Global Behaviors for Dynamics of Flaring Loops

  • Guangli HuangEmail author
  • Victor F. Melnikov
  • Haisheng Ji
  • Zongjun Ning


Solar flares are explosive phenomena produced by sudden release of free magnetic energy. It is generally believed that flare loops, especially those of two-ribbon flares, show continuous expansion motions during their eruption. Meanwhile, flare ribbons separate continuously in space from each other. Such observational phenomena are interpreted in theory by continuously rising of the magnetic reconnection site, which closely follows erupting magnetic flux ropes (or filaments). However, results based on a statistical study with Yohkoh HXR Telescope data indicate that FPs in only 13% of the flares show standard separation motion (Bogachev et al. Astrophys J 630:561–572, 2005, [1]), while in more flares they show motions parallel to bright flare ribbons, even with tendency to converge. Using high-cadence time sequence of observations for the M1.2 class flare on September 9, 2002, at Big Bear Solar Observatory (BBSO), Ji et al. (Astrophys J 607:L55–L58, 2004, [2]) found that the distance between H\(_\alpha \) kernels decreases at the rising phase of the flare, it increases only after the peak time. At the same time, the height of the LT X-ray source of the flare decreases at first, and increases after the maximum phase. From Fig. A.12 in Appendix A, we can see that the time profiles of the flare emission, the distance between bright kernels, and the height of the loop top X-ray source show a good correlation or anti-correlation not only as a whole but also in some details.


  1. 1.
    Bogachev, S.A., Somov, B.V., Kosugi, T., Sakao, T.: The motions of the hard X-Ray sources in solar flares: images and statistics. Astrophys. J. 630, 561–572 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    Ji, H., Wang, H., Goode, P.R., Jiang, Y., Yurchyshyn, V.: Traces of the dynamic current sheet during a solar flare. Astrophys. J. 607, L55–L58 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Shen, J., Zhou, T., Ji, H., Wang, N., Cao, W., Wang, H.: Early abnormal temperature structure of X-Ray loop-top source of solar flares. Astrophys. J. 686, L37–L40 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Ji, H., Huang, G., Wang, H., Zhou, T., Li, Y., Zhang, Y., Song, M.: Converging motion of H\(\alpha \) conjugate Kernels: the signature of fast relaxation of a sheared magnetic field. Astrophys. J. 636, L173–L174 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    Ji, H., Wang, H., Liu, C., Dennis, B.R.: A hard X-Ray sigmoidal structure during the initial phase of the 2003 October 29 X10 flare. Astrophys. J. 680, 734–739 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Sui, L., Holman, G.D.: Evidence for the formation of a large-scale current sheet in a solar flare. Astrophys. J. 596, L251–L254 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    Sui, L., Holman, G.D., Dennis, B.R.: Evidence for magnetic reconnection in three homologous solar flares observed by RHESSI. Astrophys. J. 612, 546–556 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    Fletcher, L., Hudson, H.S.: Spectral and spatial variations of flare hard X-ray footpoints. Sol. Phys. 210, 307–321 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Krucker, S., Hurford, G.J., Lin, R.P.: Hard X-Ray source motions in the 2002 July 23 Gamma-Ray flare. Astrophys. J. 595, L103–L106 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    Li, Y.P., Gan, W.Q.: The oscillatory shrinkage in TRACE 195 Å loops during a flare impulsive phase. Astrophys. J. 644, L97–L100 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    Zhou, T.-H., Wang, J.-F., Li, D., Song, Q.-W., Melnikov, V., Ji, H.-S.: The contracting and unshearing motion of flare loops in the X 7.1 flare on 2005 January 20 during its rising phase. Res. Astron. Astrophys. 13, 526–536 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Svestka, Z.F., Fontenla, J.M., Machado, M.E., Martin, S.F., Neidig, D.F.: Multi-thermal observations of newly formed loops in a dynamic flare. Sol. Phys. 108, 237–250 (1987)ADSCrossRefGoogle Scholar
  13. 13.
    Veronig, A.M., Karlický, M., Vršnak, B., Temmer, M., Magdalenić, J., Dennis, B.R., Otruba, W., Pötzi, W.: X-ray sources and magnetic reconnection in the X3.9 flare of 2003 November 3. Astron. Astrophys. 446, 675–690 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    Hudson, H.S.: Implosions in coronal transients. Astrophys. J. 531, L75–L77 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    Ji, H., Huang, G., Wang, H.: The relaxation of sheared magnetic fields: a contracting process. Astrophys. J. 660, 893–900 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    Shen, J., Zhou, T., Ji, H., Wiegelmann, T., Inhester, B., Feng, L.: Well-observed dynamics of flaring and peripheral coronal magnetic loops during an M-class limb flare. Astrophys. J. 791, 83–91 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Liu, R., Liu, C., Török, T., Wang, Y., Wang, H.: Contracting and erupting components of sigmoidal active regions. Astrophys. J. 757, 150–162 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    Wang, H.: Evolution of vector magnetic fields and the August 27 1990 X-3 flare. Sol. Phys. 140, 85–98 (1992)ADSCrossRefGoogle Scholar
  19. 19.
    Wang, H., Ewell Jr., M.W., Zirin, H., Ai, G.: Vector magnetic field changes associated with X-class flares. Astrophys. J. 424, 436–443 (1994)ADSCrossRefGoogle Scholar
  20. 20.
    Wang, S., Liu, C., Liu, R., Deng, N., Liu, Y., Wang, H.: Response of the photospheric magnetic field to the X2.2 flare on 2011 February 15. Astrophys. J. 745, L17–L22 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Jing, J., Song, H., Abramenko, V., Tan, C., Wang, H.: The statistical relationship between the photospheric magnetic parameters and the flare productivity of active regions. Astrophys. J. 644, 1273–1277 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    Sun, X., Hoeksema, J.T., Liu, Y., Wiegelmann, T., Hayashi, K., Chen, Q., Thalmann, J.: Evolution of magnetic field and energy in a major eruptive active region based on SDO/HMI observation. Astrophys. J. 748, 77–93 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    Hudson, H.S., Fisher, G.H., Welsch, B.T.: Flare Energy and magnetic field variations. In: Howe, R., Komm, R.W., Balasubramaniam, K.S., Petrie, G.J.D. (eds.) Subsurface and Atmospheric Influences on Solar Activity. ASP Conference Series, vol. 383, pp. 221–226 (2008)Google Scholar
  24. 24.
    Fisher, G.H., Bercik, D.J., Welsch, B.T., Hudson, H.S.: Global forces in eruptive solar flares: the lorentz force acting on the solar atmosphere and the solar interior. Sol. Phys. 277, 59–76 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    Hudson, H.S., Lemen, J.R., St. Cyr, O.C., Sterling, A.C., Webb, D.F.: X-ray coronal changes during Halo CMEs. Geophys. Res. Lett. 25, 2481–2484 (1998)Google Scholar
  26. 26.
    Sakurai, T., Shibata, K., Ichimoto, K., Tsuneta, S., Acton, L.W.: Flare-related relaxation of magnetic shear as observed with the Soft X-ray telescope of YOHKOH and with vector magnetographs. Publ. Astron. Soc. Japan 44, L123–L127 (1992)ADSGoogle Scholar
  27. 27.
    Rust, D.M., Kumar, A.: Evidence for helically kinked magnetic flux ropes in solar eruptions. Astrophys. J. 464, L199–L202 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    Taylor, J.B.: Relaxation and magnetic reconnection in plasmas. Rev. Mod. Phys. 58, 741–763 (1986)ADSCrossRefGoogle Scholar
  29. 29.
    Rust, D.M., Kumar, A.: Helical magnetic fields in filaments. Sol. Phys. 155, 69–97 (1994)ADSCrossRefGoogle Scholar
  30. 30.
    Voslamber, D., Callebaut, D.K.: Stability of force-free magnetic fields. Phys. Rev. 128, 2016–2021 (1962)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Anzer, U.: The stability of force-free magnetic fields with cylindrical symmetry in the context of solar flares. Sol. Phys. 3, 298–315 (1968)ADSCrossRefGoogle Scholar
  32. 32.
    Raadu, M.A.: Suppression of the kink instability for magnetic flux ropes in the chromosphere. Sol. Phys. 22, 425–433 (1972)ADSCrossRefGoogle Scholar
  33. 33.
    Shen, J., Wang, Y., Zhou, T., Ji, H.: Initiation processes for the 2013 May 13 X1.7 limb flare. Astrophys. J. (2017). in pressGoogle Scholar
  34. 34.
    Török, T., Chandra, R., Pariat, E., Démoulin, P., Schmieder, B., Aulanier, G., Linton, M.G., Mandrini, C.H.: Filament interaction modeled by flux rope reconnection. Astrophys. J. 728, 65–70 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    Ji, H., Wang, H., Schmahl, E.J., Moon, Y.-J., Jiang, Y.: Observations of the failed eruption of a filament. Astrophys. J. 595, L135–L138 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    Liu, Y.: Halo coronal mass ejections and configuration of the ambient magnetic fields. Astrophys. J. 654, L171–L174 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    Fang, C., Henoux, J.C., Gan, W.Q.: Diagnostics of non-thermal processes in chromospheric flares. 1. Hoe and Call K line profiles of an atmosphere bombarded by 10–500 keV electrons. Astron. Astrophys. 274, 917–922 (1993)ADSGoogle Scholar
  38. 38.
    Ding, M.D., Qiu, J., Wang, H., Goode, P.R.: On the fast fluctuations in solar flare H\(\alpha \) blue wing emission. Astrophys. J. 552, 340–347 (2001)ADSCrossRefGoogle Scholar
  39. 39.
    Fan, Y., Gibson, S.E.: On the nature of the X-Ray bright core in a stable filament channel. Astrophys. J. 641, L149–L152 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    Amari, T., Luciani, J.F., Aly, J.J.: Coronal magnetohydrodynamic evolution driven by subphotospheric conditions. Astrophys. J. 615, L165–L168 (2004)ADSCrossRefGoogle Scholar
  41. 41.
    Fan, Y., Gibson, S.E.: Onset of coronal mass ejections due to loss of confinement of coronal flux ropes. Astrophys. J. 668, 1232–1245 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    Aulanier, G., Török, T., Démoulin, P., DeLuca, E.E.: Formation of torus-unstable flux ropes and electric currents in erupting sigmoids. Astrophys. J. 708, 314–333 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    Chen, P.F., Shibata, K.: An emerging flux trigger mechanism for coronal mass ejections. Astrophys. J. 545, 524–531 (2000)ADSCrossRefGoogle Scholar
  44. 44.
    Priest, E.R., Forbes, T.G.: The magnetic nature of solar flares. Astron. Astrophys. Rev. 10, 313–377 (2002)ADSCrossRefGoogle Scholar
  45. 45.
    Carmichael, H.: A process for flares. In: Wilmot, N.H (ed.) The Physics of Solar Flares, Proceedings of the AAS-NASA Symposium held 28–30 October, 1963 at the Goddard Space Flight Center, Greenbelt MD, Washington, DC: National Aeronautics and Space Administration, Science and Technical Information Division, p. 451 (1964)Google Scholar
  46. 46.
    Sturrock, P.A.: Model of the high-energy phase of solar flares. Nature 211, 695–697 (1996)ADSCrossRefGoogle Scholar
  47. 47.
    Hirayama, T.: Theoretical model of flares and prominences. I: evaporating flare model. Sol. Phys. 34, 323–338 (1974)ADSCrossRefGoogle Scholar
  48. 48.
    Kopp, R.A., Pneuman, G.W.: Magnetic reconnection in the corona and the loop prominence phenomenon. Sol. Phys. 50, 85–98 (1976)ADSCrossRefGoogle Scholar
  49. 49.
    Priest, E.R.: Book-Review - solar flare magnetohydrodynamics. Science 214, 356 (1981)ADSGoogle Scholar
  50. 50.
    Moore, R.L.: Evidence that magnetic energy shedding in solar filament eruptions is the drive in accompanying flares and coronal mass ejections. Astrophys. J. 324, 1132–1137 (1988)ADSCrossRefGoogle Scholar
  51. 51.
    Moore, R.L., Roumeliotis, G.: Triggering of eruptive flares - destabilization of the preflare magnetic field configuration. In: Svestka, Z., Jackson, B.V., Machado, M.E (eds.) Eruptive Solar Flares. Proceedings of Colloquium 133 of the International Astronomical Union, held at Iguazu, Argentina, 2–6 August, 1991, p. 69. Springer, New York (1992)Google Scholar
  52. 52.
    Shibata, K.: New observational facts about solar flares from YOHKOH studies - evidence of magnetic reconnection and a unified model of flares. Adv. Space Res. 17, 9–18 (1996)ADSCrossRefGoogle Scholar
  53. 53.
    Shibata, K.: A unified model of solar flares. In: Watanabe, T., Kosugi, T., Sterling, A.C (eds.) Observational Plasma Astrophysics: Five Years of Yohkoh and Beyond, vol. 229, p. 187. Kluwer Academic Publishers, Boston (1998)Google Scholar
  54. 54.
    Shibata, K.: Evidence of magnetic reconnection in solar flares and a unified model of flares. In: Structure Formation and Function of Gaseous, Biological and Strongly Coupled Plasmas, p. 74 (1999)Google Scholar
  55. 55.
    Liu, R., Wang, H., Alexander, D.: Implosion in a coronal eruption. Astrophys. J. 696, 121–135 (2009)ADSCrossRefGoogle Scholar
  56. 56.
    Yang, Y.H., Cheng, C.Z., Krucker, S., Lin, R.P., Ip, W.H.: A statistical study of hard X-Ray footpoint motions in large solar flares. Astrophys. J. 693, 132–139 (2009)ADSCrossRefGoogle Scholar
  57. 57.
    Li, Y.P., Gan, W.Q.: On the peak times of thermal and nontheral emissions in solar flares. Astrophys. J. 652, L61–L63 (2006)ADSCrossRefGoogle Scholar
  58. 58.
    Joshi, B., Veronig, A., Cho, K.-S., Bong, S.-C., Somov, B.V., et al.: Magnetic reconnection during the two-phase evolution of a solar eruptive flare. Astrophys. J. 706, 1438–1450 (2009)ADSCrossRefGoogle Scholar
  59. 59.
    Melnikov, V.F., Shibasaki, K., Reznikova, V.E.: Loop-top nonthermal microwave source in extended solar flaring loops. Astrophys. J. 580, L185–L188 (2002)ADSCrossRefGoogle Scholar
  60. 60.
    Altyntsev, A.T., Fleishman, G.D., Huang, G.L., Melnikov, V.F.: A broadband microwave burst produced by electron beams. Astrophys. J. 677, 1367–1377 (2008)ADSCrossRefGoogle Scholar
  61. 61.
    Reznikova, V.E., Melnikov, V.F., Shibasaki, K., Gorbikov, S.P., Pyatakov, N.P., Myagkova, I.N., Ji, H.: 2002 August 24 limb flare loop: dynamics of microwave brightness distribution. Astrophys. J. 697, 735–746 (2009)ADSCrossRefGoogle Scholar
  62. 62.
    Reznikova, V.E., Melnikov, V.F., Ji, H., Shibasaki, K.: Dynamics of the flaring loop system of 2005 August 22 observed in microwaves and hard X-rays. Astrophys. J. 724, 171–181 (2010)ADSCrossRefGoogle Scholar
  63. 63.
    Nakajima, H., Nishio, M., Enome, S., Shibasaki, K., Takano, T., et al.: The nobeyama radioheliograph. Proc. IEEE 82, 705–713 (1994)ADSCrossRefGoogle Scholar
  64. 64.
    Asai, A., Shibata, K., Ishii, T.T., Oka, M., Kataoka, R., et al.: Evolution of the anemone AR NOAA 10798 and the related geo-effective flares and CMEs. J. Geophys. Res. 114, A00A21 (2009)Google Scholar
  65. 65.
    Bastian, T.S., Benz, A.O., Gary, D.E.: Radio emission from solar flares. Annu. Rev. Astron. Astrophys. 36, 131–188 (1998)ADSCrossRefGoogle Scholar
  66. 66.
    Huang, G.L., Nakajima, H.: Statistical analysis of flaring loops observed by nobeyama radioheliograph. I. Comparison of looptop and footpoints. Astrophys. J. 696, 136–142 (2009)ADSCrossRefGoogle Scholar
  67. 67.
    Melrose, D.B., Robinson, P.A.: Reversal of the sense of polarization in solar and steller flares. Astron. Soc. Aust. Proc. 11, 16–20 (1994)Google Scholar
  68. 68.
    Huang, G.L., Song, Q.W., Li, J.P.: Determination of intrinsic mode and linear mode coupling in solar microwave bursts. Astrophys. Space Sci. 345, 41–47 (2013)ADSCrossRefGoogle Scholar
  69. 69.
    Zhou, T., Ji, H.: A comparison between magnetic shear and flare shear in a well-observed M-class flare. Res. Astron. Astrophys. 9, 323–332 (2009)ADSCrossRefGoogle Scholar
  70. 70.
    Thomson, A.R., Moran, J.M., Swenson Jr., G.W.: Interferometry and Synthesis in Radio Astronomy. Wiley-Interscience, New York (1986)Google Scholar
  71. 71.
    Tanaka, K., Nakagawa, Y.: Force-free magnetic fields and flares of August 1972. Sol. Phys. 33, 187–204 (1973)ADSCrossRefGoogle Scholar
  72. 72.
    Moore, R.L., Sterling, A.C., Hudson, H.S., Lemen, J.R.: Onset of the magnetic explosion in solar flares and coronal mass ejections. Astrophys. J. 552, 833–848 (2001)ADSCrossRefGoogle Scholar
  73. 73.
    Kliem, B., Titov, V.S., Török, T.: Formation of current sheets and sigmoidal structure by the kink instability of a magnetic loop. Astron. Astrophys. 413, L23–L26 (2004)ADSzbMATHCrossRefGoogle Scholar
  74. 74.
    Masuda, S., Kosugi, T., Hudson, H.S.: A hard X-ray two-ribbon flare observed with Yohkoh/HXT. Sol. Phys. 204, 55–67 (2001)ADSCrossRefGoogle Scholar
  75. 75.
    Asai, A., Ishii, T.T., Kurokawa, H., Yokoyama, T., Shimojo, M.: Evolution of conjugate footpoints inside flare ribbons during a great two-ribbon flare on 2001 April 10. Astrophys. J. 586, 624–629 (2003)ADSCrossRefGoogle Scholar
  76. 76.
    Su, Y., Golub, L., Van Ballegooijen, A.A.: A statistical study of shear motion of the footpoints in two-ribbon flares. Astrophys. J. 655, 606–614 (2007)ADSCrossRefGoogle Scholar
  77. 77.
    Liu, W., Petrosian, V., Dennis, B., Holman, G.: Conjugate hard X-Ray footpoints in the 2003 October 29 X10 flare: unshearing motions, correlations, and asymmetries. Astrophys. J. 693, 847–867 (2009)ADSCrossRefGoogle Scholar
  78. 78.
    Somov, B.V.: Non-neutral current sheets and solar flare energetics. Astron. Astrophys. 163, 210–218 (1986)ADSzbMATHGoogle Scholar
  79. 79.
    Lin, J., Forbes, T.G., Priest, E.R., Bungey, T.N.: Models for the motions of flare loops and ribbons. Sol. Phys. 159, 275–299 (1995)ADSCrossRefGoogle Scholar
  80. 80.
    Forbes, T.G., Acton, L.W.: Reconnection and field line shrinkage in solar flares. Astrophys. J. 459, 330–341 (1996)ADSCrossRefGoogle Scholar
  81. 81.
    Lin, J.: Motions of flare ribbons and loops in various magnetic configurations. Sol. Phys. 222, 115–136 (2004)ADSCrossRefGoogle Scholar
  82. 82.
    Yokoyama, T., Shibata, K.: Magnetic reconnection coupled with heat conduction. Astrophys. J. 474, L61–L64 (1997)ADSCrossRefGoogle Scholar
  83. 83.
    Yokoyama, T., Shibata, K.: A two-dimensional magnetohydrodynamic simulation of chromospheric evaporation in a solar flare based on a magnetic reconnection model. Astrophys. J. 494, L113–L116 (1998)ADSCrossRefGoogle Scholar
  84. 84.
    Chen, P.F., Fang, C., Tang, Y.H., Ding, M.D.: Flaring loop motion and a unified model for solar flares. Astrophys. J. 520, 853–858 (1999)ADSCrossRefGoogle Scholar
  85. 85.
    Somov, B.V., Kosugi, T.: Collisionless reconnection and high-energy particle acceleration in solar flares. Astrophys. J. 485, 859–868 (1997)ADSCrossRefGoogle Scholar
  86. 86.
    Karlick\(\acute{y}\), M., Kosugi, T.: Acceleration and heating processes in a collapsing magnetic trap. Astron. Astrophys. 419, 1159–1168 (2004)Google Scholar
  87. 87.
    Shibasaki, K.: High-beta disruption in the solar atmosphere. Astrophys. J. 557, 326–331 (2001)ADSCrossRefGoogle Scholar
  88. 88.
    Tsap, Y.T., Kopylova, Y.G., Stepanov, A.V., Melnikov, V.F., Shibasaki, K.: Ballooning instability in coronal flare loops. Sol. Phys. 253, 161–172 (2008)ADSCrossRefGoogle Scholar
  89. 89.
    Gorbikov, S.P., Melnikov, V.F.: Math. Model. 19, 112 (2007)Google Scholar
  90. 90.
    Nakariakov, V.M., Melnikov, V.F.: Quasi-periodic pulsations in solar flares. Space Sci. Rev. 149, 119–151 (2009)ADSCrossRefGoogle Scholar
  91. 91.
    Kupriyanova, E.G., Melnikov, V.F., Nakariakov, V.M., Shibasaki, K.: Types of microwave quasi-periodic pulsations in single flaring loops. Sol. Phys. 267, 329–342 (2010)ADSCrossRefGoogle Scholar
  92. 92.
    O’Shea, E., Banerjee, D., Doyle, J.G., Fleck, B., Murtagh, F.: Active region oscillations. Astron. Astrophys. 368, 1095–1107 (2001)ADSCrossRefGoogle Scholar
  93. 93.
    McAteer, R.T.J., Gallagher, P.T., Bloomfield, D.S., Williams, D.R., Mathioudakis, M., Keenan, F.P.: Ultraviolet oscillations in the chromosphere of the quiet sun. Astrophys. J. 602, 436–445 (2004)ADSCrossRefGoogle Scholar
  94. 94.
    Dmitriev, P.B., Kudryavtsev, I.V., Lazutkov, V.P., Matveev, G.A., Savchenko, M.I., Skorodumov, D.V., Charikov, Yu.E: Solar flares registered by the IRIS spectrometer onboard the CORONAS-F satellite: peculiarities of the X-ray emission. Sol. Syst. Res. 40, 142–152 (2006)Google Scholar
  95. 95.
    Reznikova, V.E., Melnikov, V.F., Su, Y., Huang, G.: Pulsations of microwave flaring emission at low and high frequencies. Astron. Rep. 51, 588–596 (2007)ADSCrossRefGoogle Scholar
  96. 96.
    Torrence, C., Compo, G.P.: A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61–78 (1998)ADSCrossRefGoogle Scholar
  97. 97.
    Horne, J.H., Baliunas, S.L.: A prescription for period analysis of unevenly sampled time series. Astrophys. J. 302, 757–763 (1986)ADSCrossRefGoogle Scholar
  98. 98.
    De Moortel, I., McAteer, R.T.J.: Waves and wavelets: an automated detection technique for solar oscillations. Sol. Phys. 223, 1–11 (2004)ADSCrossRefGoogle Scholar
  99. 99.
    Inglis, A.R., Nakariakov, V.M.: A multi-periodic oscillatory event in a solar flare. Astron. Astrophys. 493, 259–266 (2009)ADSCrossRefGoogle Scholar
  100. 100.
    Melnikov, V.F., Reznikova, V.E., Shibasaki, K., Nakariakov, V.M.: Spatially resolved microwave pulsations of a flare loop. Astron. Astrophys. 439, 727–736 (2005)ADSCrossRefGoogle Scholar
  101. 101.
    Edwin, P.M., Roberts, B.: Wave propagation in a magnetically structured atmosphere. III - the slab in a magnetic environment. Sol. Phys. 76, 239–259 (1982)ADSCrossRefGoogle Scholar
  102. 102.
    Edwin, P.M., Roberts, B.: Wave propagation in a magnetic cylinder. Sol. Phys. 88, 179–191 (1983)Google Scholar
  103. 103.
    Nakariakov, V.M.: In: Dwivedi, B.N. (ed.) Dynamic Sun, pp. 314–334. Cambridge University Press, Cambridge (2003)Google Scholar
  104. 104.
    Aschwanden, M.J., Fletcher, L., Schrijver, C.J., Alexander, D.: Coronal loop oscillations observed with the transition region and coronal explorer. Astrophys. J. 520, 880–894 (1999)ADSCrossRefGoogle Scholar
  105. 105.
    Nakariakov, V.M., Ofman, L., Deluca, E.E., Roberts, B., Davila, J.M.: TRACE observation of damped coronal loop oscillations: implications for coronal heating. Science 285, 862–864 (1999)ADSCrossRefGoogle Scholar
  106. 106.
    Kupriyanova, E.G., Melnikov, V.F., Shibasaki, K.: Spatially resolved microwave observations of multiple periodicities in a flaring loop. Sol. Phys. 284, 559–578 (2013)ADSCrossRefGoogle Scholar
  107. 107.
    Dulk, G.A., Marsh, K.A.: Simplified expressions for the gyrosynchrotron radiation from mildly relativistic, nonthermal and thermal electrons. Astrophys. J. 259, 350–358 (1982)ADSCrossRefGoogle Scholar
  108. 108.
    Nakariakov, V.M., Verwichte, E.: Coronal waves and oscillations. Living Rev. Sol. Phys. 2(3) (2005)Google Scholar
  109. 109.
    Wang, T.J., Solanki, S.K.: Vertical oscillations of a coronal loop observed by TRACE. Astron. Astrophys. 421, L33–L36 (2004)ADSCrossRefGoogle Scholar
  110. 110.
    Verwichte, E., Foullon, C., Nakariakov, V.M.: Seismology of curved coronal loops with vertically polarised transverse oscillations. Astron. Astrophys. 452, 615–622 (2006)ADSCrossRefGoogle Scholar
  111. 111.
    Díaz, A.J.: Fast magnetohydrodynamic oscillations in an elliptical coronal arcade. Astron. Astrophys. 456, 737–746 (2006)ADSCrossRefGoogle Scholar
  112. 112.
    Aschwanden, M.J., Schrijver, C.J.: Coronal loop oscillations observed with atmospheric imaging assemblyłkink mode with cross-sectional and density oscillations. Astrophys. J. 736, 102–122 (2011)ADSCrossRefGoogle Scholar
  113. 113.
    Kupriyanova, E.G., Melnikov, V.F., Puzynya, V.M., Shibasaki, K., Ji, H.S.: Long-period pulsations of the thermal microwave emission of the solar flare of June 2, 2007 from data with high spatial resolution. Astron. Rep. 58, 573–577 (2014)ADSCrossRefGoogle Scholar
  114. 114.
    Zaitsev, Valerii V., Stepanov, Alexander V.: Reviews of topical problems: coronal magnetic loops. Phys. Uspekhi 51, 1123–1160 (2008)ADSCrossRefGoogle Scholar
  115. 115.
    Mészárosová, H., Karlický, M., Rybḱ, J., Jiricka, K.: Tadpoles in wavelet spectra of a solar decimetric radio burst. Astrophys. J. Lett. 697, L108–L110 (2009)Google Scholar
  116. 116.
    Sych, R., Nakariakov, V.M., Karlicky, M., Anfinogentov, S.: Relationship between wave processes in sunspots and quasi-periodic pulsations in active region flares. Astron. Astrophys. 505, 791–799 (2009)ADSCrossRefGoogle Scholar
  117. 117.
    Reznikova, V.E., Shibasaki, K.: Flare quasi-periodic pulsations with growing periodicity. Astron. Astrophys. 525, 112–118 (2011)ADSCrossRefGoogle Scholar
  118. 118.
    Kislyakova, K.G., Zaitsev, V.V., Urpo, S., Riehokainen, A.: Long-period oscillations of the solar microwave emission. Astron. Rep. 55, 275–283 (2011)ADSCrossRefGoogle Scholar
  119. 119.
    Kim, S., Nakariakov, V.M., Shibasaki, K.: Slow magnetoacoustic oscillations in the microwave emission of solar flares. Astrophys. J. Lett. 756, L36–L40 (2012)ADSCrossRefGoogle Scholar
  120. 120.
    Puzynya, V.M., Melnikov, V.F.: In: Stepanov, A.V., Nagovitsyn, YuA (eds.) Proceedings of the Conference on Solar and Solar-Earth Physics-2010 (Glavn. Astron. Observ. RAN, St.-Petersburg), p. 335 (2010)Google Scholar
  121. 121.
    Wang, T.: Standing slow-mode waves in hot coronal loops: observations, modeling, and coronal seismology. Space Sci. Rev. 158, 397–419 (2011)ADSCrossRefGoogle Scholar
  122. 122.
    Kaufmann, P., Strauss, F.M., Laporte, C., Opher, R.: Evidence for quasi-quantization of solar flare mm-wave radiation. Astron. Astrophys. 87, 58–62 (1980)ADSGoogle Scholar
  123. 123.
    Sturrock, P.A., Kaufmann, P., Moore, R.L., Smith, D.F.: Energy release in solar flares. Sol. Phys. 94, 341–357 (1984)ADSCrossRefGoogle Scholar
  124. 124.
    Qin, Z., Huang, G.: Some characteristics of pulsations in radio bursts at 9.375 GHz. Astrophys. Space Sci. 218, 213–222 (1994)ADSCrossRefGoogle Scholar
  125. 125.
    Aschwanden, M.J.: Theory of radio pulsations in coronal loops. Sol. Phys. 111, 113–136 (1987)ADSCrossRefGoogle Scholar
  126. 126.
    Huang, G., Qin, Z., Yao, Q.: A model for solar radio pulsations at short centimetric band. Astrophys. Space Sci. 243, 401–412 (1996)ADSCrossRefGoogle Scholar
  127. 127.
    Huang, G., Nakajima, H.: Statistical analysis of flaring loops observed by nobeyama radioheliograph. I. Comparison of looptop and footpoints. Astrophys. J. 696, 136–142 (2009)ADSCrossRefGoogle Scholar
  128. 128.
    Huang, G., Song, Q.: Frequency dependence of the relation between repetition rate and burst flux in solar radio pulsations. Sol. Phys. 264, 345–351 (2010)ADSCrossRefGoogle Scholar
  129. 129.
    Huang, G., Wang, D., Song, Q.: Whistler waves in Freja observations. J. Geophys. Res. 109, A02307 (2003)ADSGoogle Scholar
  130. 130.
    Song, Q., Huang, G.: A tentative statistical analysis of flare events observed by NoRH and NoRP. Adv. Space Res. 41, 1188–1190 (2008)ADSCrossRefGoogle Scholar
  131. 131.
    Liu, W., Petrosian, V., Dennis, B., Jiang, Y.: Double coronal hard and soft X-Ray source observed by RHESSI: evidence for magnetic reconnection and particle acceleration in solar flares. Astrophys. J. 676, 704–716 (2008)ADSCrossRefGoogle Scholar
  132. 132.
    Sakao, T., Kosugi, T., Masuda, S.: Energy release and particle acceleration in solar flares with respect to flaring magnetic loops. Obs. Plasma Astrophys. Five Years YOHKOH Beyond 229, 273 (1998)ADSCrossRefGoogle Scholar
  133. 133.
    Gan, W., Li, Y., Miroshnichenko, L.: On the motions of RHESSI flare footpoints. Adv. Space Res. 41, 908–913 (2008)ADSCrossRefGoogle Scholar
  134. 134.
    Ning, Z., Cao, W.: Hard X-ray source distributions on EUV bright Kernels in a solar flare. Sol. Phys. 269, 283–293 (2011)ADSCrossRefGoogle Scholar
  135. 135.
    Ning, Z.: X-ray source motion along the loop in two solar flares. Astrophys. Space Sci. 346, 307–318 (2013)ADSCrossRefGoogle Scholar
  136. 136.
    Liu, W., Liu, S., Jiang, Y., Petrosian, V.: RHESSI observation of chromospheric evaporation. Astrophys. J. 649, 1124–1139 (2006)ADSCrossRefGoogle Scholar
  137. 137.
    Ning, Z., Cao, W., Huang, J., Huang, G., Yan, Y., Feng, H.: Evidence of chromospheric evaporation in the 2004 December 1 solar flare. Astrophys. J. 699, 15–22 (2009)ADSCrossRefGoogle Scholar
  138. 138.
    Ning, Z., Cao, W.: Investigation of chromospheric evaporation in a neupert-type solar flare. Astrophys. J. 717, 1232–1242 (2010)ADSCrossRefGoogle Scholar
  139. 139.
    Tajima, T., Brunel, F., Sakai, J.-I., Vlahos, L., Kundu, M.R.: The coalescence instability in solar flares. In: Proceedings of the 107th IAU Symposium. D. Reidel Publishing Co., Dordrecht, pp. 197–208 (1985)Google Scholar
  140. 140.
    Sakai, J.-I., Ohsawa, Y.: Particle acceleration by magnetic reconnection and shocks during current loop coalescence in solar flares. Space Sci. Rev. 46, 113–198 (1987)ADSGoogle Scholar
  141. 141.
    Sakai, J.-I., de Jager, C.: Coronal explosions as a signature of current loop coalescence in solar flares. Sol. Phys. 123, 393–396 (1989)ADSCrossRefGoogle Scholar
  142. 142.
    Sakai, J.-I., Koide, S.: Classification of magnetic reconnection during two current-loop coalescence. Sol. Phys. 142, 399–402 (1992)ADSCrossRefGoogle Scholar
  143. 143.
    Chargeishvili, B., Zhao, J., Sakai, J.-I.: Dynamics of the physical state during two-current-loop collisions. Sol. Phys. 145, 297–315 (1993)ADSCrossRefGoogle Scholar
  144. 144.
    Zhao, J., Chargeishvili, B., Sakai, J.-I.: Prompt high-energy particle acceleration during two-current-loop collisions. Sol. Phys. 146, 331–341 (1993)ADSCrossRefGoogle Scholar
  145. 145.
    Zhao, J., Chargeishvili, B., Sakai, J.-I.: Characteristics of plasma temperature variation during two-current-loop collisions. Sol. Phys. 147, 131–136 (1993)ADSCrossRefGoogle Scholar
  146. 146.
    Sakai, J.-I., de Jager, C.: Solar flares and collisions between current-carrying loops types and mechanisms of solar flares and coronal loop heating. Space Sci. Rev. 77, 1–192 (1996)ADSCrossRefGoogle Scholar
  147. 147.
    Smith, P.D., Sakai, J.-I.: Chromospheric magnetic reconnection: two-fluid simulations of coalescing current loops. Astron. Astrophys. 486, 569–575 (2008)ADSzbMATHCrossRefGoogle Scholar
  148. 148.
    Hanaoka, Y.A.: Flare caused by interacting coronal loops. Astrophys. J. 420, L37–L40 (1994)ADSCrossRefGoogle Scholar
  149. 149.
    Hanaoka, Y.A.: Flares and plasma flow caused by interacting coronal loops. Sol. Phys. 165, 275–301 (1996)ADSCrossRefGoogle Scholar
  150. 150.
    Hanaoka, Y.A.: Double-loop configuration of solar flares. Sol. Phys. 173, 319–346 (1997)ADSCrossRefGoogle Scholar
  151. 151.
    Inda-Koide, M., Sakai, J.-I., Koide, S., Kosugi, T., Sakao, T., Shimizu, T.: Publ. Astron. Soc. Japan 47, 323–330 (1995)ADSGoogle Scholar
  152. 152.
    Aschwanden, M.J., Benz, A.O.: Electron densities in solar flare loops, chromospheric evaporation upflows, and acceleration sites. Astrophys. J. 480, 825–835 (1997)ADSCrossRefGoogle Scholar
  153. 153.
    Kundu, M.R., Grechnev, V.V., Garaimov, V.I., White, S.M.: Double loop configuration of a flaring region from microwave, extreme-ultraviolet, and X-ray imaging data. Astrophys. J. 563, 389–402 (2001)ADSCrossRefGoogle Scholar
  154. 154.
    Pohjolainen, S.: Repeated flaring from LoopCLoop interaction. Sol. Phys. 2003, 319–339 (2003)ADSCrossRefGoogle Scholar
  155. 155.
    Huang, G.L., Wu, H.A., Grechnev, V.V., Sych, R.A., Altyntsev, A.T.: The radio signature of twisted magnetic ropes and reconnection site in the low corona. Sol. Phys. 213, 341–358 (2003)ADSCrossRefGoogle Scholar
  156. 156.
    Huang, G.L.: Radio and multiwavelength evidence of coronal loop eruption in a flare-coronal mass ejection event on 15 April 1998. J. Geophys. Res. 109, A02105 (2004)ADSGoogle Scholar
  157. 157.
    Wu, G.P., Huang, G.L., Tang, Y.H., Xu, A.A.: The observational evidence on the loop loop interaction in a flare CME event on April 15, 1998. Sol. Phys. 2005(227), 327–337 (2005)ADSCrossRefGoogle Scholar
  158. 158.
    Huang, G.L., Ji, H.S.: Microwave, optical, EUV, and hard X-ray signature of possible coronal loop interaction. Sol. Phys. 2005(229), 227–236 (2005)ADSCrossRefGoogle Scholar
  159. 159.
    Huang, G.L., Ji, H.S.: Radio, Hard X-ray, EUV and optical study of September 9, 2002 solar flare. Astrophys. Space Sci. 2006(301), 65–71 (2006)ADSCrossRefGoogle Scholar
  160. 160.
    Huang, G.L., Lin, J.: Quasi-periodic reversals of radio polarization at 17 GHz observed in the 2002 April 21 solar event. Astrophys. J. 639, L99–L102 (2006)ADSCrossRefGoogle Scholar
  161. 161.
    Kolomański, S., Karlický, M.: The interaction of a plasmoid with a loop-top Kernel. Astron. Astrophys. 475, 685–693 (2007)ADSCrossRefGoogle Scholar
  162. 162.
    Kumar, P., Srivastava, A.K., Somov, B.V., Manoharan, P.K., Erdélyi, R., Uddin, W.: Evidence of solar flare triggering due to loop-loop interaction caused by footpoint shear motion. Astrophys. J. 723, 1651–1664 (2010)ADSCrossRefGoogle Scholar
  163. 163.
    Zhou, A.H., Karlický, M.: Magnetic field estimation in microwave radio sources. Sol. Phys. 153, 441–444 (1994)ADSCrossRefGoogle Scholar
  164. 164.
    Huang, G.L., Li, J.P.: Co-analysis of solar microwave and hard X-ray spectral evolutions. II. In three sources of a flaring loop. Astrophys. J. 740, 46–56 (2011)ADSCrossRefGoogle Scholar
  165. 165.
    Minoshima, T., Yokoyama, T., Mitani, N.: Comparative analysis of nonthermal emissions and electron transport in a solar flare. Astrophys. J. 673, 598–610 (2008)ADSCrossRefGoogle Scholar
  166. 166.
    Metcalf, T.R., Alexander, D.: Coronal trapping of energetic flare particles: Yohkoh/HXT observations. Astrophys. J. 522, 1108–1116 (1999)ADSCrossRefGoogle Scholar
  167. 167.
    Huang, G.L., Song, Q.W., Huang, Y.: Statistics of flaring loops observed by the Nobeyama Radioheliograph. III. Asymmetry of two footpoint emissions. Astrophys. J. 723, 1806–1816 (2010)ADSCrossRefGoogle Scholar
  168. 168.
    Brown, J.C.: The deduction of energy spectra of non-thermal electrons in flares from the observed dynamic spectra of hard X-ray bursts. Sol. Phys. 18, 489–502 (1971)ADSCrossRefGoogle Scholar
  169. 169.
    Fisher, G.H., Canfield, R.C., McClymont, A.N.: Flare loop radiative hydrodynamics. V - response to thick-target heating. VI - chromospheric evaporation due to heating by nonthermal electrons. VII - dynamics of the thick-target heated chromosphere. Astrophys. J. 289, 414–441 (1985a)ADSCrossRefGoogle Scholar
  170. 170.
    Fisher, G.H., Canfield, R.C., McClymont, A.N.: Flare loop radiative hydrodynamics - part six - chromospheric evaporation due to heating by nonthermal electrons. Astrophys. J. 289, 425–433 (1985b)ADSCrossRefGoogle Scholar
  171. 171.
    Fisher, G.H., Canfield, R.C., McClymont, A.N.: Flare loop radiative hydrodynamics - part seven - dynamics of the thick target heated chromosphere. Astrophys. J. 289, 434–441 (1985c)ADSCrossRefGoogle Scholar
  172. 172.
    Fisher, G.H.: IAU Colloq. 89: radiation hydrodynamics in stars and compact objects 255, 53–74 (1986)Google Scholar
  173. 173.
    Nagai, F., Emslie, A.G.: Gas dynamics in the impulsive phase of solar flares. I. Thick-target heating by nonthermal electrons. Astrophys. J. 279, 896–908 (1984)ADSCrossRefGoogle Scholar
  174. 174.
    Emslie, A.G., Nagai, F.: Gas dynamics in the impulsive phase of solar flares. II - the structure of the transition region - a diagnostic of energy transport processes. Astrophys. J. 288, 779–788 (1985)ADSCrossRefGoogle Scholar
  175. 175.
    Mariska, J.T., Emslie, A.G., Li, P.: Numerical simulations of impulsively heated solar flares. Astrophys. J. 341, 1067–1074 (1989)ADSCrossRefGoogle Scholar
  176. 176.
    Li, P., Emslie, A.G., Mariska, J.T.: Soft X-ray diagnostics of electron-heated solar flare atmospheres. Astrophys. J. 341, 1075–1081 (1989)ADSCrossRefGoogle Scholar
  177. 177.
    Allred, J.C., Kowalski, A.F., Carlsson, M.: A unified computational model for solar and stellar flares. Astrophys. J. 809, 104–117 (2015)ADSCrossRefGoogle Scholar
  178. 178.
    Emslie, A.G., Li, P., Mariska, J.T.: Diagnostics of electron-heated solar flare models. III - effects of tapered loop geometry and preheating. Astrophys. J. 399, 714–723 (1992)ADSCrossRefGoogle Scholar
  179. 179.
    Mariska, J.T.: Flare plasma dynamics obseved with the YOHKOH Bragg crystal spectrometer. III. Spectral signatures of electron-beam-heated atmospheres. Astrophys. J. 444, 478–486 (1995)ADSCrossRefGoogle Scholar
  180. 180.
    Reep, J.W., Bradshaw, S.J., Alexander, D.: Optimal electron energies for driving chromospheric evaporation in solar flares. Astrophys. J. 808, 177–188 (2015)ADSCrossRefGoogle Scholar
  181. 181.
    Abbett, W.P., Hawley, S.L.: Dynamic models of optical emission in impulsive solar flares. Astrophys. J. 521, 906–919 (1999)ADSCrossRefGoogle Scholar
  182. 182.
    Allred, J.C., Hawley, S.L., Abbett, W.P., Carlsson, M.: Radiative hydrodynamic models of the optical and ultraviolet emission from solar flares. Astrophys. J. 630, 573–586 (2005)ADSCrossRefGoogle Scholar
  183. 183.
    Carlsson, M., Stein, R.F.: Formation of solar calcium H and K bright grains. Astrophys. J. 481, 500–514 (1997)ADSCrossRefGoogle Scholar
  184. 184.
    Rubio da Costa, F., Liu, W., Petrosian, V., Carlsson, M.: Combined modeling of acceleration, transport, and hydrodynamic response in solar flares. II. Inclusion of radiative transfer with RADYN. Astrophys. J. 813, 133–149 (2015)Google Scholar
  185. 185.
    Liu, W., Petrosian, V., Mariska, J.T.: Combined modeling of acceleration, transport, and hydrodynamic response in solar flares. I. The numerical model. Astrophys. J. 702, 1553–1566 (2009)ADSCrossRefGoogle Scholar
  186. 186.
    Cheng, C.-C., Oran, E.S., Doschek, G.A., Boris, J.P., Mariska, J.T.: Numerical simulations of loops heated to solar flare temperatures. I. Astrophys. J. 265, 1090–1119 (1983)ADSCrossRefGoogle Scholar
  187. 187.
    MacNeice, P.: A numerical hydrodynamic model of a heated coronal loop. Sol. Phys. 103, 47–66 (1986)ADSCrossRefGoogle Scholar
  188. 188.
    Gan, W.Q., Fang, C.: A hydrodynamic model of the gradual phase of the solar flare loop. Astrophys. J. 358, 328–337 (1990)ADSCrossRefGoogle Scholar
  189. 189.
    Pallavicini, R., Peres, G., Serio, S., et al.: Closed coronal structures. V - gasdynamic models of flaring loops and comparison with SMM observations. Astrophys. J. 270, 270–287 (1983)ADSCrossRefGoogle Scholar
  190. 190.
    Peres, G., Reale, F., Serio, S., Pallavicini, R.: Hydrodynamic flare modeling - comparison of numerical calculations with SMM observations of the 1980 November 12 17:00 UT flare. Astrophys. J. 312, 895–908 (1987)ADSCrossRefGoogle Scholar
  191. 191.
    Gan, W.Q., Zhang, H.Q., Fang, C.: A hydrodynamic model of the impulsive phase of a solar flare loop. Astron. Astrophys. 241, 618–624 (1991)ADSGoogle Scholar
  192. 192.
    Hori, K., Yokoyama, T., Kosugi, T., Shibata, K.: Pseudo-two-dimensional hydrodynamic modeling of solar flare loops. Astrophys. J. 489, 426–441 (1997)ADSCrossRefGoogle Scholar
  193. 193.
    Longcope, D.W.: A simple model of chromospheric evaporation and condensation driven conductively in a solar flare. Astrophys. J. 795, 10–25 (2014)ADSCrossRefGoogle Scholar
  194. 194.
    Brannon, S., Longcope, D.: Modeling properties of chromospheric evaporation driven by thermal conduction fronts from reconnection shocks. Astrophys. J. 792, 50–64 (2014)ADSCrossRefGoogle Scholar
  195. 195.
    Yokoyama, T., Shibata, K.: Magnetohydrodynamic simulation of a solar flare with chromospheric evaporation effect based on the magnetic reconnection model. Astrophys. J. 549, 1160–1174 (2001)ADSCrossRefGoogle Scholar
  196. 196.
    Kennedy, M.B., Milligan, R.O., Allred, J.C., Mathioudakis, M., Keenan, F.P.: Radiative hydrodynamic modelling and observations of the X-class solar flare on 2011 March 9. Astron. Astrophys. 578, A72–A83 (2015)ADSCrossRefGoogle Scholar
  197. 197.
    Reep, J.W., Russell, A.J.B.: Alfvénic wave heating of the upper chromosphere in flares. Astrophys. J. Lett. 818, L20–L24 (2016)ADSCrossRefGoogle Scholar
  198. 198.
    Sturrock, P.A.: A model of quasi-stellar radio sources. Nature 211, 697–700 (1966)ADSCrossRefGoogle Scholar
  199. 199.
    Antonucci, E., Gabriel, A.H., Acton, L.W., et al.: Impulsive phase of flares in soft X-ray emission. Sol. Phys. 78, 107–123 (1982)ADSCrossRefGoogle Scholar
  200. 200.
    Acton, L.W., Leibacher, J.W., Canfield, R.C., et al.: Chromospheric evaporation in a well-observed compact flare. Astrophys. J. 263, 409–422 (1982)ADSCrossRefGoogle Scholar
  201. 201.
    Antonucci, E., Dennis, B.R.: Observation of chromospheric evaporation during the solar maximum mission. Sol. Phys. 86, 67–76 (1983)ADSCrossRefGoogle Scholar
  202. 202.
    Zarro, D.M., Slater, G.L., Freeland, S.L.: Impulsive phase soft X-ray blueshifts at a loop footpoint. Astrophys. J. 333, L99–L101 (1988)ADSCrossRefGoogle Scholar
  203. 203.
    Canfield, R.C., Metcalf, T.R., Zarro, D.M., Lemen, J.R.: Momentum balance in four solar flares. Astrophys. J. 348, 333–340 (1990)ADSCrossRefGoogle Scholar
  204. 204.
    Teriaca, L., Falchi, A., Cauzzi, G., et al.: Solar and heliospheric observatory/coronal diagnostic spectrograph and ground-based observations of a two-ribbon flare: spatially resolved signatures of chromospheric evaporation. Astrophys. J. 588, 596–605 (2003)ADSCrossRefGoogle Scholar
  205. 205.
    Teriaca, L., Falchi, A., Falciani, R., Cauzzi, G., Maltagliati, L.: Dynamics and evolution of an eruptive flare. Astron. Astrophys. 455, 1123–1133 (2006)ADSCrossRefGoogle Scholar
  206. 206.
    Ogawara, Y., Takano, T., Kato, T., et al.: The SOLAR-A mission - an overview. Sol. Phys. 136, 1–16 (1991)ADSCrossRefGoogle Scholar
  207. 207.
    Wuelser, J.-P., Canfield, R.C., Acton, L.W., et al.: Multispectral observations of chromospheric evaporation in the 1991 November 15 X-class solar flare. Astrophys. J. 424, 459–465 (1994)ADSCrossRefGoogle Scholar
  208. 208.
    Ding, M.D., Watanabe, T., Shibata, K., et al.: Chromospheric evaporation in four solar flares observed by YOHKOH. Astrophys. J. 458, 391–396 (1996)ADSCrossRefGoogle Scholar
  209. 209.
    Li, D., Ning, Z.J., Zhang, Q.M.: Imaging and spectral observations of quasi-periodic pulsations in a solar flare. Astrophys. J. 813, 59–71 (2015a)ADSCrossRefGoogle Scholar
  210. 210.
    Harrison, R.A., Sawyer, E.C., Carter, M.K., et al.: The coronal diagnostic spectrometer for the solar and heliospheric observatory. Sol. Phys. 162, 233–290 (1995)ADSCrossRefGoogle Scholar
  211. 211.
    Czaykowska, A., De Pontieu, B., Alexander, D., Rank, G.: Evidence for chromospheric evaporation in the late gradual flare phase from SOHO/CDS observations. Astrophys. J. 521, L75–78 (1999)ADSCrossRefGoogle Scholar
  212. 212.
    Brosius, J.W., Phillips, K.J.H.: Extreme-ultraviolet and X-ray spectroscopy of a solar flare loop observed at high time resolution: a case study in chromospheric evaporation. Astrophys. J. 613, 580–591 (2004)ADSCrossRefGoogle Scholar
  213. 213.
    Milligan, R.O., Gallagher, P.T., Mathioudakis, M., et al.: RHESSI and SOHO CDS observations of explosive chromospheric evaporation. Astrophys. J. 638, L117–120 (2006b)ADSCrossRefGoogle Scholar
  214. 214.
    Brosius, J.W., Holman, G.D.: Chromospheric evaporation in a remote solar flare-like transient observed at high time resolution with SOHO’s CDS and RHESSI. Astrophys. J. 659, L73–76 (2007)ADSCrossRefGoogle Scholar
  215. 215.
    Brosius, J.W.: Chromospheric evaporation and warm rain during a solar flare observed in high time resolution with the coronal diagnostic spectrometer aboard the solar and heliospheric observatory. Astrophys. J. 586, 1417–1429 (2003)ADSCrossRefGoogle Scholar
  216. 216.
    Culhane, J.L., Harra, L.K., James, A.M., et al.: The EUV imaging spectrometer for Hinode. Sol. Phys. 243, 19–61 (2007)ADSCrossRefGoogle Scholar
  217. 217.
    Milligan, R.O., Dennis, B.R.: Velocity characteristics of evaporated plasma using Hinode/EUV imaging spectrometer. Astrophys. J. 699, 968–975 (2009)ADSCrossRefGoogle Scholar
  218. 218.
    Mariska, J.T., Doschek, G.A., Bentley, R.D.: Flare plasma dynamics observed with the YOHKOH bragg crystal spectrometer. I. Properties of the CA XIX resonance line. Astrophys. J. 419, 418–425 (1993)ADSCrossRefGoogle Scholar
  219. 219.
    Mariska, J.T.: Flare plasma dynamics observed with the YOHKOH bragg crystal spectrometer. 2: properties of the Fe XXV, CA XIX. Astrophys. J. 434, 756–765 (1994)ADSCrossRefGoogle Scholar
  220. 220.
    Milligan, R.O.: Spatially resolved nonthermal line broadening during the impulsive phase of a solar flare. Astrophys. J. 740, 70–80 (2011)ADSCrossRefGoogle Scholar
  221. 221.
    Young, P.R., Doschek, G.A., Warren, H.P., Hara, H.: Properties of a solar flare Kernel observed by Hinode and SDO. Astrophys. J. 766, 127–142 (2013)ADSCrossRefGoogle Scholar
  222. 222.
    Graham, D.R., Fletcher, L., Hannah, I.G.: Hinode/EIS plasma diagnostics in the flaring solar chromosphere. Astron. Astrophys. 532, A27–A39 (2011)ADSCrossRefGoogle Scholar
  223. 223.
    Polito, V., Reep, J.W., Reeves, K.K., et al.: Simultaneous IRIS and Hinode/EIS observations and modelling of the 2014 October 27 X2.0 class flare. Astrophys. J. 816, 89–108 (2016)ADSCrossRefGoogle Scholar
  224. 224.
    Gömöry, P., Veronig, A.M., Su, Y., Temmer, M., Thalmann, J.K.: Chromospheric evaporation flows and density changes deduced from Hinode/EIS during an M1.6 flare. Astron. Astrophys. 588, A6–A17 (2016)Google Scholar
  225. 225.
    Doschek, G.A., Warren, H.P., Young, P.R.: Chromospheric evaporation in an M1.8 flare observed by the extreme-ultraviolet imaging spectrometer on Hinode. Astrophys. J. 767, 55–67 (2013)ADSCrossRefGoogle Scholar
  226. 226.
    De Pontieu, B., Title, A.M., Lemen, J.R., et al.: The interface region imaging spectrograph (IRIS). Sol. Phys. 289, 2733–2779 (2014)ADSCrossRefGoogle Scholar
  227. 227.
    Lemen, J.R., Title, A.M., Akin, D.J., et al.: The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Sol. Phys. 275, 17–40 (2012)ADSCrossRefGoogle Scholar
  228. 228.
    Tian, H., Li, G., Reeves, K.K., et al.: Imaging and spectroscopic observations of magnetic reconnection and chromospheric evaporation in a solar flare. Astrophys. J. 797, L14–L20 (2014)ADSCrossRefGoogle Scholar
  229. 229.
    Tian, H., Young, P.R., Reeves, K.K., et al.: Temporal evolution of chromospheric evaporation: case studies of the M1.1 flare on 2014 September 6 and X1.6 flare on 2014 September 10. Astrophys. J. 811, 139–155 (2015)ADSCrossRefGoogle Scholar
  230. 230.
    Battaglia, M., Kleint, L., Krucker, S., Graham, D.: How important are electron beams in driving chromospheric evaporation in the 2014 March 29 flare? Astrophys. J. 813, 113–120 (2015)ADSCrossRefGoogle Scholar
  231. 231.
    Li, D., Ning, Z.J., Zhang, Q.M.: Imaging and spectral observations of quasi-periodic pulsations in a solar flare. Astrophys. J. 807, 72–83 (2015b)ADSCrossRefGoogle Scholar
  232. 232.
    Brosius, J.W., Daw, A.N.: Quasi-periodic fluctuations and chromospheric evaporation in a solar flare ribbon observed by IRIS. Astrophys. J. 810, 45–57 (2015)ADSCrossRefGoogle Scholar
  233. 233.
    Graham, D.R., Cauzzi, G.: Temporal evolution of multiple evaporating ribbon sources in a solar flare. Astrophys. J. 807, L22–L26 (2015)Google Scholar
  234. 234.
    Polito, V., Reeves, K.K., Del Zanna, G., Golub, L., Mason, H.E.: Joint high temperature observation of a small C6.5 solar flare with Iris/Eis/Aia. Astrophys. J. 803, 84–96 (2015)ADSCrossRefGoogle Scholar
  235. 235.
    Brosius, J.W.: Chromospheric evaporation in solar flare loop strands observed with the extreme-ultraviolet imaging spectrometer on board Hinode. Astrophys. J. 762, 133–139 (2013)ADSCrossRefGoogle Scholar
  236. 236.
    Young, P.R., Tian, H., Jaeggli, S.: The 2014 March 29 X-flare: subarcsecond resolution observations of Fe XXI \(\lambda \)1354.1. Astrophys. J. 799, 218–230 (2015)ADSCrossRefGoogle Scholar
  237. 237.
    Masson, S., Pariat, E., Aulanier, G., Schrijver, C.J.: The nature of flare ribbons in coronal null-point topology. Astrophys. J. 700, 559–578 (2009)ADSCrossRefGoogle Scholar
  238. 238.
    Wang, H., Liu, C.: Circular ribbon flares and homologous jets. Astrophys. J. 760, 101–109 (2012)ADSCrossRefGoogle Scholar
  239. 239.
    Zhang, Q.M., Ning, Z.J., Guo, Y., et al.: Multiwavelength observations of a partially eruptive filament on 2011 September 8. Astrophys. J. 805, 4–21 (2015)ADSCrossRefGoogle Scholar
  240. 240.
    Pariat, E., Antiochos, S.K., DeVore, C.R.: A model for solar polar jets. Astrophys. J. 691, 61–74 (2009)ADSCrossRefGoogle Scholar
  241. 241.
    Zhang, Q.M., Chen, P.F., Guo, Y., Fang, C., Ding, M.D.: Two types of magnetic reconnection in coronal bright points and the corresponding magnetic configuration. Astrophys. J. 746, 19–27 (2012)ADSCrossRefGoogle Scholar
  242. 242.
    Ichimoto, K., Kurokawa, H.: H-alpha red asymmetry of solar flares. Sol. Phys. 93, 105–121 (1984)ADSGoogle Scholar
  243. 243.
    Lin, R.P., Dennis, B.R., Hurford, G.J., et al.: The reuven ramaty high-energy solar spectroscopic imager (RHESSI). Sol. Phys. 210, 3–32 (2002)ADSCrossRefGoogle Scholar
  244. 244.
    Zhang, Q.M., Li, D., Ning, Z.J., et al.: Explosive chromospheric evaporation in a circular-ribbon flare. Astrophys. J. 827, 27–37 (2016a)ADSCrossRefGoogle Scholar
  245. 245.
    Zhang, Q.M., Li, D., Ning, Z.J.: Chromospheric condensation and quasi-periodic pulsations in a circular-ribbon flare, Astrophys. J. (2016b). submittedGoogle Scholar
  246. 246.
    Fisher, G.H.: Dynamics of flare-driven chromospheric condensations. Astrophys. J. 346, 1019–1029 (1989)ADSCrossRefGoogle Scholar
  247. 247.
    Berkebile-Stoiser, S., Gömöry, P., Veronig, A.M., Rybák, J., Sütterlin, P.: Multi-wavelength fine structure and mass flows in solar microflares. Astron. Astrophys. 505, 811–823 (2009)ADSCrossRefGoogle Scholar
  248. 248.
    Milligan, R.O.: A hot microflare observed with RHESSI and Hinode. Astrophys. J. 680, L157–L160 (2008)ADSCrossRefGoogle Scholar
  249. 249.
    Brosius, J.W., Holman, G.D.: Early chromospheric response during a solar microflare observed with SOHO’s CDS and RHESSI. Astrophys. J. 720, 1472–1482 (2010)ADSCrossRefGoogle Scholar
  250. 250.
    Chen, F., Ding, M.D.: Evidence of explosive evaporation in a microflare observed by Hinode/EIS. Astrophys. J. 724, 640–648 (2010)ADSCrossRefGoogle Scholar
  251. 251.
    Berlicki, A., Heinzel, P., Schmieder, B., Mein, P., Mein, N.: Non-LTE diagnostics of velocity fields during the gradual phase of a solar flare. Astron. Astrophys. 430, 679–689 (2005)ADSCrossRefGoogle Scholar
  252. 252.
    Milligan, R.O., Gallagher, P.T., Mathioudakis, M., Keenan, F.P.: Observational evidence of gentle chromospheric evaporation during the impulsive phase of a solar flare. Astrophys. J. 642, L169–L171 (2006a)ADSCrossRefGoogle Scholar
  253. 253.
    del Zanna, G., Schmieder, B., Mason, H., Berlicki, A., Bradshaw, S.: The gradual phase of the X17 flare on October 28, 2003. Sol. Phys. 239, 173–191 (2006)ADSCrossRefGoogle Scholar
  254. 254.
    Zarro, D.M., Lemen, J.R.: Conduction-driven chromospheric evaporation in a solar flare. Astrophys. J. 329, 456–463 (1988)ADSCrossRefGoogle Scholar
  255. 255.
    Brosius, J.W., Holman, G.D.: Observations of the thermal and dynamic evolution of a solar microflare. Astrophys. J. 692, 492–501 (2009)ADSCrossRefGoogle Scholar
  256. 256.
    Sadykov, V.M., Vargas Dominguez, S., Kosovichev, A.G., et al.: Properties of chromospheric evaporation and plasma dynamics of a solar flare from iris. Astrophys. J. 805, 167–181 (2015)ADSCrossRefGoogle Scholar
  257. 257.
    Brosius, J.W.: Conversion from explosive to gentle chromospheric evaporation during a solar flare. Astrophys. J. 701, 1209–1218 (2009)ADSCrossRefGoogle Scholar
  258. 258.
    Raftery, C.L., Gallagher, P.T., Milligan, R.O., Klimchuk, J.A.: Multi-wavelength observations and modelling of a canonical solar flare. Astron. Astrophys. 494, 1127–1136 (2009)ADSCrossRefGoogle Scholar
  259. 259.
    Klimchuk, J.A., Patsourakos, S., Cargill, P.J.: Highly efficient modeling of dynamic coronal loops. Astrophys. J. 682, 1351–1362 (2008)ADSCrossRefGoogle Scholar
  260. 260.
    Li, Y., Ding, M.D., Qiu, J., Cheng, J.X.: Chromospheric evaporation in an X1.0 flare on 2014 March 29 observed with IRIS and EIS. Astrophys. J. 811, 7–20 (2015)ADSCrossRefGoogle Scholar
  261. 261.
    Li, Y., Ding, M.D.: Different patterns of chromospheric evaporation in a flaring region observed with Hinode/EIS. Astrophys. J. 727, 98–104 (2011)ADSCrossRefGoogle Scholar
  262. 262.
    Silva, A.V.R., Wang, H., Gary, D.E., Nitta, N., Zirin, H.: Imaging the chromospheric evaporation of the 1994 June 30 solar flare. Astrophys. J. 481, 978–987 (1997)ADSCrossRefGoogle Scholar
  263. 263.
    Nitta, S., Imada, S., Yamamoto, T.T.: Clear detection of chromospheric evaporation upflows with high spatial/temporal resolution by Hinode XRT. Sol. Phys. 276, 183–197 (2012)ADSCrossRefGoogle Scholar
  264. 264.
    Zhang, Q.M., Ji, H.S.: Chromospheric evaporation in sympathetic coronal bright points. Astron. Astrophys. 557, L5–L8 (2013)ADSCrossRefGoogle Scholar
  265. 265.
    Liu, W., Liu, S., Jiang, Y.W., Petrosian, V.: RHESSI observation of chromospheric evaporation. Astrophys. J. 649, 1124–1139 (2006)ADSCrossRefGoogle Scholar
  266. 266.
    Aschwanden, M.J., Benz, A.O.: Chromospheric evaporation and decimetric radio emission in solar flares. Astrophys. J. 438, 997–1012 (1995)ADSCrossRefGoogle Scholar
  267. 267.
    Ning, Z., Cao, W.: Hard X-ray source distributions on EUV bright kernels in a solar flare. Sol. Phys. 269, 283–293 (2011b)ADSCrossRefGoogle Scholar
  268. 268.
    Battaglia, M., Fletcher, L., Benz, A.O.: Observations of conduction driven evaporation in the early rise phase of solar flares. Astron. Astrophys. 498, 891–900 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Science Press, Beijing and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Guangli Huang
    • 1
    Email author
  • Victor F. Melnikov
    • 2
  • Haisheng Ji
    • 1
  • Zongjun Ning
    • 1
  1. 1.Purple Mountain ObservatoryNanjingChina
  2. 2.Pulkovo ObservatoryRussian Academy of SciencesSaint-PetersburgRussia

Personalised recommendations