Skip to main content

Gait and Trajectory Rolling Planning for Hexapod Robot in Complex Environment

  • Conference paper
  • First Online:
Mechanism and Machine Science (ASIAN MMS 2016, CCMMS 2016)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 408))

Abstract

Hexapod robots have stronger adaptability to dynamic unknown environment than wheeled or trucked ones due to their flexibility. In this paper, a control strategy based on rolling gait and trajectory planning that enables a hexapod robot to walk in dynamic environment is proposed. The core content of the control strategy is to constantly change the gait and trajectory according to the dynamic environment and predicted stability margin of robot. Kalman filter is employed to compute predicted zero moment point (ZMP) monitoring the stability of robot in order to keep balance with adjusting gait and trajectory. A hierarchical control architecture consisting of high-level gait planner, low-level trajectory planner, joint servo controller and compliance controller is presented. The control strategy is applied to a hexapod robot engaging to disaster rescue. Experiment results show the efficiency of our control strategy over challenging terrain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xin G, Deng H, Zhong G, Wang H (2015) Hierarchical kinematic modelling and optimal design of a novel hexapod robot with integrated limb mechanism. Int J Adv Robot Syst 12:123. doi:10.5772/59989

    Google Scholar 

  2. Xin G, Deng H, Zhong G, Wang H (2015) Dynamic analysis of a hexapod robot with parallel leg mechanisms for high payloads. In: 2015 10th Asian control conference (ASCC). IEEE, pp 1–6

    Google Scholar 

  3. Zhong G, Deng H, Xin G, Wang H (2016) Dynamic hybrid control of a hexapod walking robot: experimental verification. IEEE T Ind Electron 63(8):5001–5011

    Google Scholar 

  4. Lee BH, Lee IK (2001) The implementation of the gaits and body structure for hexapod robot. In: IEEE international symposium on industrial electronics (ISIE 2001). IEEE, pp 1959–1964

    Google Scholar 

  5. Porta JM, Celaya E (2004) Reactive free-gait generation to follow arbitrary trajectories with a hexapod robot. Robot Auton Syst 47:187–201

    Article  Google Scholar 

  6. Erden MS, Leblebicioglu K (2008) Free gait generation with reinforcement learning for a six-legged robot. Robot Auton Syst 56:199–212

    Article  Google Scholar 

  7. Wang Z, Ding X, Rovetta A, Giusti A (2011) Mobility analysis of the typical gait of a radial symmetrical six-legged robot. Mechatronics 21(7):1133–1146

    Article  Google Scholar 

  8. Asif U, Iqbal J (2012) On the improvement of multi-legged locomotion over difficult terrains using a balance stabilization method. Int J Adv Robot Syst 9:1

    Article  Google Scholar 

  9. Yang J-M, Kim J-H (1998) Optimal fault tolerant gait sequence of the hexapod robot with overlapping reachable areas and crab walking. IEEE Trans Syst Man Cybern Part A 29(2):224–235

    Google Scholar 

  10. Yang J-M, Kim J-H (2000) A fault tolerant gait for a hexapod robot over uneven terrain. IEEE Trans Syst Man Cybern Part B. 30(1):172–180

    Google Scholar 

  11. Chu SK-K, Pang GK-H (2002) Comparison between different model of hexapod robot in fault-tolerant gait. IEEE Trans Syst Man Cybern Part A 32(6):752–756

    Google Scholar 

  12. Asif U (2012) Improving the navigability of a hexapod robot using a fault-tolerant adaptive gait. Int J Adv Robot Syst 9:33

    Article  Google Scholar 

  13. Asif U, Iqbal J (2011) Motion planning using an impact-based hybrid control for trajectory generation in adaptive walking. Int J Adv Robot Syst 8(4):212–224

    Google Scholar 

  14. Kalakrishnan M, Buchli J, Pastor P, Mistry M, Schaal S (2010) Fast, robust quadruped locomotion over challenging terrain. In: 2010 IEEE international conference on robotics and automation (ICRA). IEEE, pp 2665–2670

    Google Scholar 

  15. Kolter JZ, Rodgers MP, Ng AY (2008) A control architecture for quadruped locomotion over rough terrain. In: 2008 IEEE international conference on robotics and automation (ICRA). IEEE, pp 811–818

    Google Scholar 

  16. Garcia E, de Santos PG (2006) On the improvement of walking performance in natural environments by a compliant adaptive gait. IEEE Trans Robot 22(6):1240–1253

    Article  Google Scholar 

  17. Wang Z, Ding X, Rovetta A (2009) Analysis of typical locomotion of a symmetric hexapod robot. Robotica 28:893–907

    Article  Google Scholar 

  18. Rebula JR, Neuhaus PD, Bonnlander BV et al (2007) a controller for the littledog quadruped walking on rough terrain. In: 2007 IEEE international conference on robotics and automation. IEEE, pp 1467–1473

    Google Scholar 

  19. Song SM, Choi BS (1990) The optimally stable ranges of 2n-legged wave gaits. IEEE Trans Syst Man, Cybern Syst part b Cybern 20(4):888–902

    Google Scholar 

  20. Long S, Xin G, Deng H, Zhong G (2015) An improved force-angle stability margin for radial symmetrical hexapod robot subject to dynamic effects. Int J Adv Robot Syst 12:59

    Google Scholar 

  21. Kajita S, Kanehiro F, Kaneko K et al (2003) Biped walking pattern generation by using preview control of zero-moment point. In: 2003 IEEE international conference on robotics and automation (ICRA’03). IEEE, pp 1620–1626

    Google Scholar 

  22. Liu J, Veloso M (2008) Online ZMP sampling search for biped walking planning. In: 2008 IEEE/RSJ international conference on intelligent robots and systems. IEEE, pp 185–190

    Google Scholar 

  23. Erbatur K, Kurt O (2009) Natural ZMP trajectories for biped robot reference generation. IEEE T Ind Electron 56(3):835–845

    Article  Google Scholar 

  24. Lampariello R, Nguyen-Tuong D, Castellini C, Hirzinger G, Peters J (2011) Trajectory planning for optimal robot catching in real-time. In: 2011 IEEE international conference on robotics and automation (ICRA). IEEE, pp 3719–3726

    Google Scholar 

  25. Macfarlane S, Croft EA (2003) Jerk-bounded manipulator trajectory planning: design for real-time applications. IEEE Trans Robot Autom 19(1):42–52

    Article  Google Scholar 

  26. Gasparetto A, Zanotto V (2008) A technique for time-jerk optimal planning of robot trajectories. Robot Comput-Integr Manuf 24:415–426

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from National Basic Research Program (973) of China (Grant No. 2013CB035504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiyang Xin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Xin, G., Deng, H., Zhong, G., Wang, H. (2017). Gait and Trajectory Rolling Planning for Hexapod Robot in Complex Environment. In: Zhang, X., Wang, N., Huang, Y. (eds) Mechanism and Machine Science . ASIAN MMS CCMMS 2016 2016. Lecture Notes in Electrical Engineering, vol 408. Springer, Singapore. https://doi.org/10.1007/978-981-10-2875-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2875-5_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2874-8

  • Online ISBN: 978-981-10-2875-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics