Skip to main content

Hurricane Precipitation Observed by SAR

  • Chapter
  • First Online:

Part of the book series: Springer Natural Hazards ((SPRINGERNAT))

Abstract

The SAR-observed backscatter from the ocean’s surface is related to the surface wave spectrum, which is in turn related to the near-surface vector wind. This enables retrieval of near-surface winds from SAR images. Rain impacting the surface affects the wind-driven surface wave spectrum and roughens the surface. Rain can be observed in SAR images due to the effects the rain has on the surface and scattering and attenuation of the radar signal by the falling rain. With its high resolution SAR is a useful sensor for studying rain. This Chapter focuses on SAR observation of rain in ocean images. The effect of rain on the SAR backscatter image is modeled. Using a case study of RADARSAT ScanSAR SWA images of Hurricane Katrina, rain effects are analyzed for three different incidence angle ranges using collocated ground-based Doppler weather radar (NEXRAD) rain measurements. The rain-induced backscatter observed by the ScanSAR is consistent with C-band scatterometer-derived wind/rain scattering models when the polarization difference between the sensors are considered. New insights into the temporal behavior of rain effects on the small-scale surface wave spectrum derived from the ScanSAR images are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wackerman, C.C., C.L. Rufenach, R.A. Shuchman, J.A. Johannessen, and K.L. Davidson. 1996. Wind vector retrieval using ERS-1 synthetic aperture radar imagery. IEEE Transactions on Geoscience and Remote Sensing 34 (6): 1343–1352.

    Article  Google Scholar 

  2. Attema, E.P.W. 1991. The active microwave instrument on-board the ERS-1 satellite. Proceedings of the IEEE 79 (6): 791–799.

    Article  Google Scholar 

  3. Figasaldaña, J., J.J. Wilson, E. Attema, R. Gelsthorpe, M. Drinkwater, and A. Stoffelen. 2002. The Advanced scatterometer (ASCAT) on the Meteorological Operational (MetOp) platform: A follow on for European wind scatterometers. Canadian Journal of Remote Sensing 28 (3): 404–412.

    Article  Google Scholar 

  4. Spencer, M.W., C. Wu, and D.G. Long. 1997. Tradeoffs in the design of a spaceborne scanning pencil beam scatterometer: Application to SeaWinds. IEEE Transactions on Geoscience and Remote Sensing 35 (1): 115–126.

    Article  Google Scholar 

  5. Vachon, P., and F. Dobson. 1996. Validation of wind vector retrieval from ERS-1 SAR images over the ocean. The Global Atmosphere and Ocean System 5 (2): 177–187.

    Google Scholar 

  6. Lehner, S., J. Horstmann, W. Koch, and W. Rosenthal. 1998. Mesoscale wind measurements using recalibrated ERS SAR images. Journal of Geophysical Research: Oceans 103 (C4): 7847–7856.

    Article  Google Scholar 

  7. Nie, C., and D.G. Long. 2008a. RADARSAT ScanSAR wind retrieval and rain effects on ScanSAR measurements under hurricane conditions. In IEEE International Geoscience and Remote Sensing Symposium, vol. 2, 493–496. IEEE.

    Google Scholar 

  8. Melsheimer, C., W. Alpers, and M. Gade. 2001. By the synthetic aperture radar aboard the ERS satellites and by surface-based weather radars. Journal of Geophysical Research 106 (C3): 4665–4677.

    Article  Google Scholar 

  9. Atlas, D. 1994a. Footprints of storms on the sea: A view from spaceborne synthetic aperture radar. Journal of Geophysical Research: Oceans 99 (C4): 7961–7969.

    Google Scholar 

  10. Nie, C., and D.G. Long. 2007. A C-band wind/rain backscatter model. IEEE Transactions on Geoscience and Remote Sensing 45 (3): 621–631.

    Article  Google Scholar 

  11. Weinman, J., F. Marzano, W. Plant, A. Mugnai, and N. Pierdicca. 2009. Rainfall observation from X-band space-borne synthetic aperture radar. Natural Hazards and Earth System Sciences 9 (1): 77–84.

    Article  Google Scholar 

  12. Draper, D.W., and D.G. Long. 2004a. Evaluating the effect of rain on SeaWinds scatterometer measurements. Journal of Geophysical Research: Oceans 109 (C12).

    Google Scholar 

  13. Allen, J.R., and D.G. Long. 2005. An analysis of SeaWinds-based rain retrieval in severe weather events. IEEE Transactions on Geoscience and Remote Sensing 43 (12): 2870–2878.

    Article  Google Scholar 

  14. Draper, D.W., and D.G. Long. 2004b. Simultaneous wind and rain retrieval using SeaWinds data. IEEE Transactions on Geoscience and Remote Sensing 42 (7): 1411–1423.

    Google Scholar 

  15. Draper, D.W., and D.G. Long. 2004c. Assessing the quality of SeaWinds rain measurements. IEEE Transactions on Geoscience and Remote Sensing 42 (7): 1424–1432.

    Google Scholar 

  16. Nie, C., and D.G. Long. 2008b. A C-band scatterometer simultaneous wind/rain retrieval method. IEEE Transactions on Geoscience and Remote Sensing 46 (11): 3618–3631.

    Google Scholar 

  17. Williams, B.A., and D.G. Long. 2008. Estimation of hurricane winds from SeaWinds at ultrahigh resolution. IEEE Transactions on Geoscience and Remote Sensing 46 (10): 2924–2935.

    Article  Google Scholar 

  18. Hersbach, H., A. Stoffelen, and S. De Haan. 2007. An improved C-band scatterometer ocean geophysical model function: CMOD5. Journal of Geophysical Research: Oceans 112 (C3).

    Google Scholar 

  19. Atlas, D. 1994b. Origin of storm footprints on the sea seen by synthetic aperture radar. Science 266: 1364–1366.

    Google Scholar 

  20. Mitnik, L.M. 1992. Mesoscale coherent structures in the surface wind field during cold air outbreaks over the far eastern seas from the satellite side looking radar. La Mer 30: 297–314.

    Google Scholar 

  21. Hallett, J., and L. Christensen. 1984. Splash and penetration of drops in water. Journal de Recherches Atmospheriques 18 (4): 225–242.

    Google Scholar 

  22. Thompson, D.R., T.M. Elfouhaily, and B. Chapron. 1998. Polarization ratio for microwave backscattering from the ocean surface at low to moderate incidence angles. In IEEE International Geoscience and Remote Sensing Symposium, vol. 3, 1671–1673. IEEE.

    Google Scholar 

  23. Battan, L.J. 1973. Radar Observation of the Atmosphere. Chicago: The University of Chicago.

    Google Scholar 

  24. Ulaby, F.T., R.K. Moore, and A.K. Fung. 1982. Microwave remote sensing active and passive, vol. i.

    Google Scholar 

  25. Fujiyoshi, Y., T. Endoh, T. Yamada, K. Tsuboki, Y. Tachibana, and G. Wakahama. 1990. Determination of a Z-R relationship for snowfall using a radar and high sensitivity snow gauges. Journal of Applied Meteorology 29 (2): 147–152.

    Article  Google Scholar 

  26. Raney, R.K., A.P. Luscombe, E. Langham, and S. Ahmed. 1991. RADARSAT. IEEE International Geoscience and Remote Sensing Symposium 79 (6): 839–849.

    Google Scholar 

  27. Horstmann, J., W. Koch, S. Lehner, and R. Tonboe. 2000. Wind retrieval over the ocean using synthetic aperture radar with C-band HH polarization. IEEE Transactions on Geoscience and Remote Sensing 38 (5): 2122–2131.

    Article  Google Scholar 

  28. Albright, W. 2004. Calibration report for RADARSAT ScanSAR Wide A on the ScanSAR processor. Alaska Satellite Facility.

    Google Scholar 

  29. Shepherd, N. 1998. Extraction of beta nought and sigma nought from RADARSAT CDPF products. Rep. AS97-5001 Rev, 2.

    Google Scholar 

  30. Powell, M.D., S.H. Houston, L.R. Amat, and N. Morisseau-Leroy. 1998. The HRD real-time hurricane wind analysis system. Journal of Wind Engineering and Industrial Aerodynamics 77: 53–64.

    Article  Google Scholar 

  31. Powell, M.D., S.H. Houston, and T.A. Reinhold. 1996. Hurricane Andrew’s landfall in south Florida. Part I: Standardizing measurements for documentation of surface wind fields. Weather and Forecasting 11 (3): 304–328.

    Article  Google Scholar 

  32. F. C. for Meteorological Services, and S. Research. 1990. Doppler radar meteorological observations, Part B: Doppler radar theory and meteorology. CM-H11B-1990.

    Google Scholar 

  33. F. C. for Meteorological Services, and S. Research. 1991. Doppler radar meteorological observations, Part C: WSR-88D products and algorithms. FCM-H11C-1991.

    Google Scholar 

  34. Jorgensen, D.P., and P.T. Willis. 1982. A ZR relationship for hurricanes. Journal of Applied Meteorology 21 (3): 356–366.

    Article  Google Scholar 

  35. Doviak, R.J., and D.S. Zrnic. 1984. Doppler Radar and Weather Observations, vol. I. Dublin: Academic press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Long .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Long, D.G., Nie, C. (2017). Hurricane Precipitation Observed by SAR. In: Li, X. (eds) Hurricane Monitoring With Spaceborne Synthetic Aperture Radar. Springer Natural Hazards. Springer, Singapore. https://doi.org/10.1007/978-981-10-2893-9_1

Download citation

Publish with us

Policies and ethics