. Long. 2004. Evaluating the effect of rain on SeaWinds scatterometer measurements. Journal of Geophysical Research 109 (C12).

    Google Scholar 

  12. Nie, C., and D.G. Long. 2007. A C-band wind/rain backscatter model. IEEE Transactions on Geoscience and Remote Sensing 45 (3): 621–631.

    Article  Google Scholar 

  13. Zhou, X., et al. 2012. Rain effect on C-band scatterometer wind measurement and its correction. Acta Physica Sinica 61 (14).

    Google Scholar 

  14. Nie, C., and D.G. Long. 2008. A C-band scatterometer simultaneous wind/rain retrieval method. IEEE Transactions on Geoscience and Remote Sensing 46 (11): 3618–3631.

    Article  Google Scholar 

  15. Owen, M.P., and D.G. Long. 2011. Simultaneous wind and rain estimation for QuikSCAT at ultra-high resolution. IEEE Transactions on Geoscience and Remote Sensing 49 (6): 1865–1878.

    Article  Google Scholar 

  16. Tournadre, J., and Y. Quilfen. 2003. Impact of rain cell on scatterometer data: 1. theory and modeling. Journal of Geophysical Research: Oceans 108 (C7).

    Google Scholar 

  17. Contreras, R.F., and W.J. Plant. 2006. Surface effect of rain on microwave backscatter from the ocean: Measurements and modeling. Journal of Geophysical Research: Oceans 111 (C8).

    Google Scholar 

  18. Wetzel, L.B. 1990. On the theory of electromagnetic scattering from a raindrop splash. Radio science 25 (6): 1183–1197.

    Article  Google Scholar 

  19. Bliven, L.F., P.W. Sobieski, and C. Craeye. 1997. Rain generated ring-waves: measurements and modelling for remote sensing. International Journal of Remote Sensing 18 (11): 221–228.

    Article  Google Scholar 

  20. Alpers, W., and C. Melsheimer. 2005. Synthetic Aperture Radar Marine Users’ Manual, chapter Chapter 4 Rainfall. NOAA/NESDIS/STAR.

    Google Scholar 

  21. Craeye, C., P. Sobieski, and L. Bliven. 1999. Radar signature of the sea surface perturbed by rain. Proceedings of IEEE 1999 International Geoscience and Remote Sensing Symposium, IGARSS’99, 1: 1374–1389.

    Google Scholar 

  22. Lemaire, D., et al. 2002. Drop size effects on rain-generated ring-waves with a view to remote sensing applications. International Journal of Remote Sensing 23 (12): 2345–2357.

    Article  Google Scholar 

  23. Capolino, F., et al. 1998. EM models for evaluating rain perturbation on the NRCS of the sea surface observed near nadir. IEEE Proceedings-Radar, Sonar and Navigation 145: 4.

    Google Scholar 

  24. Kudryavtsev, V.N., V.K. Makin, and B. Chapron. 1999. Coupled sea surface-atmosphere model: 2. spectrum of short wind waves. Journal of Geophysical Research: Oceans 104 (C4): 7625–7639.

    Article  Google Scholar 

  25. Bringer, B.C., A. Mouche, and C.A. Guerin. 2014. Revisiting the short-wave spectrum of the sea surface in the light of the weighted curvature approximation. IEEE Transactions on Geoscience and Remote Sensing 52 (1): 679–689.

    Article  Google Scholar 

  26. Portabella, M., et al. 2012. Rain effects on ASCAT-retrieved winds: toward an improved quality control. IEEE Transactions on Geoscience and Remote Sensing 50 (7): 2495–2506.

    Article  Google Scholar 

  27. Xu, F., et al. 2015. A backscattering model of rainfall over rough sea surface for synthetic aperture radar. IEEE Transactions on Geoscience and Remote Sensing 53 (6): 3042–3054.

    Article  Google Scholar 

  28. Fung, K., and K.K. Lee. 1982. A semi-empirical sea-spectrum model for scattering coefficient estimation. IEEE Journal of Oceanic Engineering OE–7 (4): 166–176.

    Article  Google Scholar 

  29. Xu, F., and Y.Q. Jin. 2006. Imaging simulation of polarimetric SAR for a comprehensive terrain scene using the mapping and projection algorithm. IEEE Transactions on Geoscience and Remote Sensing 44 (11): 3219–3234.

    Article  Google Scholar 

  30. Fung, A.K., and K. Chen. 2010. Microwave scattering and emission models for users. Boston: Artech House.

    Google Scholar 

  31. Jin, Y.Q., and F. Xu. 2013. Polarimetric Scattering and SAR Information Retrieval. New York: Wiley-IEEE.

    Book  Google Scholar 

  32. Ishimaru, A., et al. 1982. Multiple scattering calculations of rain effects. Radio Science 17 (6): 1425–1433.

    Article  Google Scholar 

  33. Czekala, H., and C. Simmer. 1998. Microwave radiative transfer with nonspherical precipitating hydrometeors. Journal of Quantitative Spectroscopy and Radiative Transfer 60 (3): 365–374.

    Article  Google Scholar 

  34. Jin, Y.Q. 1993. Electromagnetic Scattering Modeling for Quantitative Remote Sensing. Singapore: World Scientific.

    Google Scholar 

  35. Chuang, C., and K.V. Beard. 1990. A numerical model for the equilibrium shape of electrified raindrop. Journal of the Atmospheric Sciences 47 (11): 1374–1389.

    Article  Google Scholar 

  36. Chen, K.S., A.K. Fung, and D.A. Weissman. 1992. A backscattering model for ocean surface. IEEE Transactions on Geoscience and Remote Sensing 30: 4.

    Article  Google Scholar 

  37. Apel, J.R. 1994. An improved model of the ocean surface wave vector spectrum and its effects on radar backscatter. Journal of Geophysical Research: Oceans 99 (C3): 16269–16291.

    Article  Google Scholar 

  38. Elfouhaily, T., et al. 1997. A unified directional spectrum for long and short wind-driven waves. Journal of Geophysical Research 102 (C7): 811–817.

    Article  Google Scholar 

  39. Petty, G.W. 2001. Physical and microwave radiative properties of precipitating clouds. part ii: A parametric 1d rain-cloud model for use in microwave radiative transfer simulations. Journal of Applied Meteorology 40 (12): 2115–2129.

    Article  Google Scholar 

  40. Hersbach, H., A. Stoffelen, and S. de Haan. 2007. An Improved C-band scatterometer ocean geophysical model function: CMOD5. Journal of Geophysical Research: Oceans 112 (C3).

    Google Scholar 

  41. KNMI. Nscat-3 geophysical model function. 2013. http://www.knmi.nl/scatterometer/nscati$_$gmf/.

  42. R. Thompson, T. M. Elfouhaily, and B. Chapron. 1998. Polarization ratio for microwave backscattering from the ocean surface at low to moderate incidence angles. 1998 IEEE International Geoscience and Remote Sensing Symposium Proceedings, 1998. IGARSS’98., 3:1671–1673.

    Google Scholar 

  43. Mouche, A., et al. 2012. On the use of doppler shift for sea surface wind retrieval from sar. IEEE Transactions on Geoscience and Remote Sensing 50 (7): 2901–2909.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Xu, F., Li, X. (2017). Electromagnetic Scattering of Rainfall and Tropical Cyclones over Ocean. In: Li, X. (eds) Hurricane Monitoring With Spaceborne Synthetic Aperture Radar. Springer Natural Hazards. Springer, Singapore. https://doi.org/10.1007/978-981-10-2893-9_13

Download citation

Publish with us

Policies and ethics