Skip to main content

Global Behaviors for Dynamics of Flaring Loops

  • Chapter
  • First Online:
Solar Flare Loops: Observations and Interpretations
  • 386 Accesses

Abstract

Solar flares are explosive phenomena produced by sudden release of free magnetic energy. It is generally believed that flare loops, especially those of two-ribbon flares, show continuous expansion motions during their eruption. Meanwhile, flare ribbons separate continuously in space from each other. Such observational phenomena are interpreted in theory by continuously rising of the magnetic reconnection site, which closely follows erupting magnetic flux ropes (or filaments). However, results based on a statistical study with Yohkoh HXR Telescope data indicate that FPs in only 13% of the flares show standard separation motion (Bogachev et al. Astrophys J 630:561–572, 2005, [1]), while in more flares they show motions parallel to bright flare ribbons, even with tendency to converge. Using high-cadence time sequence of observations for the M1.2 class flare on September 9, 2002, at Big Bear Solar Observatory (BBSO), Ji et al. (Astrophys J 607:L55–L58, 2004, [2]) found that the distance between H\(_\alpha \) kernels decreases at the rising phase of the flare, it increases only after the peak time. At the same time, the height of the LT X-ray source of the flare decreases at first, and increases after the maximum phase. From Fig. A.12 in Appendix A, we can see that the time profiles of the flare emission, the distance between bright kernels, and the height of the loop top X-ray source show a good correlation or anti-correlation not only as a whole but also in some details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bogachev, S.A., Somov, B.V., Kosugi, T., Sakao, T.: The motions of the hard X-Ray sources in solar flares: images and statistics. Astrophys. J. 630, 561–572 (2005)

    Article  ADS  Google Scholar 

  2. Ji, H., Wang, H., Goode, P.R., Jiang, Y., Yurchyshyn, V.: Traces of the dynamic current sheet during a solar flare. Astrophys. J. 607, L55–L58 (2004)

    Article  ADS  Google Scholar 

  3. Shen, J., Zhou, T., Ji, H., Wang, N., Cao, W., Wang, H.: Early abnormal temperature structure of X-Ray loop-top source of solar flares. Astrophys. J. 686, L37–L40 (2008)

    Article  ADS  Google Scholar 

  4. Ji, H., Huang, G., Wang, H., Zhou, T., Li, Y., Zhang, Y., Song, M.: Converging motion of H\(\alpha \) conjugate Kernels: the signature of fast relaxation of a sheared magnetic field. Astrophys. J. 636, L173–L174 (2006)

    Article  ADS  Google Scholar 

  5. Ji, H., Wang, H., Liu, C., Dennis, B.R.: A hard X-Ray sigmoidal structure during the initial phase of the 2003 October 29 X10 flare. Astrophys. J. 680, 734–739 (2008)

    Article  ADS  Google Scholar 

  6. Sui, L., Holman, G.D.: Evidence for the formation of a large-scale current sheet in a solar flare. Astrophys. J. 596, L251–L254 (2003)

    Article  ADS  Google Scholar 

  7. Sui, L., Holman, G.D., Dennis, B.R.: Evidence for magnetic reconnection in three homologous solar flares observed by RHESSI. Astrophys. J. 612, 546–556 (2004)

    Article  ADS  Google Scholar 

  8. Fletcher, L., Hudson, H.S.: Spectral and spatial variations of flare hard X-ray footpoints. Sol. Phys. 210, 307–321 (2002)

    Article  ADS  Google Scholar 

  9. Krucker, S., Hurford, G.J., Lin, R.P.: Hard X-Ray source motions in the 2002 July 23 Gamma-Ray flare. Astrophys. J. 595, L103–L106 (2003)

    Article  ADS  Google Scholar 

  10. Li, Y.P., Gan, W.Q.: The oscillatory shrinkage in TRACE 195 Å loops during a flare impulsive phase. Astrophys. J. 644, L97–L100 (2006)

    Article  ADS  Google Scholar 

  11. Zhou, T.-H., Wang, J.-F., Li, D., Song, Q.-W., Melnikov, V., Ji, H.-S.: The contracting and unshearing motion of flare loops in the X 7.1 flare on 2005 January 20 during its rising phase. Res. Astron. Astrophys. 13, 526–536 (2013)

    Article  ADS  Google Scholar 

  12. Svestka, Z.F., Fontenla, J.M., Machado, M.E., Martin, S.F., Neidig, D.F.: Multi-thermal observations of newly formed loops in a dynamic flare. Sol. Phys. 108, 237–250 (1987)

    Article  ADS  Google Scholar 

  13. Veronig, A.M., Karlický, M., Vršnak, B., Temmer, M., Magdalenić, J., Dennis, B.R., Otruba, W., Pötzi, W.: X-ray sources and magnetic reconnection in the X3.9 flare of 2003 November 3. Astron. Astrophys. 446, 675–690 (2006)

    Article  ADS  Google Scholar 

  14. Hudson, H.S.: Implosions in coronal transients. Astrophys. J. 531, L75–L77 (2000)

    Article  ADS  Google Scholar 

  15. Ji, H., Huang, G., Wang, H.: The relaxation of sheared magnetic fields: a contracting process. Astrophys. J. 660, 893–900 (2007)

    Article  ADS  Google Scholar 

  16. Shen, J., Zhou, T., Ji, H., Wiegelmann, T., Inhester, B., Feng, L.: Well-observed dynamics of flaring and peripheral coronal magnetic loops during an M-class limb flare. Astrophys. J. 791, 83–91 (2014)

    Article  ADS  Google Scholar 

  17. Liu, R., Liu, C., Török, T., Wang, Y., Wang, H.: Contracting and erupting components of sigmoidal active regions. Astrophys. J. 757, 150–162 (2012)

    Article  ADS  Google Scholar 

  18. Wang, H.: Evolution of vector magnetic fields and the August 27 1990 X-3 flare. Sol. Phys. 140, 85–98 (1992)

    Article  ADS  Google Scholar 

  19. Wang, H., Ewell Jr., M.W., Zirin, H., Ai, G.: Vector magnetic field changes associated with X-class flares. Astrophys. J. 424, 436–443 (1994)

    Article  ADS  Google Scholar 

  20. Wang, S., Liu, C., Liu, R., Deng, N., Liu, Y., Wang, H.: Response of the photospheric magnetic field to the X2.2 flare on 2011 February 15. Astrophys. J. 745, L17–L22 (2012)

    Article  ADS  Google Scholar 

  21. Jing, J., Song, H., Abramenko, V., Tan, C., Wang, H.: The statistical relationship between the photospheric magnetic parameters and the flare productivity of active regions. Astrophys. J. 644, 1273–1277 (2006)

    Article  ADS  Google Scholar 

  22. Sun, X., Hoeksema, J.T., Liu, Y., Wiegelmann, T., Hayashi, K., Chen, Q., Thalmann, J.: Evolution of magnetic field and energy in a major eruptive active region based on SDO/HMI observation. Astrophys. J. 748, 77–93 (2012)

    Article  ADS  Google Scholar 

  23. Hudson, H.S., Fisher, G.H., Welsch, B.T.: Flare Energy and magnetic field variations. In: Howe, R., Komm, R.W., Balasubramaniam, K.S., Petrie, G.J.D. (eds.) Subsurface and Atmospheric Influences on Solar Activity. ASP Conference Series, vol. 383, pp. 221–226 (2008)

    Google Scholar 

  24. Fisher, G.H., Bercik, D.J., Welsch, B.T., Hudson, H.S.: Global forces in eruptive solar flares: the lorentz force acting on the solar atmosphere and the solar interior. Sol. Phys. 277, 59–76 (2012)

    Article  ADS  Google Scholar 

  25. Hudson, H.S., Lemen, J.R., St. Cyr, O.C., Sterling, A.C., Webb, D.F.: X-ray coronal changes during Halo CMEs. Geophys. Res. Lett. 25, 2481–2484 (1998)

    Google Scholar 

  26. Sakurai, T., Shibata, K., Ichimoto, K., Tsuneta, S., Acton, L.W.: Flare-related relaxation of magnetic shear as observed with the Soft X-ray telescope of YOHKOH and with vector magnetographs. Publ. Astron. Soc. Japan 44, L123–L127 (1992)

    ADS  Google Scholar 

  27. Rust, D.M., Kumar, A.: Evidence for helically kinked magnetic flux ropes in solar eruptions. Astrophys. J. 464, L199–L202 (1996)

    Article  ADS  Google Scholar 

  28. Taylor, J.B.: Relaxation and magnetic reconnection in plasmas. Rev. Mod. Phys. 58, 741–763 (1986)

    Article  ADS  Google Scholar 

  29. Rust, D.M., Kumar, A.: Helical magnetic fields in filaments. Sol. Phys. 155, 69–97 (1994)

    Article  ADS  Google Scholar 

  30. Voslamber, D., Callebaut, D.K.: Stability of force-free magnetic fields. Phys. Rev. 128, 2016–2021 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Anzer, U.: The stability of force-free magnetic fields with cylindrical symmetry in the context of solar flares. Sol. Phys. 3, 298–315 (1968)

    Article  ADS  Google Scholar 

  32. Raadu, M.A.: Suppression of the kink instability for magnetic flux ropes in the chromosphere. Sol. Phys. 22, 425–433 (1972)

    Article  ADS  Google Scholar 

  33. Shen, J., Wang, Y., Zhou, T., Ji, H.: Initiation processes for the 2013 May 13 X1.7 limb flare. Astrophys. J. (2017). in press

    Google Scholar 

  34. Török, T., Chandra, R., Pariat, E., Démoulin, P., Schmieder, B., Aulanier, G., Linton, M.G., Mandrini, C.H.: Filament interaction modeled by flux rope reconnection. Astrophys. J. 728, 65–70 (2011)

    Article  ADS  Google Scholar 

  35. Ji, H., Wang, H., Schmahl, E.J., Moon, Y.-J., Jiang, Y.: Observations of the failed eruption of a filament. Astrophys. J. 595, L135–L138 (2003)

    Article  ADS  Google Scholar 

  36. Liu, Y.: Halo coronal mass ejections and configuration of the ambient magnetic fields. Astrophys. J. 654, L171–L174 (2007)

    Article  ADS  Google Scholar 

  37. Fang, C., Henoux, J.C., Gan, W.Q.: Diagnostics of non-thermal processes in chromospheric flares. 1. Hoe and Call K line profiles of an atmosphere bombarded by 10–500 keV electrons. Astron. Astrophys. 274, 917–922 (1993)

    ADS  Google Scholar 

  38. Ding, M.D., Qiu, J., Wang, H., Goode, P.R.: On the fast fluctuations in solar flare H\(\alpha \) blue wing emission. Astrophys. J. 552, 340–347 (2001)

    Article  ADS  Google Scholar 

  39. Fan, Y., Gibson, S.E.: On the nature of the X-Ray bright core in a stable filament channel. Astrophys. J. 641, L149–L152 (2006)

    Article  ADS  Google Scholar 

  40. Amari, T., Luciani, J.F., Aly, J.J.: Coronal magnetohydrodynamic evolution driven by subphotospheric conditions. Astrophys. J. 615, L165–L168 (2004)

    Article  ADS  Google Scholar 

  41. Fan, Y., Gibson, S.E.: Onset of coronal mass ejections due to loss of confinement of coronal flux ropes. Astrophys. J. 668, 1232–1245 (2007)

    Article  ADS  Google Scholar 

  42. Aulanier, G., Török, T., Démoulin, P., DeLuca, E.E.: Formation of torus-unstable flux ropes and electric currents in erupting sigmoids. Astrophys. J. 708, 314–333 (2010)

    Article  ADS  Google Scholar 

  43. Chen, P.F., Shibata, K.: An emerging flux trigger mechanism for coronal mass ejections. Astrophys. J. 545, 524–531 (2000)

    Article  ADS  Google Scholar 

  44. Priest, E.R., Forbes, T.G.: The magnetic nature of solar flares. Astron. Astrophys. Rev. 10, 313–377 (2002)

    Article  ADS  Google Scholar 

  45. Carmichael, H.: A process for flares. In: Wilmot, N.H (ed.) The Physics of Solar Flares, Proceedings of the AAS-NASA Symposium held 28–30 October, 1963 at the Goddard Space Flight Center, Greenbelt MD, Washington, DC: National Aeronautics and Space Administration, Science and Technical Information Division, p. 451 (1964)

    Google Scholar 

  46. Sturrock, P.A.: Model of the high-energy phase of solar flares. Nature 211, 695–697 (1996)

    Article  ADS  Google Scholar 

  47. Hirayama, T.: Theoretical model of flares and prominences. I: evaporating flare model. Sol. Phys. 34, 323–338 (1974)

    Article  ADS  Google Scholar 

  48. Kopp, R.A., Pneuman, G.W.: Magnetic reconnection in the corona and the loop prominence phenomenon. Sol. Phys. 50, 85–98 (1976)

    Article  ADS  Google Scholar 

  49. Priest, E.R.: Book-Review - solar flare magnetohydrodynamics. Science 214, 356 (1981)

    ADS  Google Scholar 

  50. Moore, R.L.: Evidence that magnetic energy shedding in solar filament eruptions is the drive in accompanying flares and coronal mass ejections. Astrophys. J. 324, 1132–1137 (1988)

    Article  ADS  Google Scholar 

  51. Moore, R.L., Roumeliotis, G.: Triggering of eruptive flares - destabilization of the preflare magnetic field configuration. In: Svestka, Z., Jackson, B.V., Machado, M.E (eds.) Eruptive Solar Flares. Proceedings of Colloquium 133 of the International Astronomical Union, held at Iguazu, Argentina, 2–6 August, 1991, p. 69. Springer, New York (1992)

    Google Scholar 

  52. Shibata, K.: New observational facts about solar flares from YOHKOH studies - evidence of magnetic reconnection and a unified model of flares. Adv. Space Res. 17, 9–18 (1996)

    Article  ADS  Google Scholar 

  53. Shibata, K.: A unified model of solar flares. In: Watanabe, T., Kosugi, T., Sterling, A.C (eds.) Observational Plasma Astrophysics: Five Years of Yohkoh and Beyond, vol. 229, p. 187. Kluwer Academic Publishers, Boston (1998)

    Google Scholar 

  54. Shibata, K.: Evidence of magnetic reconnection in solar flares and a unified model of flares. In: Structure Formation and Function of Gaseous, Biological and Strongly Coupled Plasmas, p. 74 (1999)

    Google Scholar 

  55. Liu, R., Wang, H., Alexander, D.: Implosion in a coronal eruption. Astrophys. J. 696, 121–135 (2009)

    Article  ADS  Google Scholar 

  56. Yang, Y.H., Cheng, C.Z., Krucker, S., Lin, R.P., Ip, W.H.: A statistical study of hard X-Ray footpoint motions in large solar flares. Astrophys. J. 693, 132–139 (2009)

    Article  ADS  Google Scholar 

  57. Li, Y.P., Gan, W.Q.: On the peak times of thermal and nontheral emissions in solar flares. Astrophys. J. 652, L61–L63 (2006)

    Article  ADS  Google Scholar 

  58. Joshi, B., Veronig, A., Cho, K.-S., Bong, S.-C., Somov, B.V., et al.: Magnetic reconnection during the two-phase evolution of a solar eruptive flare. Astrophys. J. 706, 1438–1450 (2009)

    Article  ADS  Google Scholar 

  59. Melnikov, V.F., Shibasaki, K., Reznikova, V.E.: Loop-top nonthermal microwave source in extended solar flaring loops. Astrophys. J. 580, L185–L188 (2002)

    Article  ADS  Google Scholar 

  60. Altyntsev, A.T., Fleishman, G.D., Huang, G.L., Melnikov, V.F.: A broadband microwave burst produced by electron beams. Astrophys. J. 677, 1367–1377 (2008)

    Article  ADS  Google Scholar 

  61. Reznikova, V.E., Melnikov, V.F., Shibasaki, K., Gorbikov, S.P., Pyatakov, N.P., Myagkova, I.N., Ji, H.: 2002 August 24 limb flare loop: dynamics of microwave brightness distribution. Astrophys. J. 697, 735–746 (2009)

    Article  ADS  Google Scholar 

  62. Reznikova, V.E., Melnikov, V.F., Ji, H., Shibasaki, K.: Dynamics of the flaring loop system of 2005 August 22 observed in microwaves and hard X-rays. Astrophys. J. 724, 171–181 (2010)

    Article  ADS  Google Scholar 

  63. Nakajima, H., Nishio, M., Enome, S., Shibasaki, K., Takano, T., et al.: The nobeyama radioheliograph. Proc. IEEE 82, 705–713 (1994)

    Article  ADS  Google Scholar 

  64. Asai, A., Shibata, K., Ishii, T.T., Oka, M., Kataoka, R., et al.: Evolution of the anemone AR NOAA 10798 and the related geo-effective flares and CMEs. J. Geophys. Res. 114, A00A21 (2009)

    Google Scholar 

  65. Bastian, T.S., Benz, A.O., Gary, D.E.: Radio emission from solar flares. Annu. Rev. Astron. Astrophys. 36, 131–188 (1998)

    Article  ADS  Google Scholar 

  66. Huang, G.L., Nakajima, H.: Statistical analysis of flaring loops observed by nobeyama radioheliograph. I. Comparison of looptop and footpoints. Astrophys. J. 696, 136–142 (2009)

    Article  ADS  Google Scholar 

  67. Melrose, D.B., Robinson, P.A.: Reversal of the sense of polarization in solar and steller flares. Astron. Soc. Aust. Proc. 11, 16–20 (1994)

    Google Scholar 

  68. Huang, G.L., Song, Q.W., Li, J.P.: Determination of intrinsic mode and linear mode coupling in solar microwave bursts. Astrophys. Space Sci. 345, 41–47 (2013)

    Article  ADS  Google Scholar 

  69. Zhou, T., Ji, H.: A comparison between magnetic shear and flare shear in a well-observed M-class flare. Res. Astron. Astrophys. 9, 323–332 (2009)

    Article  ADS  Google Scholar 

  70. Thomson, A.R., Moran, J.M., Swenson Jr., G.W.: Interferometry and Synthesis in Radio Astronomy. Wiley-Interscience, New York (1986)

    Google Scholar 

  71. Tanaka, K., Nakagawa, Y.: Force-free magnetic fields and flares of August 1972. Sol. Phys. 33, 187–204 (1973)

    Article  ADS  Google Scholar 

  72. Moore, R.L., Sterling, A.C., Hudson, H.S., Lemen, J.R.: Onset of the magnetic explosion in solar flares and coronal mass ejections. Astrophys. J. 552, 833–848 (2001)

    Article  ADS  Google Scholar 

  73. Kliem, B., Titov, V.S., Török, T.: Formation of current sheets and sigmoidal structure by the kink instability of a magnetic loop. Astron. Astrophys. 413, L23–L26 (2004)

    Article  ADS  MATH  Google Scholar 

  74. Masuda, S., Kosugi, T., Hudson, H.S.: A hard X-ray two-ribbon flare observed with Yohkoh/HXT. Sol. Phys. 204, 55–67 (2001)

    Article  ADS  Google Scholar 

  75. Asai, A., Ishii, T.T., Kurokawa, H., Yokoyama, T., Shimojo, M.: Evolution of conjugate footpoints inside flare ribbons during a great two-ribbon flare on 2001 April 10. Astrophys. J. 586, 624–629 (2003)

    Article  ADS  Google Scholar 

  76. Su, Y., Golub, L., Van Ballegooijen, A.A.: A statistical study of shear motion of the footpoints in two-ribbon flares. Astrophys. J. 655, 606–614 (2007)

    Article  ADS  Google Scholar 

  77. Liu, W., Petrosian, V., Dennis, B., Holman, G.: Conjugate hard X-Ray footpoints in the 2003 October 29 X10 flare: unshearing motions, correlations, and asymmetries. Astrophys. J. 693, 847–867 (2009)

    Article  ADS  Google Scholar 

  78. Somov, B.V.: Non-neutral current sheets and solar flare energetics. Astron. Astrophys. 163, 210–218 (1986)

    ADS  MATH  Google Scholar 

  79. Lin, J., Forbes, T.G., Priest, E.R., Bungey, T.N.: Models for the motions of flare loops and ribbons. Sol. Phys. 159, 275–299 (1995)

    Article  ADS  Google Scholar 

  80. Forbes, T.G., Acton, L.W.: Reconnection and field line shrinkage in solar flares. Astrophys. J. 459, 330–341 (1996)

    Article  ADS  Google Scholar 

  81. Lin, J.: Motions of flare ribbons and loops in various magnetic configurations. Sol. Phys. 222, 115–136 (2004)

    Article  ADS  Google Scholar 

  82. Yokoyama, T., Shibata, K.: Magnetic reconnection coupled with heat conduction. Astrophys. J. 474, L61–L64 (1997)

    Article  ADS  Google Scholar 

  83. Yokoyama, T., Shibata, K.: A two-dimensional magnetohydrodynamic simulation of chromospheric evaporation in a solar flare based on a magnetic reconnection model. Astrophys. J. 494, L113–L116 (1998)

    Article  ADS  Google Scholar 

  84. Chen, P.F., Fang, C., Tang, Y.H., Ding, M.D.: Flaring loop motion and a unified model for solar flares. Astrophys. J. 520, 853–858 (1999)

    Article  ADS  Google Scholar 

  85. Somov, B.V., Kosugi, T.: Collisionless reconnection and high-energy particle acceleration in solar flares. Astrophys. J. 485, 859–868 (1997)

    Article  ADS  Google Scholar 

  86. Karlick\(\acute{y}\), M., Kosugi, T.: Acceleration and heating processes in a collapsing magnetic trap. Astron. Astrophys. 419, 1159–1168 (2004)

    Google Scholar 

  87. Shibasaki, K.: High-beta disruption in the solar atmosphere. Astrophys. J. 557, 326–331 (2001)

    Article  ADS  Google Scholar 

  88. Tsap, Y.T., Kopylova, Y.G., Stepanov, A.V., Melnikov, V.F., Shibasaki, K.: Ballooning instability in coronal flare loops. Sol. Phys. 253, 161–172 (2008)

    Article  ADS  Google Scholar 

  89. Gorbikov, S.P., Melnikov, V.F.: Math. Model. 19, 112 (2007)

    Google Scholar 

  90. Nakariakov, V.M., Melnikov, V.F.: Quasi-periodic pulsations in solar flares. Space Sci. Rev. 149, 119–151 (2009)

    Article  ADS  Google Scholar 

  91. Kupriyanova, E.G., Melnikov, V.F., Nakariakov, V.M., Shibasaki, K.: Types of microwave quasi-periodic pulsations in single flaring loops. Sol. Phys. 267, 329–342 (2010)

    Article  ADS  Google Scholar 

  92. O’Shea, E., Banerjee, D., Doyle, J.G., Fleck, B., Murtagh, F.: Active region oscillations. Astron. Astrophys. 368, 1095–1107 (2001)

    Article  ADS  Google Scholar 

  93. McAteer, R.T.J., Gallagher, P.T., Bloomfield, D.S., Williams, D.R., Mathioudakis, M., Keenan, F.P.: Ultraviolet oscillations in the chromosphere of the quiet sun. Astrophys. J. 602, 436–445 (2004)

    Article  ADS  Google Scholar 

  94. Dmitriev, P.B., Kudryavtsev, I.V., Lazutkov, V.P., Matveev, G.A., Savchenko, M.I., Skorodumov, D.V., Charikov, Yu.E: Solar flares registered by the IRIS spectrometer onboard the CORONAS-F satellite: peculiarities of the X-ray emission. Sol. Syst. Res. 40, 142–152 (2006)

    Google Scholar 

  95. Reznikova, V.E., Melnikov, V.F., Su, Y., Huang, G.: Pulsations of microwave flaring emission at low and high frequencies. Astron. Rep. 51, 588–596 (2007)

    Article  ADS  Google Scholar 

  96. Torrence, C., Compo, G.P.: A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61–78 (1998)

    Article  ADS  Google Scholar 

  97. Horne, J.H., Baliunas, S.L.: A prescription for period analysis of unevenly sampled time series. Astrophys. J. 302, 757–763 (1986)

    Article  ADS  Google Scholar 

  98. De Moortel, I., McAteer, R.T.J.: Waves and wavelets: an automated detection technique for solar oscillations. Sol. Phys. 223, 1–11 (2004)

    Article  ADS  Google Scholar 

  99. Inglis, A.R., Nakariakov, V.M.: A multi-periodic oscillatory event in a solar flare. Astron. Astrophys. 493, 259–266 (2009)

    Article  ADS  Google Scholar 

  100. Melnikov, V.F., Reznikova, V.E., Shibasaki, K., Nakariakov, V.M.: Spatially resolved microwave pulsations of a flare loop. Astron. Astrophys. 439, 727–736 (2005)

    Article  ADS  Google Scholar 

  101. Edwin, P.M., Roberts, B.: Wave propagation in a magnetically structured atmosphere. III - the slab in a magnetic environment. Sol. Phys. 76, 239–259 (1982)

    Article  ADS  Google Scholar 

  102. Edwin, P.M., Roberts, B.: Wave propagation in a magnetic cylinder. Sol. Phys. 88, 179–191 (1983)

    Google Scholar 

  103. Nakariakov, V.M.: In: Dwivedi, B.N. (ed.) Dynamic Sun, pp. 314–334. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  104. Aschwanden, M.J., Fletcher, L., Schrijver, C.J., Alexander, D.: Coronal loop oscillations observed with the transition region and coronal explorer. Astrophys. J. 520, 880–894 (1999)

    Article  ADS  Google Scholar 

  105. Nakariakov, V.M., Ofman, L., Deluca, E.E., Roberts, B., Davila, J.M.: TRACE observation of damped coronal loop oscillations: implications for coronal heating. Science 285, 862–864 (1999)

    Article  ADS  Google Scholar 

  106. Kupriyanova, E.G., Melnikov, V.F., Shibasaki, K.: Spatially resolved microwave observations of multiple periodicities in a flaring loop. Sol. Phys. 284, 559–578 (2013)

    Article  ADS  Google Scholar 

  107. Dulk, G.A., Marsh, K.A.: Simplified expressions for the gyrosynchrotron radiation from mildly relativistic, nonthermal and thermal electrons. Astrophys. J. 259, 350–358 (1982)

    Article  ADS  Google Scholar 

  108. Nakariakov, V.M., Verwichte, E.: Coronal waves and oscillations. Living Rev. Sol. Phys. 2(3) (2005)

    Google Scholar 

  109. Wang, T.J., Solanki, S.K.: Vertical oscillations of a coronal loop observed by TRACE. Astron. Astrophys. 421, L33–L36 (2004)

    Article  ADS  Google Scholar 

  110. Verwichte, E., Foullon, C., Nakariakov, V.M.: Seismology of curved coronal loops with vertically polarised transverse oscillations. Astron. Astrophys. 452, 615–622 (2006)

    Article  ADS  Google Scholar 

  111. Díaz, A.J.: Fast magnetohydrodynamic oscillations in an elliptical coronal arcade. Astron. Astrophys. 456, 737–746 (2006)

    Article  ADS  Google Scholar 

  112. Aschwanden, M.J., Schrijver, C.J.: Coronal loop oscillations observed with atmospheric imaging assemblyłkink mode with cross-sectional and density oscillations. Astrophys. J. 736, 102–122 (2011)

    Article  ADS  Google Scholar 

  113. Kupriyanova, E.G., Melnikov, V.F., Puzynya, V.M., Shibasaki, K., Ji, H.S.: Long-period pulsations of the thermal microwave emission of the solar flare of June 2, 2007 from data with high spatial resolution. Astron. Rep. 58, 573–577 (2014)

    Article  ADS  Google Scholar 

  114. Zaitsev, Valerii V., Stepanov, Alexander V.: Reviews of topical problems: coronal magnetic loops. Phys. Uspekhi 51, 1123–1160 (2008)

    Article  ADS  Google Scholar 

  115. Mészárosová, H., Karlický, M., Rybḱ, J., Jiricka, K.: Tadpoles in wavelet spectra of a solar decimetric radio burst. Astrophys. J. Lett. 697, L108–L110 (2009)

    Google Scholar 

  116. Sych, R., Nakariakov, V.M., Karlicky, M., Anfinogentov, S.: Relationship between wave processes in sunspots and quasi-periodic pulsations in active region flares. Astron. Astrophys. 505, 791–799 (2009)

    Article  ADS  Google Scholar 

  117. Reznikova, V.E., Shibasaki, K.: Flare quasi-periodic pulsations with growing periodicity. Astron. Astrophys. 525, 112–118 (2011)

    Article  ADS  Google Scholar 

  118. Kislyakova, K.G., Zaitsev, V.V., Urpo, S., Riehokainen, A.: Long-period oscillations of the solar microwave emission. Astron. Rep. 55, 275–283 (2011)

    Article  ADS  Google Scholar 

  119. Kim, S., Nakariakov, V.M., Shibasaki, K.: Slow magnetoacoustic oscillations in the microwave emission of solar flares. Astrophys. J. Lett. 756, L36–L40 (2012)

    Article  ADS  Google Scholar 

  120. Puzynya, V.M., Melnikov, V.F.: In: Stepanov, A.V., Nagovitsyn, YuA (eds.) Proceedings of the Conference on Solar and Solar-Earth Physics-2010 (Glavn. Astron. Observ. RAN, St.-Petersburg), p. 335 (2010)

    Google Scholar 

  121. Wang, T.: Standing slow-mode waves in hot coronal loops: observations, modeling, and coronal seismology. Space Sci. Rev. 158, 397–419 (2011)

    Article  ADS  Google Scholar 

  122. Kaufmann, P., Strauss, F.M., Laporte, C., Opher, R.: Evidence for quasi-quantization of solar flare mm-wave radiation. Astron. Astrophys. 87, 58–62 (1980)

    ADS  Google Scholar 

  123. Sturrock, P.A., Kaufmann, P., Moore, R.L., Smith, D.F.: Energy release in solar flares. Sol. Phys. 94, 341–357 (1984)

    Article  ADS  Google Scholar 

  124. Qin, Z., Huang, G.: Some characteristics of pulsations in radio bursts at 9.375 GHz. Astrophys. Space Sci. 218, 213–222 (1994)

    Article  ADS  Google Scholar 

  125. Aschwanden, M.J.: Theory of radio pulsations in coronal loops. Sol. Phys. 111, 113–136 (1987)

    Article  ADS  Google Scholar 

  126. Huang, G., Qin, Z., Yao, Q.: A model for solar radio pulsations at short centimetric band. Astrophys. Space Sci. 243, 401–412 (1996)

    Article  ADS  Google Scholar 

  127. Huang, G., Nakajima, H.: Statistical analysis of flaring loops observed by nobeyama radioheliograph. I. Comparison of looptop and footpoints. Astrophys. J. 696, 136–142 (2009)

    Article  ADS  Google Scholar 

  128. Huang, G., Song, Q.: Frequency dependence of the relation between repetition rate and burst flux in solar radio pulsations. Sol. Phys. 264, 345–351 (2010)

    Article  ADS  Google Scholar 

  129. Huang, G., Wang, D., Song, Q.: Whistler waves in Freja observations. J. Geophys. Res. 109, A02307 (2003)

    ADS  Google Scholar 

  130. Song, Q., Huang, G.: A tentative statistical analysis of flare events observed by NoRH and NoRP. Adv. Space Res. 41, 1188–1190 (2008)

    Article  ADS  Google Scholar 

  131. Liu, W., Petrosian, V., Dennis, B., Jiang, Y.: Double coronal hard and soft X-Ray source observed by RHESSI: evidence for magnetic reconnection and particle acceleration in solar flares. Astrophys. J. 676, 704–716 (2008)

    Article  ADS  Google Scholar 

  132. Sakao, T., Kosugi, T., Masuda, S.: Energy release and particle acceleration in solar flares with respect to flaring magnetic loops. Obs. Plasma Astrophys. Five Years YOHKOH Beyond 229, 273 (1998)

    Article  ADS  Google Scholar 

  133. Gan, W., Li, Y., Miroshnichenko, L.: On the motions of RHESSI flare footpoints. Adv. Space Res. 41, 908–913 (2008)

    Article  ADS  Google Scholar 

  134. Ning, Z., Cao, W.: Hard X-ray source distributions on EUV bright Kernels in a solar flare. Sol. Phys. 269, 283–293 (2011)

    Article  ADS  Google Scholar 

  135. Ning, Z.: X-ray source motion along the loop in two solar flares. Astrophys. Space Sci. 346, 307–318 (2013)

    Article  ADS  Google Scholar 

  136. Liu, W., Liu, S., Jiang, Y., Petrosian, V.: RHESSI observation of chromospheric evaporation. Astrophys. J. 649, 1124–1139 (2006)

    Article  ADS  Google Scholar 

  137. Ning, Z., Cao, W., Huang, J., Huang, G., Yan, Y., Feng, H.: Evidence of chromospheric evaporation in the 2004 December 1 solar flare. Astrophys. J. 699, 15–22 (2009)

    Article  ADS  Google Scholar 

  138. Ning, Z., Cao, W.: Investigation of chromospheric evaporation in a neupert-type solar flare. Astrophys. J. 717, 1232–1242 (2010)

    Article  ADS  Google Scholar 

  139. Tajima, T., Brunel, F., Sakai, J.-I., Vlahos, L., Kundu, M.R.: The coalescence instability in solar flares. In: Proceedings of the 107th IAU Symposium. D. Reidel Publishing Co., Dordrecht, pp. 197–208 (1985)

    Google Scholar 

  140. Sakai, J.-I., Ohsawa, Y.: Particle acceleration by magnetic reconnection and shocks during current loop coalescence in solar flares. Space Sci. Rev. 46, 113–198 (1987)

    ADS  Google Scholar 

  141. Sakai, J.-I., de Jager, C.: Coronal explosions as a signature of current loop coalescence in solar flares. Sol. Phys. 123, 393–396 (1989)

    Article  ADS  Google Scholar 

  142. Sakai, J.-I., Koide, S.: Classification of magnetic reconnection during two current-loop coalescence. Sol. Phys. 142, 399–402 (1992)

    Article  ADS  Google Scholar 

  143. Chargeishvili, B., Zhao, J., Sakai, J.-I.: Dynamics of the physical state during two-current-loop collisions. Sol. Phys. 145, 297–315 (1993)

    Article  ADS  Google Scholar 

  144. Zhao, J., Chargeishvili, B., Sakai, J.-I.: Prompt high-energy particle acceleration during two-current-loop collisions. Sol. Phys. 146, 331–341 (1993)

    Article  ADS  Google Scholar 

  145. Zhao, J., Chargeishvili, B., Sakai, J.-I.: Characteristics of plasma temperature variation during two-current-loop collisions. Sol. Phys. 147, 131–136 (1993)

    Article  ADS  Google Scholar 

  146. Sakai, J.-I., de Jager, C.: Solar flares and collisions between current-carrying loops types and mechanisms of solar flares and coronal loop heating. Space Sci. Rev. 77, 1–192 (1996)

    Article  ADS  Google Scholar 

  147. Smith, P.D., Sakai, J.-I.: Chromospheric magnetic reconnection: two-fluid simulations of coalescing current loops. Astron. Astrophys. 486, 569–575 (2008)

    Article  ADS  MATH  Google Scholar 

  148. Hanaoka, Y.A.: Flare caused by interacting coronal loops. Astrophys. J. 420, L37–L40 (1994)

    Article  ADS  Google Scholar 

  149. Hanaoka, Y.A.: Flares and plasma flow caused by interacting coronal loops. Sol. Phys. 165, 275–301 (1996)

    Article  ADS  Google Scholar 

  150. Hanaoka, Y.A.: Double-loop configuration of solar flares. Sol. Phys. 173, 319–346 (1997)

    Article  ADS  Google Scholar 

  151. Inda-Koide, M., Sakai, J.-I., Koide, S., Kosugi, T., Sakao, T., Shimizu, T.: Publ. Astron. Soc. Japan 47, 323–330 (1995)

    ADS  Google Scholar 

  152. Aschwanden, M.J., Benz, A.O.: Electron densities in solar flare loops, chromospheric evaporation upflows, and acceleration sites. Astrophys. J. 480, 825–835 (1997)

    Article  ADS  Google Scholar 

  153. Kundu, M.R., Grechnev, V.V., Garaimov, V.I., White, S.M.: Double loop configuration of a flaring region from microwave, extreme-ultraviolet, and X-ray imaging data. Astrophys. J. 563, 389–402 (2001)

    Article  ADS  Google Scholar 

  154. Pohjolainen, S.: Repeated flaring from LoopCLoop interaction. Sol. Phys. 2003, 319–339 (2003)

    Article  ADS  Google Scholar 

  155. Huang, G.L., Wu, H.A., Grechnev, V.V., Sych, R.A., Altyntsev, A.T.: The radio signature of twisted magnetic ropes and reconnection site in the low corona. Sol. Phys. 213, 341–358 (2003)

    Article  ADS  Google Scholar 

  156. Huang, G.L.: Radio and multiwavelength evidence of coronal loop eruption in a flare-coronal mass ejection event on 15 April 1998. J. Geophys. Res. 109, A02105 (2004)

    ADS  Google Scholar 

  157. Wu, G.P., Huang, G.L., Tang, Y.H., Xu, A.A.: The observational evidence on the loop loop interaction in a flare CME event on April 15, 1998. Sol. Phys. 2005(227), 327–337 (2005)

    Article  ADS  Google Scholar 

  158. Huang, G.L., Ji, H.S.: Microwave, optical, EUV, and hard X-ray signature of possible coronal loop interaction. Sol. Phys. 2005(229), 227–236 (2005)

    Article  ADS  Google Scholar 

  159. Huang, G.L., Ji, H.S.: Radio, Hard X-ray, EUV and optical study of September 9, 2002 solar flare. Astrophys. Space Sci. 2006(301), 65–71 (2006)

    Article  ADS  Google Scholar 

  160. Huang, G.L., Lin, J.: Quasi-periodic reversals of radio polarization at 17 GHz observed in the 2002 April 21 solar event. Astrophys. J. 639, L99–L102 (2006)

    Article  ADS  Google Scholar 

  161. Kolomański, S., Karlický, M.: The interaction of a plasmoid with a loop-top Kernel. Astron. Astrophys. 475, 685–693 (2007)

    Article  ADS  Google Scholar 

  162. Kumar, P., Srivastava, A.K., Somov, B.V., Manoharan, P.K., Erdélyi, R., Uddin, W.: Evidence of solar flare triggering due to loop-loop interaction caused by footpoint shear motion. Astrophys. J. 723, 1651–1664 (2010)

    Article  ADS  Google Scholar 

  163. Zhou, A.H., Karlický, M.: Magnetic field estimation in microwave radio sources. Sol. Phys. 153, 441–444 (1994)

    Article  ADS  Google Scholar 

  164. Huang, G.L., Li, J.P.: Co-analysis of solar microwave and hard X-ray spectral evolutions. II. In three sources of a flaring loop. Astrophys. J. 740, 46–56 (2011)

    Article  ADS  Google Scholar 

  165. Minoshima, T., Yokoyama, T., Mitani, N.: Comparative analysis of nonthermal emissions and electron transport in a solar flare. Astrophys. J. 673, 598–610 (2008)

    Article  ADS  Google Scholar 

  166. Metcalf, T.R., Alexander, D.: Coronal trapping of energetic flare particles: Yohkoh/HXT observations. Astrophys. J. 522, 1108–1116 (1999)

    Article  ADS  Google Scholar 

  167. Huang, G.L., Song, Q.W., Huang, Y.: Statistics of flaring loops observed by the Nobeyama Radioheliograph. III. Asymmetry of two footpoint emissions. Astrophys. J. 723, 1806–1816 (2010)

    Article  ADS  Google Scholar 

  168. Brown, J.C.: The deduction of energy spectra of non-thermal electrons in flares from the observed dynamic spectra of hard X-ray bursts. Sol. Phys. 18, 489–502 (1971)

    Article  ADS  Google Scholar 

  169. Fisher, G.H., Canfield, R.C., McClymont, A.N.: Flare loop radiative hydrodynamics. V - response to thick-target heating. VI - chromospheric evaporation due to heating by nonthermal electrons. VII - dynamics of the thick-target heated chromosphere. Astrophys. J. 289, 414–441 (1985a)

    Article  ADS  Google Scholar 

  170. Fisher, G.H., Canfield, R.C., McClymont, A.N.: Flare loop radiative hydrodynamics - part six - chromospheric evaporation due to heating by nonthermal electrons. Astrophys. J. 289, 425–433 (1985b)

    Article  ADS  Google Scholar 

  171. Fisher, G.H., Canfield, R.C., McClymont, A.N.: Flare loop radiative hydrodynamics - part seven - dynamics of the thick target heated chromosphere. Astrophys. J. 289, 434–441 (1985c)

    Article  ADS  Google Scholar 

  172. Fisher, G.H.: IAU Colloq. 89: radiation hydrodynamics in stars and compact objects 255, 53–74 (1986)

    Google Scholar 

  173. Nagai, F., Emslie, A.G.: Gas dynamics in the impulsive phase of solar flares. I. Thick-target heating by nonthermal electrons. Astrophys. J. 279, 896–908 (1984)

    Article  ADS  Google Scholar 

  174. Emslie, A.G., Nagai, F.: Gas dynamics in the impulsive phase of solar flares. II - the structure of the transition region - a diagnostic of energy transport processes. Astrophys. J. 288, 779–788 (1985)

    Article  ADS  Google Scholar 

  175. Mariska, J.T., Emslie, A.G., Li, P.: Numerical simulations of impulsively heated solar flares. Astrophys. J. 341, 1067–1074 (1989)

    Article  ADS  Google Scholar 

  176. Li, P., Emslie, A.G., Mariska, J.T.: Soft X-ray diagnostics of electron-heated solar flare atmospheres. Astrophys. J. 341, 1075–1081 (1989)

    Article  ADS  Google Scholar 

  177. Allred, J.C., Kowalski, A.F., Carlsson, M.: A unified computational model for solar and stellar flares. Astrophys. J. 809, 104–117 (2015)

    Article  ADS  Google Scholar 

  178. Emslie, A.G., Li, P., Mariska, J.T.: Diagnostics of electron-heated solar flare models. III - effects of tapered loop geometry and preheating. Astrophys. J. 399, 714–723 (1992)

    Article  ADS  Google Scholar 

  179. Mariska, J.T.: Flare plasma dynamics obseved with the YOHKOH Bragg crystal spectrometer. III. Spectral signatures of electron-beam-heated atmospheres. Astrophys. J. 444, 478–486 (1995)

    Article  ADS  Google Scholar 

  180. Reep, J.W., Bradshaw, S.J., Alexander, D.: Optimal electron energies for driving chromospheric evaporation in solar flares. Astrophys. J. 808, 177–188 (2015)

    Article  ADS  Google Scholar 

  181. Abbett, W.P., Hawley, S.L.: Dynamic models of optical emission in impulsive solar flares. Astrophys. J. 521, 906–919 (1999)

    Article  ADS  Google Scholar 

  182. Allred, J.C., Hawley, S.L., Abbett, W.P., Carlsson, M.: Radiative hydrodynamic models of the optical and ultraviolet emission from solar flares. Astrophys. J. 630, 573–586 (2005)

    Article  ADS  Google Scholar 

  183. Carlsson, M., Stein, R.F.: Formation of solar calcium H and K bright grains. Astrophys. J. 481, 500–514 (1997)

    Article  ADS  Google Scholar 

  184. Rubio da Costa, F., Liu, W., Petrosian, V., Carlsson, M.: Combined modeling of acceleration, transport, and hydrodynamic response in solar flares. II. Inclusion of radiative transfer with RADYN. Astrophys. J. 813, 133–149 (2015)

    Google Scholar 

  185. Liu, W., Petrosian, V., Mariska, J.T.: Combined modeling of acceleration, transport, and hydrodynamic response in solar flares. I. The numerical model. Astrophys. J. 702, 1553–1566 (2009)

    Article  ADS  Google Scholar 

  186. Cheng, C.-C., Oran, E.S., Doschek, G.A., Boris, J.P., Mariska, J.T.: Numerical simulations of loops heated to solar flare temperatures. I. Astrophys. J. 265, 1090–1119 (1983)

    Article  ADS  Google Scholar 

  187. MacNeice, P.: A numerical hydrodynamic model of a heated coronal loop. Sol. Phys. 103, 47–66 (1986)

    Article  ADS  Google Scholar 

  188. Gan, W.Q., Fang, C.: A hydrodynamic model of the gradual phase of the solar flare loop. Astrophys. J. 358, 328–337 (1990)

    Article  ADS  Google Scholar 

  189. Pallavicini, R., Peres, G., Serio, S., et al.: Closed coronal structures. V - gasdynamic models of flaring loops and comparison with SMM observations. Astrophys. J. 270, 270–287 (1983)

    Article  ADS  Google Scholar 

  190. Peres, G., Reale, F., Serio, S., Pallavicini, R.: Hydrodynamic flare modeling - comparison of numerical calculations with SMM observations of the 1980 November 12 17:00 UT flare. Astrophys. J. 312, 895–908 (1987)

    Article  ADS  Google Scholar 

  191. Gan, W.Q., Zhang, H.Q., Fang, C.: A hydrodynamic model of the impulsive phase of a solar flare loop. Astron. Astrophys. 241, 618–624 (1991)

    ADS  Google Scholar 

  192. Hori, K., Yokoyama, T., Kosugi, T., Shibata, K.: Pseudo-two-dimensional hydrodynamic modeling of solar flare loops. Astrophys. J. 489, 426–441 (1997)

    Article  ADS  Google Scholar 

  193. Longcope, D.W.: A simple model of chromospheric evaporation and condensation driven conductively in a solar flare. Astrophys. J. 795, 10–25 (2014)

    Article  ADS  Google Scholar 

  194. Brannon, S., Longcope, D.: Modeling properties of chromospheric evaporation driven by thermal conduction fronts from reconnection shocks. Astrophys. J. 792, 50–64 (2014)

    Article  ADS  Google Scholar 

  195. Yokoyama, T., Shibata, K.: Magnetohydrodynamic simulation of a solar flare with chromospheric evaporation effect based on the magnetic reconnection model. Astrophys. J. 549, 1160–1174 (2001)

    Article  ADS  Google Scholar 

  196. Kennedy, M.B., Milligan, R.O., Allred, J.C., Mathioudakis, M., Keenan, F.P.: Radiative hydrodynamic modelling and observations of the X-class solar flare on 2011 March 9. Astron. Astrophys. 578, A72–A83 (2015)

    Article  ADS  Google Scholar 

  197. Reep, J.W., Russell, A.J.B.: Alfvénic wave heating of the upper chromosphere in flares. Astrophys. J. Lett. 818, L20–L24 (2016)

    Article  ADS  Google Scholar 

  198. Sturrock, P.A.: A model of quasi-stellar radio sources. Nature 211, 697–700 (1966)

    Article  ADS  Google Scholar 

  199. Antonucci, E., Gabriel, A.H., Acton, L.W., et al.: Impulsive phase of flares in soft X-ray emission. Sol. Phys. 78, 107–123 (1982)

    Article  ADS  Google Scholar 

  200. Acton, L.W., Leibacher, J.W., Canfield, R.C., et al.: Chromospheric evaporation in a well-observed compact flare. Astrophys. J. 263, 409–422 (1982)

    Article  ADS  Google Scholar 

  201. Antonucci, E., Dennis, B.R.: Observation of chromospheric evaporation during the solar maximum mission. Sol. Phys. 86, 67–76 (1983)

    Article  ADS  Google Scholar 

  202. Zarro, D.M., Slater, G.L., Freeland, S.L.: Impulsive phase soft X-ray blueshifts at a loop footpoint. Astrophys. J. 333, L99–L101 (1988)

    Article  ADS  Google Scholar 

  203. Canfield, R.C., Metcalf, T.R., Zarro, D.M., Lemen, J.R.: Momentum balance in four solar flares. Astrophys. J. 348, 333–340 (1990)

    Article  ADS  Google Scholar 

  204. Teriaca, L., Falchi, A., Cauzzi, G., et al.: Solar and heliospheric observatory/coronal diagnostic spectrograph and ground-based observations of a two-ribbon flare: spatially resolved signatures of chromospheric evaporation. Astrophys. J. 588, 596–605 (2003)

    Article  ADS  Google Scholar 

  205. Teriaca, L., Falchi, A., Falciani, R., Cauzzi, G., Maltagliati, L.: Dynamics and evolution of an eruptive flare. Astron. Astrophys. 455, 1123–1133 (2006)

    Article  ADS  Google Scholar 

  206. Ogawara, Y., Takano, T., Kato, T., et al.: The SOLAR-A mission - an overview. Sol. Phys. 136, 1–16 (1991)

    Article  ADS  Google Scholar 

  207. Wuelser, J.-P., Canfield, R.C., Acton, L.W., et al.: Multispectral observations of chromospheric evaporation in the 1991 November 15 X-class solar flare. Astrophys. J. 424, 459–465 (1994)

    Article  ADS  Google Scholar 

  208. Ding, M.D., Watanabe, T., Shibata, K., et al.: Chromospheric evaporation in four solar flares observed by YOHKOH. Astrophys. J. 458, 391–396 (1996)

    Article  ADS  Google Scholar 

  209. Li, D., Ning, Z.J., Zhang, Q.M.: Imaging and spectral observations of quasi-periodic pulsations in a solar flare. Astrophys. J. 813, 59–71 (2015a)

    Article  ADS  Google Scholar 

  210. Harrison, R.A., Sawyer, E.C., Carter, M.K., et al.: The coronal diagnostic spectrometer for the solar and heliospheric observatory. Sol. Phys. 162, 233–290 (1995)

    Article  ADS  Google Scholar 

  211. Czaykowska, A., De Pontieu, B., Alexander, D., Rank, G.: Evidence for chromospheric evaporation in the late gradual flare phase from SOHO/CDS observations. Astrophys. J. 521, L75–78 (1999)

    Article  ADS  Google Scholar 

  212. Brosius, J.W., Phillips, K.J.H.: Extreme-ultraviolet and X-ray spectroscopy of a solar flare loop observed at high time resolution: a case study in chromospheric evaporation. Astrophys. J. 613, 580–591 (2004)

    Article  ADS  Google Scholar 

  213. Milligan, R.O., Gallagher, P.T., Mathioudakis, M., et al.: RHESSI and SOHO CDS observations of explosive chromospheric evaporation. Astrophys. J. 638, L117–120 (2006b)

    Article  ADS  Google Scholar 

  214. Brosius, J.W., Holman, G.D.: Chromospheric evaporation in a remote solar flare-like transient observed at high time resolution with SOHO’s CDS and RHESSI. Astrophys. J. 659, L73–76 (2007)

    Article  ADS  Google Scholar 

  215. Brosius, J.W.: Chromospheric evaporation and warm rain during a solar flare observed in high time resolution with the coronal diagnostic spectrometer aboard the solar and heliospheric observatory. Astrophys. J. 586, 1417–1429 (2003)

    Article  ADS  Google Scholar 

  216. Culhane, J.L., Harra, L.K., James, A.M., et al.: The EUV imaging spectrometer for Hinode. Sol. Phys. 243, 19–61 (2007)

    Article  ADS  Google Scholar 

  217. Milligan, R.O., Dennis, B.R.: Velocity characteristics of evaporated plasma using Hinode/EUV imaging spectrometer. Astrophys. J. 699, 968–975 (2009)

    Article  ADS  Google Scholar 

  218. Mariska, J.T., Doschek, G.A., Bentley, R.D.: Flare plasma dynamics observed with the YOHKOH bragg crystal spectrometer. I. Properties of the CA XIX resonance line. Astrophys. J. 419, 418–425 (1993)

    Article  ADS  Google Scholar 

  219. Mariska, J.T.: Flare plasma dynamics observed with the YOHKOH bragg crystal spectrometer. 2: properties of the Fe XXV, CA XIX. Astrophys. J. 434, 756–765 (1994)

    Article  ADS  Google Scholar 

  220. Milligan, R.O.: Spatially resolved nonthermal line broadening during the impulsive phase of a solar flare. Astrophys. J. 740, 70–80 (2011)

    Article  ADS  Google Scholar 

  221. Young, P.R., Doschek, G.A., Warren, H.P., Hara, H.: Properties of a solar flare Kernel observed by Hinode and SDO. Astrophys. J. 766, 127–142 (2013)

    Article  ADS  Google Scholar 

  222. Graham, D.R., Fletcher, L., Hannah, I.G.: Hinode/EIS plasma diagnostics in the flaring solar chromosphere. Astron. Astrophys. 532, A27–A39 (2011)

    Article  ADS  Google Scholar 

  223. Polito, V., Reep, J.W., Reeves, K.K., et al.: Simultaneous IRIS and Hinode/EIS observations and modelling of the 2014 October 27 X2.0 class flare. Astrophys. J. 816, 89–108 (2016)

    Article  ADS  Google Scholar 

  224. Gömöry, P., Veronig, A.M., Su, Y., Temmer, M., Thalmann, J.K.: Chromospheric evaporation flows and density changes deduced from Hinode/EIS during an M1.6 flare. Astron. Astrophys. 588, A6–A17 (2016)

    Google Scholar 

  225. Doschek, G.A., Warren, H.P., Young, P.R.: Chromospheric evaporation in an M1.8 flare observed by the extreme-ultraviolet imaging spectrometer on Hinode. Astrophys. J. 767, 55–67 (2013)

    Article  ADS  Google Scholar 

  226. De Pontieu, B., Title, A.M., Lemen, J.R., et al.: The interface region imaging spectrograph (IRIS). Sol. Phys. 289, 2733–2779 (2014)

    Article  ADS  Google Scholar 

  227. Lemen, J.R., Title, A.M., Akin, D.J., et al.: The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Sol. Phys. 275, 17–40 (2012)

    Article  ADS  Google Scholar 

  228. Tian, H., Li, G., Reeves, K.K., et al.: Imaging and spectroscopic observations of magnetic reconnection and chromospheric evaporation in a solar flare. Astrophys. J. 797, L14–L20 (2014)

    Article  ADS  Google Scholar 

  229. Tian, H., Young, P.R., Reeves, K.K., et al.: Temporal evolution of chromospheric evaporation: case studies of the M1.1 flare on 2014 September 6 and X1.6 flare on 2014 September 10. Astrophys. J. 811, 139–155 (2015)

    Article  ADS  Google Scholar 

  230. Battaglia, M., Kleint, L., Krucker, S., Graham, D.: How important are electron beams in driving chromospheric evaporation in the 2014 March 29 flare? Astrophys. J. 813, 113–120 (2015)

    Article  ADS  Google Scholar 

  231. Li, D., Ning, Z.J., Zhang, Q.M.: Imaging and spectral observations of quasi-periodic pulsations in a solar flare. Astrophys. J. 807, 72–83 (2015b)

    Article  ADS  Google Scholar 

  232. Brosius, J.W., Daw, A.N.: Quasi-periodic fluctuations and chromospheric evaporation in a solar flare ribbon observed by IRIS. Astrophys. J. 810, 45–57 (2015)

    Article  ADS  Google Scholar 

  233. Graham, D.R., Cauzzi, G.: Temporal evolution of multiple evaporating ribbon sources in a solar flare. Astrophys. J. 807, L22–L26 (2015)

    Google Scholar 

  234. Polito, V., Reeves, K.K., Del Zanna, G., Golub, L., Mason, H.E.: Joint high temperature observation of a small C6.5 solar flare with Iris/Eis/Aia. Astrophys. J. 803, 84–96 (2015)

    Article  ADS  Google Scholar 

  235. Brosius, J.W.: Chromospheric evaporation in solar flare loop strands observed with the extreme-ultraviolet imaging spectrometer on board Hinode. Astrophys. J. 762, 133–139 (2013)

    Article  ADS  Google Scholar 

  236. Young, P.R., Tian, H., Jaeggli, S.: The 2014 March 29 X-flare: subarcsecond resolution observations of Fe XXI \(\lambda \)1354.1. Astrophys. J. 799, 218–230 (2015)

    Article  ADS  Google Scholar 

  237. Masson, S., Pariat, E., Aulanier, G., Schrijver, C.J.: The nature of flare ribbons in coronal null-point topology. Astrophys. J. 700, 559–578 (2009)

    Article  ADS  Google Scholar 

  238. Wang, H., Liu, C.: Circular ribbon flares and homologous jets. Astrophys. J. 760, 101–109 (2012)

    Article  ADS  Google Scholar 

  239. Zhang, Q.M., Ning, Z.J., Guo, Y., et al.: Multiwavelength observations of a partially eruptive filament on 2011 September 8. Astrophys. J. 805, 4–21 (2015)

    Article  ADS  Google Scholar 

  240. Pariat, E., Antiochos, S.K., DeVore, C.R.: A model for solar polar jets. Astrophys. J. 691, 61–74 (2009)

    Article  ADS  Google Scholar 

  241. Zhang, Q.M., Chen, P.F., Guo, Y., Fang, C., Ding, M.D.: Two types of magnetic reconnection in coronal bright points and the corresponding magnetic configuration. Astrophys. J. 746, 19–27 (2012)

    Article  ADS  Google Scholar 

  242. Ichimoto, K., Kurokawa, H.: H-alpha red asymmetry of solar flares. Sol. Phys. 93, 105–121 (1984)

    ADS  Google Scholar 

  243. Lin, R.P., Dennis, B.R., Hurford, G.J., et al.: The reuven ramaty high-energy solar spectroscopic imager (RHESSI). Sol. Phys. 210, 3–32 (2002)

    Article  ADS  Google Scholar 

  244. Zhang, Q.M., Li, D., Ning, Z.J., et al.: Explosive chromospheric evaporation in a circular-ribbon flare. Astrophys. J. 827, 27–37 (2016a)

    Article  ADS  Google Scholar 

  245. Zhang, Q.M., Li, D., Ning, Z.J.: Chromospheric condensation and quasi-periodic pulsations in a circular-ribbon flare, Astrophys. J. (2016b). submitted

    Google Scholar 

  246. Fisher, G.H.: Dynamics of flare-driven chromospheric condensations. Astrophys. J. 346, 1019–1029 (1989)

    Article  ADS  Google Scholar 

  247. Berkebile-Stoiser, S., Gömöry, P., Veronig, A.M., Rybák, J., Sütterlin, P.: Multi-wavelength fine structure and mass flows in solar microflares. Astron. Astrophys. 505, 811–823 (2009)

    Article  ADS  Google Scholar 

  248. Milligan, R.O.: A hot microflare observed with RHESSI and Hinode. Astrophys. J. 680, L157–L160 (2008)

    Article  ADS  Google Scholar 

  249. Brosius, J.W., Holman, G.D.: Early chromospheric response during a solar microflare observed with SOHO’s CDS and RHESSI. Astrophys. J. 720, 1472–1482 (2010)

    Article  ADS  Google Scholar 

  250. Chen, F., Ding, M.D.: Evidence of explosive evaporation in a microflare observed by Hinode/EIS. Astrophys. J. 724, 640–648 (2010)

    Article  ADS  Google Scholar 

  251. Berlicki, A., Heinzel, P., Schmieder, B., Mein, P., Mein, N.: Non-LTE diagnostics of velocity fields during the gradual phase of a solar flare. Astron. Astrophys. 430, 679–689 (2005)

    Article  ADS  Google Scholar 

  252. Milligan, R.O., Gallagher, P.T., Mathioudakis, M., Keenan, F.P.: Observational evidence of gentle chromospheric evaporation during the impulsive phase of a solar flare. Astrophys. J. 642, L169–L171 (2006a)

    Article  ADS  Google Scholar 

  253. del Zanna, G., Schmieder, B., Mason, H., Berlicki, A., Bradshaw, S.: The gradual phase of the X17 flare on October 28, 2003. Sol. Phys. 239, 173–191 (2006)

    Article  ADS  Google Scholar 

  254. Zarro, D.M., Lemen, J.R.: Conduction-driven chromospheric evaporation in a solar flare. Astrophys. J. 329, 456–463 (1988)

    Article  ADS  Google Scholar 

  255. Brosius, J.W., Holman, G.D.: Observations of the thermal and dynamic evolution of a solar microflare. Astrophys. J. 692, 492–501 (2009)

    Article  ADS  Google Scholar 

  256. Sadykov, V.M., Vargas Dominguez, S., Kosovichev, A.G., et al.: Properties of chromospheric evaporation and plasma dynamics of a solar flare from iris. Astrophys. J. 805, 167–181 (2015)

    Article  ADS  Google Scholar 

  257. Brosius, J.W.: Conversion from explosive to gentle chromospheric evaporation during a solar flare. Astrophys. J. 701, 1209–1218 (2009)

    Article  ADS  Google Scholar 

  258. Raftery, C.L., Gallagher, P.T., Milligan, R.O., Klimchuk, J.A.: Multi-wavelength observations and modelling of a canonical solar flare. Astron. Astrophys. 494, 1127–1136 (2009)

    Article  ADS  Google Scholar 

  259. Klimchuk, J.A., Patsourakos, S., Cargill, P.J.: Highly efficient modeling of dynamic coronal loops. Astrophys. J. 682, 1351–1362 (2008)

    Article  ADS  Google Scholar 

  260. Li, Y., Ding, M.D., Qiu, J., Cheng, J.X.: Chromospheric evaporation in an X1.0 flare on 2014 March 29 observed with IRIS and EIS. Astrophys. J. 811, 7–20 (2015)

    Article  ADS  Google Scholar 

  261. Li, Y., Ding, M.D.: Different patterns of chromospheric evaporation in a flaring region observed with Hinode/EIS. Astrophys. J. 727, 98–104 (2011)

    Article  ADS  Google Scholar 

  262. Silva, A.V.R., Wang, H., Gary, D.E., Nitta, N., Zirin, H.: Imaging the chromospheric evaporation of the 1994 June 30 solar flare. Astrophys. J. 481, 978–987 (1997)

    Article  ADS  Google Scholar 

  263. Nitta, S., Imada, S., Yamamoto, T.T.: Clear detection of chromospheric evaporation upflows with high spatial/temporal resolution by Hinode XRT. Sol. Phys. 276, 183–197 (2012)

    Article  ADS  Google Scholar 

  264. Zhang, Q.M., Ji, H.S.: Chromospheric evaporation in sympathetic coronal bright points. Astron. Astrophys. 557, L5–L8 (2013)

    Article  ADS  Google Scholar 

  265. Liu, W., Liu, S., Jiang, Y.W., Petrosian, V.: RHESSI observation of chromospheric evaporation. Astrophys. J. 649, 1124–1139 (2006)

    Article  ADS  Google Scholar 

  266. Aschwanden, M.J., Benz, A.O.: Chromospheric evaporation and decimetric radio emission in solar flares. Astrophys. J. 438, 997–1012 (1995)

    Article  ADS  Google Scholar 

  267. Ning, Z., Cao, W.: Hard X-ray source distributions on EUV bright kernels in a solar flare. Sol. Phys. 269, 283–293 (2011b)

    Article  ADS  Google Scholar 

  268. Battaglia, M., Fletcher, L., Benz, A.O.: Observations of conduction driven evaporation in the early rise phase of solar flares. Astron. Astrophys. 498, 891–900 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangli Huang .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Science Press, Beijing and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, G., Melnikov, V.F., Ji, H., Ning, Z. (2018). Global Behaviors for Dynamics of Flaring Loops. In: Solar Flare Loops: Observations and Interpretations. Springer, Singapore. https://doi.org/10.1007/978-981-10-2869-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2869-4_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2868-7

  • Online ISBN: 978-981-10-2869-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics