Advertisement

Diagnostics of Flaring Loop Parameters

  • Guangli HuangEmail author
  • Victor F. Melnikov
  • Haisheng Ji
  • Zongjun Ning
Chapter
  • 243 Downloads

Abstract

With continuously deepened studies on flaring loops, the diagnostics of plasma parameters in flaring loops becomes an important topic based on matured theories and observations. In present condition of solar observations, we can not directly measure the plasma parameters in solar atmosphere, but can only use the observed EM waves and relevant theories to inverse these parameters. In general, these parameters can be divided into three groups, (1) ambient plasma parameters (magnetic field, density, and temperature), (2) the density, spectral index, and energy (lower and higher limits) of charged particles (especially the NT electrons to produce radio and X-ray bursts), and (3) the properties of EM (frequency, wavelength, and phase speed). Actually, the observing frequency is known, and thus the wavelength or phase speed can be obtained from the plasma dispersion relation.

Keywords

Flare Loops Electron Spectral Index Nobeyama Radioheliograph (NoRH) Loop Top (LT) Radio Diagnosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kundu, M.R.: Measurement of solar magnetic fields from radio observations. Societá Astronomica Italiana, Memorie 61, 431–455 (1990)Google Scholar
  2. 2.
    Preka-Papadema, P., Alissandrakis, C.E., Dennis, B.R., et al.: Modeling of a microwave burst emission. Sol. Phys. 172, 233–238 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    Nindos, A., White, S.M., Kundu, M.R., et al.: Observations and models of a flaring loop. Astrophys. J. 533, 1053–1062 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    Kundu, M.R., Nindos, A., Grechnev, V.V.: The configuration of simple short-duration solar microwave bursts. Astron. Astrophys. 420, 351–359 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    Grebinskij, A., Bogod, V., Gelfreikh, G., et al.: Microwave tomography of solar magnetic fields. Astron. Astrophys. Suppl. 144, 169–180 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    Ryabov, B.I., Maksimov, V.P., Lesovoi, S.V., et al.: Coronal magnetography of solar active region 8365 with the SSRT and NoRH radio heliographs. Sol. Phys. 226, 223–237 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    Gary, D.E., Keller, C.U. (eds.): Solar and Space Weather Radiophysics-Current Status and Future Developments. Astrophysics and Space Science Library, p. 314. Kluwer Academic Publishers, Dordrecht (2004)Google Scholar
  8. 8.
    Zhou, A.H., Karlický, M.: Magnetic field estimation in microwave radio sources. Sol. Phys. 153, 441–444 (1994)ADSCrossRefGoogle Scholar
  9. 9.
    Dulk, G.A., Marsh, K.A.: Simplified expressions for the gyrosynchrotron radiation from mildly relativistic, nonthermal and thermal electrons. Astrophys. J. 259, 350–358 (1982)ADSCrossRefGoogle Scholar
  10. 10.
    Huang, G.L.: Calculations of coronal magnetic field parallel and perpendicular to line-of-sight in microwave bursts. Sol. Phys. 237, 173–183 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    Huang, G.L., Ji, H.S., Wu, G.P.: The radio signature of magnetic reconnection for the M-class flare of 2004 November 1. Astrophys. J. 672, L131–L134 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Kosugi, T., Dennis, B.R., Kai, K.: Energetic electrons in impulsive and extended solar flares as deduced from flux correlations between hard X-rays and microwaves. Astrophys. J. 324, 1118–1131 (1988)ADSCrossRefGoogle Scholar
  13. 13.
    Huang, G.L., Zhou, A.H., Su, Y.N., Zhang, J.: Calculations of the low-cutoff energy of non-thermal electrons in solar microwave and hard X-ray bursts. New Astron. 10, 219–236 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    Takakura, T., Scalise, E.: Gyro-synchrotron emission in a magnetic dipole field for the application to the center-to-limb variation of microwave impulsive bursts. Sol. Phys. 11, 434–455 (1970)ADSCrossRefGoogle Scholar
  15. 15.
    Huang, G.L.: Diagnostics of the low-cutoff energy of nonthermal electrons in solar microwave and hard X-ray bursts. Sol. Phys. 257, 323–334 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Huang, G., Song, Q., Li, J.: Determination of intrinsic mode and linear mode coupling in solar microwave bursts. Astrophys. Space Sci. 345, 41–47 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Ramaty, R.: Gyrosynchrotron emission and absorption in a magnetoactive plasma. Astrophys. J. 158, 753–770 (1969)ADSCrossRefGoogle Scholar
  18. 18.
    Ji, H.S., Huang, G.L., Wang, H.M.: The relaxation of sheared magnetic fields: a contracting process. Astrophys. J. 660, 893–900 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    Wang, S., Liu, C., Liu, R., Deng, N., Liu, Y., Wang, H.: Response of the photospheric magnetic field to the X2.2 flare on 2011 February 15. Astrophys. J. 745, L17–L21 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Hudson, H.S., Fisher, G.H., Welsch, B.T.: Flare energy and magnetic field variations. In: Howe, R., Komm, R.W., Balasubramaniam, K.S., Petrie, G.J.D. (eds.) Subsurface and Atmospheric Influences on Solar Activity. ASP Conference Series 383, p. 221. ASP, San Francisco (2008)Google Scholar
  21. 21.
    Fisher, G.H., Bercik, D.J., Welsch, B.T., Hudson, H.S.: Global forces in eruptive solar flares: the lorentz force acting on the solar atmosphere and the solar interior. Sol. Phys. 277, 59–76 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Wang, H., Liu, C.: Observational evidence of back reaction on the solar surface associated with coronal magnetic restructuring in solar eruption. Astrophys. J. 716, L195–L199 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Huang, G., Li, J., Song, Q., Tan, B., Huang, Y., Wu, Z.: Attenuation of coronal magnetic field in solar microwave bursts. Astrophys. J. 806, 12–18 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    Huang, G.L., Nakajima, H.: Diagnosis of coronal magnetic field with data of Nobeyama Radio Heliograph. New Astron. 7, 135–145 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    Ji, H.S., Huang, G.L., Wang, H.M., et al.: Converging motion of H conjugate Kernels: the signature of fast relaxation of a sheared magnetic field. Astrophys. J. 636, L173–L174 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    Hachenberg, O., Wallis, G.: Das Spektrum der Bursts der Radiofrequenzstrahlung der Sonne im cm-Wellenbereich. Mit 21 Textabbildungen, Zeitschrift für Astrophysik 52, 42 (1961)Google Scholar
  27. 27.
    Lee, J.W., Gary, D.E., Zirin, H.: Flat microwave spectra seen at X-class flares. Sol. Phys. 152, 409–428 (1994)ADSCrossRefGoogle Scholar
  28. 28.
    Klein, K.-L., Trotett, G.: 1984: gyrosynchrotron radiation from a source with spatially varying field and density. Astron. Astrophys. 141, 67–76 (1984)ADSGoogle Scholar
  29. 29.
    Ramaty, R., Petrosian, V.: Free-free absorption of gyrosynchrotron radiation in solar microwave bursts. Astrophys. J. 178, 241–250 (1972)ADSCrossRefGoogle Scholar
  30. 30.
    White, S.M., Kundu, M.R., Bastian, T.S., Gary, D.E., Hurford, G.J., Kucera, T., Bieging, J.H.: Multifrequency observations of a remarkable solar radio burst. Astrophys. J. 384, 656–664 (1992)ADSCrossRefGoogle Scholar
  31. 31.
    Croom, D.L.: 71 GHz (4.2 mm) Solar radio bursts in the period July 1967 to December 1969. Sol. Phys. 15, 414–423 (1970)Google Scholar
  32. 32.
    Shimabukuro, F.I.: On the temperature and emission measure of thermal radio bursts. Sol. Phys. 23, 169–177 (1972)ADSCrossRefGoogle Scholar
  33. 33.
    Zirin, H., Tanaka, K.: The flares of August 1972. Sol. Phys. 32, 173–207 (1973)ADSCrossRefGoogle Scholar
  34. 34.
    Correia, E., Kaufmann, P., Magun, A.: The observed spectrum of solar burst continuum emission in the submillimeter spectral range infrared solar physics. In: Rabin, D.M., Jefferies, J.T., Lindsey, C. (eds.) International Astronomical Union Symposium on Proceedings of the 154th Symposium of the International Astronomical Union held in Tucson, Arizona, USA, 2-6 March 1992, vol. 154, p. 125. Kluwer Academic Publishers, Dordrecht (1994)Google Scholar
  35. 35.
    Kaufmann, P., Raulin, J.-P., Melo, A.M., Correia, E., Costa, J.E.R., Giménez de Castro, C.G., Silva, A.V.R., Yoshimori, M., Hudson, H.S., Gan, W.Q., Gary, D.E., Gallagher, P.T., Levato, H., Marun, A., Rovira, M.: Solar submillimeter and Gamma-Ray burst emission. Astrophys. J. 574, 1059–1065 (2002)Google Scholar
  36. 36.
    Kaufmann, P., Levato, H., Cassiano, M.M., Correia, E., Costa, J.E.R., Giménez de Castro, C.G., Godoy, R., Kingsley, R.K., Kingsley, J.S., Kudaka, A. S., Marcon, R., Martin, R., Marun, A., Melo, A.M., Pereyra, P., Raulin, J., Rose, T., Silva Valio, A., Walber, A., Wallace, P., Yakubovich, A., Zakia, M.B.: New telescopes for ground-based solar observations at submillimeter and mid-infrared. Proc. SPIE 7012, 70120L (2008)Google Scholar
  37. 37.
    Raulin, J.-P., Makhmutov, V.S., Kaufmann, P., Pacini, A.A., Lüthi, T., Hudson, H.S., Gary, D.E.: Analysis of the impulsive phase of a solar flare at submillimeter wavelengths. Sol Phys. 223, 181–199 (2004)Google Scholar
  38. 38.
    Trottet, G., Raulin, J.-P., Giménez de Castro, C.G., Lüthi, T., Caspi, A., Mandrini, C.H., Luoni, M.L., Kaufmann, P.: Origin of the submillimeter radio emission during the time-extended phase of a solar flare. Sol. Phys. 273, 339–361 (2011)Google Scholar
  39. 39.
    Giménez de Castro, C.G., Cristiani, G.D., Simües, P.J.A., Mandrini, C.H., Correia, E., Kaufmann, P.: A burst with double radio spectrum observed up to 212 GHz. Sol. Phys. 284, 541–558 (2013)Google Scholar
  40. 40.
    Kaufmann, P., Raulin, J.-P., Giménez de Castro, C.G., Levato, H., Gary, D.E., Costa, J.E.R., Marun, A., Pereyra, P., Silva, A.V.R., Correia, E.: A new solar burst spectral component emitting only in the terahertz range. Astrophys. J. 603, L121–L124 (2004)Google Scholar
  41. 41.
    Melnikov, V.F., Gary, D.E., Nita, G.M.: Peak frequency dynamics in solar microwave bursts. Sol. Phys. 253, 43–73 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    Torii, C., Tsukiji, Y., Kobayashi, S., Yoshimi, N., Tanaka, H., Enome, S.: Full-automatic radiopolarimeters for solar patrol at microwave frequencies. Proc. Nagoya Univ. Res. Inst. Atmos. 26, 129–132 (1979)Google Scholar
  43. 43.
    Nakajima, H., Sekiguchi, H., Sawa, M., Kai, K., Kawashima, S., Kosugi, T., Shibuya, N., Shinohara, N., Shiomi, Y.: The radiometer and polarimeters at 80, 35, and 17 GHz for solar observations at Nobeyama. Publ. Astron. Soc. Japan 37, 163–170 (1985)ADSGoogle Scholar
  44. 44.
    Song, Q., Nakajima, H., Huang, G., Tan, B., Huang, Y., Wu, Z.: Turnover frequency in solar microwave bursts with an extremely flat optically-thin spectrum. Sol. Phys. 291, 3619–3635 (2016)ADSCrossRefGoogle Scholar
  45. 45.
    Ramaty, R., Schwartz, R.A., Enome, S., Nakajima, H.: Gamma-ray and millimeter-wave emissions from the 1991 June X-class solar flares. Astrophys. J. 436, 941–949 (1994)ADSCrossRefGoogle Scholar
  46. 46.
    Razin, V.A.: Izv. Vyssh. Uchebn. Zaved. Radiofiz. 3, 584 (1960)Google Scholar
  47. 47.
    Newkirk Jr, G.: Coronal magnetic fields and the solar wind, solar wind. In: Charles, P.S., Paul, J.C., John, M.W. (eds.), p. 11, Scientific and Technical Information Office, National Aeronautics and Space Administration, Washington (1972)Google Scholar
  48. 48.
    Dulk, G.A., McLean, D.J.: Coronal magnetic fields. Sol. Phys. 57, 279–295 (1978)ADSCrossRefGoogle Scholar
  49. 49.
    Krüger, A., Hildebrandt, J.: Corona magnetic fields deduced from radio methods (invited), The magnetic and velocity fields of solar active regions. In: Zirin, H., Ai, G., Wang, H. (eds.) Proceedings of the International Astronomical Union (IAU) Colloquium no. 141, held in Beijing, China, 6-12 September 1992. Astronomical Society of the Pacific Conference Series, vol. 46, p. 249. Astronomical Society of the Pacific (ASP), San Francisco (1993)Google Scholar
  50. 50.
    Mandrini, C.H., Démoulin, P., Klimchuk, J.A.: Magnetic field and plasma scaling laws: their implications for coronal heating models. Astrophys. J. 530, 999–1015 (2000)ADSCrossRefGoogle Scholar
  51. 51.
    Fleishman, G.D., Melnikov, V.F.: Gyrosynchrotron emission from anisotropic electron distributions. Astrophys. J. 587, 823–835 (2003)ADSCrossRefGoogle Scholar
  52. 52.
    Fu, Q., Ji, H., Lao, D., Liu, Y., Chen, Z., Cheng, C., Wang, S., Xie, R., Guo, Y.: A separatrix frequency of microwave type III burst found in microwave range in corona. Acta Astrophys. Sin. 17, 441–444 (1997)ADSGoogle Scholar
  53. 53.
    Huang, G.L., Li, J.P., Song, Q.W.: The calculation of coronal magnetic field and density of nonthermal electrons in the 2003 October 27 microwave burst. Res. Astron. Astrophys. 13, 215–225 (2013)ADSCrossRefGoogle Scholar
  54. 54.
    Maurya, R.A., Vemareddy, P., Ambastha, A.: Velocity and magnetic transients driven by the X2.2 white-light flare of 2011 February 15 in NOAA 11158. Astrophys. J. 747, 134–145 (2012)ADSCrossRefGoogle Scholar
  55. 55.
    Sakurai, T., Hiei, E.: New observational facts about solar flares from ground-based observations. Adv. Space Res. 17, 91–100 (1996)CrossRefGoogle Scholar
  56. 56.
    Ding, M.D., Qiu, J., Wang, H.: Non-LTE calculation of the Ni I 676.8 Nanometer line in a flaring atmosphere. Astrophys. J. 576, L83–L86 (2002)ADSCrossRefGoogle Scholar
  57. 57.
    Qiu, J., Gary, D.: Flare-related magnetic anomaly with a sign reversal. Astrophys. J. 599, 615–625 (2003)ADSCrossRefGoogle Scholar
  58. 58.
    Seehafer, N.: Determination of constant alpha force-free solar magnetic fields from magnetograph data. Sol. Phys. 58, 215–223 (1978)ADSCrossRefGoogle Scholar
  59. 59.
    Gan, W.Q., Li, Y.P., Chang, J.: Energy shortage of nonthermal electrons in powering a solar flare. Astrophys. J. 552, 858–862 (2001)ADSCrossRefGoogle Scholar
  60. 60.
    Kontar, E.P., Brown, J.C., McArthur, G.: Nonuniform target ionization and fitting thick target electron injection spectra to RHESSI data. Sol. Phys. 210, 419–429 (2002)ADSCrossRefGoogle Scholar
  61. 61.
    Kontar, E.P., Brown, J.C., Emslie, A.G., Schwartz, R.A., Smith, D.M., Alexander, R.C.: An explanation for non-power-law behavior in the hard X-ray spectrum of the 2002 July 23 solar flare. Astrophys. J. 598, L123–L126 (2003)ADSCrossRefGoogle Scholar
  62. 62.
    Holman, G.D.: The effects of low- and high-energy cutoffs on solar flare microwave and hard X-Ray spectra. Astrophys. J. 586, 606–616 (2003)ADSCrossRefGoogle Scholar
  63. 63.
    Zhang, J., Huang, G.L.: The effect of the compton backscattering component on the photon spectra of three Yohkoh/Hard X-ray telescope flare. Astrophys. J. 592, L49–L52 (2003)ADSCrossRefGoogle Scholar
  64. 64.
    Zhang, J., Huang, G.L.: Joint effects of compton backscattering and low-energy cutoff on the flattening of solar hard X-ray spectra at lower energies. Sol. Phys. 219, 135–148 (2004)ADSCrossRefGoogle Scholar
  65. 65.
    Ka$\breve{s}$parová, J., Karlický, M., Kontar, E.P., Schwartz, R.A., Dennis, B.R.: Multi-wavelength analysis of high-energy electrons in solar flares: a case study of the August 20, 2002 flare. Sol. Phys. 232, 63–86 (2005)Google Scholar
  66. 66.
    Kontar, E.P., MacKinnon, A.L., Schwartz, R.A., Brown, J.C.: Compton backscattered and primary X-rays from solar flares: angle dependent Green’s function correction for photospheric albedo. Astron. Astrophys. 446, 1157–1163 (2006)ADSCrossRefGoogle Scholar
  67. 67.
    Ka$\breve{s}$parová, J., Kontar, E.P., Brown, J.C.: Hard X-ray spectra and positions of solar flares observed by RHESSI: photospheric albedo, directivity and electron spectra. Astron. Astrophys. 466, 705–712 (2007)Google Scholar
  68. 68.
    Han, G., Li, Y.P., Gan, W.Q.: A study of the low energy cutoff of nonthermal electrons in RHESSI flares. Chin. Astron. Astrophys. 33, 168–178 (2009)ADSCrossRefGoogle Scholar
  69. 69.
    Miyamoto, K.: Fundamentals of Plasma Physics and Controlled Fusion, pp. 88–89. Science Press, Beijing (1981)Google Scholar
  70. 70.
    Gan, W.Q.: A comparison between the spectral parameters of both electron and proton dominated events. Astrophys. Space Sci. 274, 481–488 (2000)ADSCrossRefGoogle Scholar
  71. 71.
    Huang, G.L.: The common cutoff energy of non-thermal electrons with power law distribution. Astrophys. Space Sci. 272, 325–332 (2000a)ADSzbMATHCrossRefGoogle Scholar
  72. 72.
    Huang, G.L.: Energy cutoff, energy index, and density of nonthermal electrons responsible for solar microwave and HXR bursts. Sol. Phys. 196, 395–402 (2000)ADSCrossRefGoogle Scholar
  73. 73.
    Bai, T., Ramaty, R.: Backscatter, anisotropy, and polarization of solar hard X-rays. Astrophys. J. 219, 705–726 (1978)ADSCrossRefGoogle Scholar
  74. 74.
    Tandberg-Hanssen, E., Emslie, A.G.: The Physics of Solar Flares. Cambridge University Press, Cambridge (1988)Google Scholar
  75. 75.
    Huang, G.L.: Initial pitch-angle of narrowly beamed electrons injected into a magnetic mirror, formation of trapped and precipitating electron distribution, and asymmetry of hard X-ray and microwave footpoint emissions. New Astron. 12, 483–489 (2007)ADSCrossRefGoogle Scholar
  76. 76.
    Huang, G.L., Nakajima, H.: Statistical analysis of flaring loops observed by nobeyama radioheliograph. I. Comparison of looptop and footpoints. Astrophys. J. 696, 136–142 (2009)ADSCrossRefGoogle Scholar
  77. 77.
    Huang, G.L., Song, Q.W., Huang, Y.: Statistics of flaring loops observed by the nobeyama radioheliograph. III. Asymmetry of two footpoint emissions. Astrophys. J. 723, 1806–1816 (2010)ADSCrossRefGoogle Scholar
  78. 78.
    Marsh, K.A., Hurford, G.J., Zirin, H., Dulk, G.A., Dennis, B.R., et al.: Properties of solar flare electrons, deduced from hard X-ray and spatially resolved microwave observations. Astrophys. J. 251, 797–804 (1981)ADSCrossRefGoogle Scholar
  79. 79.
    Alissandrakis, C.E.: Gyrosynchrotron emission of solar flares. Sol. Phys. 104, 207–221 (1986)ADSCrossRefGoogle Scholar
  80. 80.
    Nitta, N., White, S.M., Schmahl, E.J., Kundu, M.R.: On the reconciliation of simultaneous microwave imaging and hard X-ray observations of a solar flare. Sol. Phys. 132, 125–136 (1991)ADSCrossRefGoogle Scholar
  81. 81.
    Silva, A.V.R., Wang, H., Gary, D.E.: Correlation of microwave and hard X-ray spectral parameters. Astrophys. J. 545, 1116–1123 (2000)ADSCrossRefGoogle Scholar
  82. 82.
    White, S.M., Kundu, M.R.: Solar observations with a millimeter-wavelength array. Sol. Phys. 141, 347–369 (1992)ADSCrossRefGoogle Scholar
  83. 83.
    Kundu, M.R., White, S.M., Gopalswamy, N., Lim, J.: Millimeter, microwave, hard X-ray, and soft X-ray observations of energetic electron populations in solar flares. Astrophys. J. Supplement Ser. 90, 599–610 (1994)ADSCrossRefGoogle Scholar
  84. 84.
    Silva, A.V.R., Gary, D.E., White, S.M., Lin, R.P., de Pater, I.: First images of impulsive millimeter emission and spectral analysis of the 1994 August 18 solar flare. Sol. Phys. 175, 157–173 (1997)ADSCrossRefGoogle Scholar
  85. 85.
    Raulin, J.-P., White, S.M., Kundu, M.R., Silva, A.V.R., Shibasaki, K.: Multiple components in the millimeter emission of a solar flare. Astrophys. J. 522, 547–558 (1999)ADSCrossRefGoogle Scholar
  86. 86.
    Hildebrandt, J., Krüger, A., Chertok, I.M., Fomichev, V.V., Gorgutsa, R.V.: Solar microwave bursts from electron populations with a ‘Broken’ energy spectrum. Sol. Phys. 181, 337–349 (1998)Google Scholar
  87. 87.
    Melrose, D.B., Brown, J.C.: Precipitation in trap models for solar hard X-ray bursts. Mon. Not. R. Astron. Soc. 176, 15–30 (1976)ADSCrossRefGoogle Scholar
  88. 88.
    Vilmer, N., Kane, S.R., Trottet, G.: Impulsive and gradual hard X-ray sources in a solar flare. Astron. Astrophys. 108, 306–313 (1982)ADSGoogle Scholar
  89. 89.
    Melnikov, V.F., Magun, A.: Dynamics of energetic electrons in a solar flare loop and the flattening of its millimeter-wavelength radio emission spectrum. Radiophys. Quantum Electron. 39, 971–977 (1996)ADSCrossRefGoogle Scholar
  90. 90.
    Melnikov, V.F., Magun, A.: Spectral flattening during solar radio bursts at Cm-mm wavelengths and the dynamics of energetic electrons in a flare loop. Sol. Phys. 178, 153–171 (1998)ADSCrossRefGoogle Scholar
  91. 91.
    Yoshimori, M., Suga, K., Morimoto, K., Hiraoka, T., Sato, J., et al.: Gamma-ray spectral observations with YOHKOH. Astrophys. J. Supplement Ser. 90, 639–643 (1994)ADSCrossRefGoogle Scholar
  92. 92.
    Trottet, G., Vilmer, N., Barat, C., Benz, A., Magun, A., et al.: A multiwavelength analysis of an electron-dominated gamma-ray event associated with a disk solar flare. Astron. Astrophys. 334, 1099–1111 (1998)ADSGoogle Scholar
  93. 93.
    Vilmer, N., Trottet, G., Barat, C., Schwartz, R.A., Enome, S., et al.: Hard X-ray and gamma-ray observations of an electron dominated event associated with an occulted solar flare. Astron. Astrophys. 342, 575–582 (1999)ADSGoogle Scholar
  94. 94.
    Melnikov, V.F., Silva, A.V.R.: Dynamics of solar flare microwave and hard X-ray spectra. In: Wilson, A (ed.) Magnetic Fields and Solar Processes. The 9th European Meeting on Solar Physics, held 12-18 September 1999, Florence, Italy. European Space Agency, ESA SP-448, p. 1053 (1999)Google Scholar
  95. 95.
    Stahli, M., Gary, D.E., Hurford, G.J.: High-resolution microwave spectra of solar bursts. Sol. Phys. 120, 351–368 (1989)ADSCrossRefGoogle Scholar
  96. 96.
    Dulk, G.A., Kiplinger, A.L., Winglee, R.M.: Characteristics of hard X-ray spectra of impulsive solar flares. Astrophys. J. 389, 756–763 (1992)ADSCrossRefGoogle Scholar
  97. 97.
    Marsh, K.A., Hurford, G.J.: Two-dimensional VLA maps of solar bursts at 15 and 23 GHz with arcsec resolution. Astrophys. J. 240, L111–L114 (1980)ADSCrossRefGoogle Scholar
  98. 98.
    Kundu, M.R., Schmahl, E.J., Velusamy, T., Vlahos, L.: Radio imaging of solar flares using the very large array - new insights into flare process. Astron. Astrophys. 108, 188–194 (1982)ADSGoogle Scholar
  99. 99.
    Kawabata, K., Ogawa, H., Takakura, T., Tsuneta, S., Ohki, K., et al.: Fan-beam observations of millimeter wave burst associated with X-Ray and Gamma-Ray events detected from HINOTORI. In: Proceedings of the Hinotori Symposium held Solar Flares, p. 168 (1981)Google Scholar
  100. 100.
    Nakajima, H.: Particle acceleration in the 1981 April 1 flare. Sol. Phys. 86, 427–432 (1983)ADSCrossRefGoogle Scholar
  101. 101.
    Hanaoka, Y.: Double-loop configuration of solar flares. Sol. Phys. 173, 319–346 (1997)ADSCrossRefGoogle Scholar
  102. 102.
    Nishio, M., Yaji, K., Kosugi, T., Nakajima, H., Sakurai, T.: Magnetic field configuration in impulsive solar flares inferred from coaligned microwave/X-ray images. Astrophys. J. 489, 976–991 (1997)ADSCrossRefGoogle Scholar
  103. 103.
    Hanaoka, Y.: High-energy electrons in double-loop flares. Publ. Astron. Soc. Japan 51, 483–496 (1999)ADSCrossRefGoogle Scholar
  104. 104.
    Kundu, M.R., Nindos, A., White, S.M., Grechnev, V.V.: A multiwavelength study of three solar flares. Astrophys. J. 557, 880–890 (2001)ADSCrossRefGoogle Scholar
  105. 105.
    Melnikov, V.F., Shibasaki, K., Reznikova, V.E.: Loop-top nonthermal microwave source in extended solar flaring loops. Astrophys. J. 580, L185–L188 (2002)ADSCrossRefGoogle Scholar
  106. 106.
    Alissandrakis, C.E., Preka-Papadema, P.: Microwave emission and polarization of a flaring loop. Astron. Astrophys. 139, 507–511 (1984)ADSGoogle Scholar
  107. 107.
    Klein, K.-L., Trottet, G.: Gyrosynchrotron radiation from a source with spatially varying field and density. Astron. Astrophys. 141, 67–76 (1984)ADSGoogle Scholar
  108. 108.
    Bastian, T.S., Benz, A.O., Gary, D.E.: Radio emission from solar flares. Annu. Rev. Astron. Astrophys. 36, 131–188 (1998)ADSCrossRefGoogle Scholar
  109. 109.
    Tzatzakis, V., Nindos, A., Alissandrakis, C.E., Shibasaki, K.: A statistical study of microwave flare morphologies. In: Recent Advances in Astronomy and Astrophysics: 7th International Conference of the Hellenic Astronomical Society, AIP Conference Proceedings, vol. 848, pp. 248–252 (2006)Google Scholar
  110. 110.
    Martynova, O.V., Melnikov, V.F., Reznikova, V.E.: Proceedings of 11th Pulkovo International Conference on Solar Physics, Saint-Peterburg, p. 241 (2007)Google Scholar
  111. 111.
    White, S.M., Kundu, M.R., Garaimov, V.I., Yokoyama, T., Sato, J.: The physical properties of a flaring loop. Astrophys. J. 576, 505–518 (2002)ADSCrossRefGoogle Scholar
  112. 112.
    Melnikov, V. F.: Electron Acceleration and Transport in Microwave Flaring Loops. Proc. Nobeyama Symposium (Kiosato, 26-29 October 2004), Ed. K.Shibasaki, NSRO Report, 1, 11–22 (2006)Google Scholar
  113. 113.
    Melnikov, V.F., Gorbikov, S.P., Reznikova, V.E., Shibasaki, K.: Bull. Russ. Acad. Sci. Phys. 70, 1684 (2006)Google Scholar
  114. 114.
    Yokoyama, T., Nakajima, H., Shibasaki, K., Melnikov, V.F., Stepanov, A.V.: Microwave observations of the rapid propagation of nonthermal sources in a solar flare by the nobeyama radioheliograph. Astrophys. J. 576, L87–L90 (2002)ADSCrossRefGoogle Scholar
  115. 115.
    Stepanov, A.V., Yokoyama, T., Shibasaki, K., Melnikov, V.F.: Turbulent propagation of high-energy electrons in a solar coronal loop. Astron. Astrophys. 465, 613–619 (2007)ADSCrossRefGoogle Scholar
  116. 116.
    Su, Y.N., Huang, G.L.: Polarization of loop-top and footpoint sources in microwave bursts. Sol. Phys. 219, 159–168 (2004)ADSCrossRefGoogle Scholar
  117. 117.
    Karlicky, M.: Loop-top gyro-synchrotron source in post-maximum phase of the August 24, 2002 flare. New Astron. 9, 383–389 (2004)ADSCrossRefGoogle Scholar
  118. 118.
    Li, Y.P., Gan, W.Q.: The shrinkage of flare radio loops. Astrophys. J. 629, L137–L139 (2005)ADSCrossRefGoogle Scholar
  119. 119.
    Nakajima, H., Nishio, M., Enome, S., Shibasaki, K., Takano, T., et al.: The nobeyama radioheliograph. Proc. IEEE 82, 705–713 (1994)ADSCrossRefGoogle Scholar
  120. 120.
    Domingo, V., Fleck, B., Poland, A.I.: The SOHO mission: an overview. Sol. Phys. 162, 1–37 (1995)ADSCrossRefGoogle Scholar
  121. 121.
    Handy, B.N., Acton, L.W., Kankelborg, C.C., Wolfson, C.J., Akin, D.J., et al.: The transition region and coronal explorer. Sol. Phys. 187, 229–260 (1999)ADSCrossRefGoogle Scholar
  122. 122.
    Kuznetzov, S.N., Kudela, K., Myagkova, I.N., et al.: Indian J. Radio Space. Physics 33, 353 (2004)Google Scholar
  123. 123.
    Oraevsky, V.N., Sobelman, I.I., Zitnik, I.A., Kuznetsov, V.D., Stepanov, A.I.: CORONAS-F observations of active phenomena on the sun. Adv. Space Res. 32, 2567–2572 (2003)ADSCrossRefGoogle Scholar
  124. 124.
    Bai, T.: Two classes of gamma-ray/proton flares - impulsive and gradual. Astrophys. J. 308, 912–928 (1986)ADSCrossRefGoogle Scholar
  125. 125.
    Melnikov, V.F.: Electron acceleration and capture in impulsive and gradual bursts: results of analysis of microwave and hard x-ray emissions. Radiophys. Quantum Electron. 37, 557–568 (1994)ADSCrossRefGoogle Scholar
  126. 126.
    Hamilton, R.J., Lu, E.T., Petrosian, V.: Numerical solution of the time-dependent kinetic equation for electrons in magnetized plasma. Astrophys. J. 354, 726–734 (1990)ADSCrossRefGoogle Scholar
  127. 127.
    Ning, Z., Ding, M.: Microwave spectral evolution of solar flares. Publ. Astron. Soc. Japan 59, 373–379 (2007)ADSCrossRefGoogle Scholar
  128. 128.
    Nita, G., Gary, D., Lee, J.: Statistical study of two years of solar flare radio spectra obtained with the owens valley solar array. Astrophys. J. 605, 528–545 (2004)ADSCrossRefGoogle Scholar
  129. 129.
    Silva, A., Share, G., Murphy, R., Costa, J., de Castro, C., Raulin, J., Kaufmann, P.: Evidence that synchrotron emission from nonthermal electrons produces the increasing submillimeter spectral component in solar flares. Sol. Phys. 245, 311–326 (2007)ADSCrossRefGoogle Scholar
  130. 130.
    Zhou, A., Huang, G., Li, J.: New explanations for some observation phenomena of the peak frequency of solar radio bursts. Astrophys. J. 708, 445–449 (2010)ADSCrossRefGoogle Scholar
  131. 131.
    Grigis, P., Benz, A.: The spectral evolution of impulsive solar X-ray flares. Astron. Astrophys. 426, 1093–1101 (2004)ADSCrossRefGoogle Scholar
  132. 132.
    Ning, Z.: Microwave and hard X-ray spectral evolution in two solar flares. Astrophys. J. 659, L69–L72 (2007a)ADSCrossRefGoogle Scholar
  133. 133.
    Ning, Z.: Different behaviors between microwave and hard X-ray spectral hardness in two solar flares. Astrophys. J. 671, L197–L200 (2007b)ADSCrossRefGoogle Scholar
  134. 134.
    Morgachev, A.S., Kuznetsov, S.A., Melnikov, V.F.: Radio diagnostics of the solar flaring loop parameters by the forward fitting method. Geomagn. Aeron. 54, 933–942 (2014)ADSCrossRefGoogle Scholar
  135. 135.
    Fleishman, G.D., Kuznetsov, A.A.: Fast gyrosynchrotron codes. Astrophys. J. 721, 1127–1141 (2010)ADSCrossRefGoogle Scholar
  136. 136.
    Fleishman, G.D., Nita, G.M., Gary, D.E.: Dynamic magnetography of solar flaring loops. Astrophys. J. Lett. 698, L183–L187 (2009)ADSCrossRefGoogle Scholar
  137. 137.
    Gladkov, L.A., Kureichik, V.V., Kureichik, V.M.: Geneticheskie algoritmy: Uchebnoe posobie. 2-e izd. (Genetic Algorithms: A Textbook). Fizmatlit, Moscow (2006)Google Scholar

Copyright information

© Science Press, Beijing and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Guangli Huang
    • 1
    Email author
  • Victor F. Melnikov
    • 2
  • Haisheng Ji
    • 1
  • Zongjun Ning
    • 1
  1. 1.Purple Mountain ObservatoryNanjingChina
  2. 2.Pulkovo ObservatoryRussian Academy of SciencesSaint-PetersburgRussia

Personalised recommendations